Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine
Abstract
:1. Introduction
2. Results
2.1. Solubility Study
2.1.1. Physical Mixing
2.1.2. Lyophilization
2.1.3. Solvent Evaporation
2.2. Dissolution Studies
2.3. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.4. Scanning Electron Microscopy (SEM)
2.5. X-ray Diffractometry (XRD)
2.6. Thermogravimetric Analysis (TGA)
2.7. Differential Scanning Calorimetry (DSC)
3. Discussion
4. Materials and Methods
4.1. Preparation of Inclusion Complexes by Physical Mixing
4.2. Preparation of Inclusion Complexes by Solvent Evaporation Method
4.3. Preparation of Inclusion Complexes by Lyophilization Method
4.4. Preparation of Capsules
4.5. In-Vitro Evaluation and Characterization
4.5.1. Solubility Study
4.5.2. In Vitro Dissolution Study
4.6. Methods of Characterization
4.6.1. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR)
4.6.2. Powder X-ray Diffraction
4.6.3. Thermogravimetric Analysis (TGA)
4.6.4. Differential Scanning Calorimetry (DSC)
4.6.5. Scanning Electron Microscopy (SEM)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dan Córdoba, A.V.; Aiassa, V.; Dimmer, J.A.; Barrionuevo, C.N.; Quevedo, M.A.; Longhi, M.R.; Zoppi, A. Development and Characterization of Pharmaceutical Systems Containing Rifampicin. Pharmaceutics 2023, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, H.; Mishra, A.; Mishra, A.K. Aripiprazole: An FDA approved bioactive compound to treat schizophrenia-A mini review. Curr. Drug Discov. Technol. 2020, 17, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Sahraian, A.; Ehsaei, Z.; Mowla, A. Aripiprazole as an adjuvant treatment for obsessive and compulsive symptoms in manic phase of bipolar disorder: A randomized, double-blind, placebo-controlled clinical trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Tănase, I.-M.; Sbârcea, L.; Ledeți, A.; Vlase, G.; Barvinschi, P.; Văruţ, R.-M.; Dragomirescu, A.; Axente, C.; Ledeți, I. Physicochemical characterization and molecular modeling study of host–guest systems of aripiprazole and functionalized cyclodextrins. J. Therm. Anal. Calorim. 2020, 141, 1027–1039. [Google Scholar] [CrossRef]
- Tahir, R.A.; Wu, H.; Javed, N.; Khalique, A.; Khan, S.A.F.; Mir, A.; Ahmed, M.S.; Barreto, G.E.; Qing, H.; Ashraf, G.M. Pharmacoinformatics and molecular docking reveal potential drug candidates against Schizophrenia to target TAAR6. J. Cell. Physiol. 2019, 234, 13263–13276. [Google Scholar] [CrossRef]
- Sinha, V.R. Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles. AAPS PharmSciTech 2018, 19, 1264–1273. [Google Scholar]
- Xiao, L.; Zhao, Q.; Li, A.-n.; Sun, J.; Wu, B.; Wang, L.; Zhang, H.; Zhang, R.; Li, K.; Xu, X. Efficacy and safety of aripiprazole once-monthly versus oral aripiprazole in Chinese patients with acute schizophrenia: A multicenter, randomized, double-blind, non-inferiority study. Psychopharmacology 2022, 239, 243–251. [Google Scholar] [CrossRef]
- Abdelbary, A.A.; Al-Mahallawi, A.M.; Abdelrahim, M.E.; Ali, A.M. Preparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration. Int. J. Nanomed. 2015, 10, 6339. [Google Scholar] [CrossRef]
- Enawgaw, H.; Tesfaye, T.; Yilma, K.T.; Limeneh, D.Y. Synthesis of a cellulose-co-amps hydrogel for personal hygiene applications using cellulose extracted from corncobs. Gels 2021, 7, 236. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Salama, A.H.; Shamma, R.N.; Farouk, F. Bioavailability enhancement of aripiprazole via silicosan particles: Preparation, characterization and in vivo evaluation. AAPS PharmSciTech 2018, 19, 3751–3762. [Google Scholar] [CrossRef]
- Aiassa, V.; Garnero, C.; Longhi, M.; Zoppi, A. Cyclodextrin Multicomponent Complexes: Pharmaceutical Applications. Pharmaceutics 2021, 13, 1099. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Rahman, M.M.; Islam, M.R.; Hasan, H.; Hasan, M.M.; Rashid, H.A. A key approach on dissolution of pharmaceutical dosage forms. Pharma Innov. J. 2017, 6, 168–180. [Google Scholar]
- Mennini, N.; Maestrelli, F.; Cirri, M.; Mura, P. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l-arginine aimed to improve the drug solubility. J. Pharm. Biomed. Anal. 2016, 129, 350–358. [Google Scholar] [CrossRef] [PubMed]
- McFall, H.; Sarabu, S.; Shankar, V.; Bandari, S.; Murthy, S.N.; Kolter, K.; Langley, N.; Kim, D.W.; Repka, M.A. Formulation of aripiprazole-loaded pH-modulated solid dispersions via hot-melt extrusion technology: In vitro and in vivo studies. Int. J. Pharm. 2019, 554, 302–311. [Google Scholar] [CrossRef]
- ElShaer, A.; Khan, S.; Perumal, D.; Hanson, P.; Mohammed, A.R. Use of amino acids as counterions improves the solubility of the BCS II model drug, indomethacin. Curr. Drug Deliv. 2011, 8, 363–372. [Google Scholar] [CrossRef]
- Wojnicz, A.; Belmonte, C.; Koller, D.; Ruiz-Nuño, A.; Román, M.; Ochoa, D.; Abad-Santos, F. Effective phospholipids removing microelution-solid phase extraction LC-MS/MS method for simultaneous plasma quantification of aripiprazole and dehydro-aripiprazole: Application to human pharmacokinetic studies. J. Pharm. Biomed. Anal. 2018, 151, 116–125. [Google Scholar] [CrossRef]
- Łyszczarz, E.; Hofmanová, J.; Szafraniec-Szczęsny, J.; Jachowicz, R. Orodispersible films containing ball milled aripiprazole-poloxamer® 407 solid dispersions. Int. J. Pharm. 2020, 575, 118955. [Google Scholar] [CrossRef]
- Bíró, T.; Aigner, Z. Current approaches to use cyclodextrins and mucoadhesive polymers in ocular drug delivery—A mini-review. Sci. Pharm. 2019, 87, 15. [Google Scholar] [CrossRef]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef]
- Carneiro, S.B.; Costa Duarte, F.Í.; Heimfarth, L.; Siqueira Quintans, J.d.S.; Quintans-Júnior, L.J.; Veiga Júnior, V.F.d.; Neves de Lima, Á.A. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci. 2019, 20, 642. [Google Scholar] [CrossRef]
- Husuzade, G.; Mesut, B.; Güngör, S. Development of a Solid Self-Emulsifying Drug Delivery System of a Weakly Basic BCS Class II Drug. In Proceedings of the 1st International Electronic Conference on Pharmaceutics session Formulation of Poorly Soluble Drugs, Online, 1–15 December 2020. [Google Scholar]
- Badshah, S.F.; Akhtar, N.; Minhas, M.U.; Khan, K.U.; Khan, S.; Abdullah, O.; Naeem, A. Porous and highly responsive cross-linked β-cyclodextrin based nanomatrices for improvement in drug dissolution and absorption. Life Sci. 2021, 267, 118931. [Google Scholar] [CrossRef] [PubMed]
- Paulino, P.H.S.; de Sousa, S.M.R.; Da Silva, H.C.; De Almeida, W.B.; Ferrari, J.L.; Guimaraes, L.; Nascimento, C.S., Jr. A theoretical investigation on the encapsulation process of mepivacaine into β-cyclodextrin. Chem. Phys. Lett. 2020, 740, 137060. [Google Scholar] [CrossRef]
- Bouchemela, H.; Madi, F.; Nouar, L. DFT investigation of host–guest interactions between α-Terpineol and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2019, 95, 247–258. [Google Scholar] [CrossRef]
- Naeem, A.; Yu, C.; Zang, Z.; Zhu, W.; Deng, X.; Guan, Y. Synthesis and Evaluation of Rutin–Hydroxypropyl β-Cyclodextrin Inclusion Complexes Embedded in Xanthan Gum-Based (HPMC-g-AMPS) Hydrogels for Oral Controlled Drug Delivery. Antioxidants 2023, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Khalifa, I.; Hu, L.; Zhu, W.; Li, J.; Li, K.; Li, C. Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food Bioprod. Process. 2019, 118, 67–76. [Google Scholar] [CrossRef]
- He, J.; Guo, F.; Lin, L.; Chen, H.; Chen, J.; Cheng, Y.; Zheng, Z.-P. Investigating the oxyresveratrol β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin complexes: The effects on oxyresveratrol solution, stability, and antibrowning ability on fresh grape juice. LWT 2019, 100, 263–270. [Google Scholar] [CrossRef]
- Gholamali, I.; Hosseini, S.N.; Alipour, E.; Yadollahi, M. Preparation and characterization of oxidized starch/CuO nanocomposite hydrogels applicable in a drug delivery system. Starch-Stärke 2019, 71, 1800118. [Google Scholar] [CrossRef]
- Tănase, I.-M.; Sbârcea, L.; Ledeţi, A.; Barvinschi, P.; Cîrcioban, D.; Vlase, G.; Văruţ, R.-M.; Ledeţi, I. Compatibility studies with pharmaceutical excipients for aripiprazole–heptakis (2,6-di-O-methyl)-β-cyclodextrin supramolecular adduct. J. Therm. Anal. Calorim. 2020, 142, 1963–1976. [Google Scholar] [CrossRef]
- Panchal, K.; Katke, S.; Dash, S.K.; Gaur, A.; Shinde, A.; Saha, N.; Mehra, N.K.; Chaurasiya, A. An expanding horizon of complex injectable products: Development and regulatory considerations. Drug Deliv. Transl. Res. 2023, 13, 433–472. [Google Scholar] [CrossRef]
- Hess, L.H.; Wittscher, L.; Balducci, A. The impact of carbonate solvents on the self-discharge, thermal stability and performance retention of high voltage electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 2019, 21, 9089–9097. [Google Scholar] [CrossRef]
- Kanaze, F.; Kokkalou, E.; Niopas, I.; Barmpalexis, P.; Georgarakis, E.; Bikiaris, D. Dissolution rate and stability study of flavanone aglycones, naringenin and hesperetin, by drug delivery systems based on polyvinylpyrrolidone (PVP) nanodispersions. Drug Dev. Ind. Pharm. 2010, 36, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Singh, P.K. Complexation of a cationic pyrene derivative with sulfobutylether substituted β-cyclodextrin: Towards a stimulus-responsive supramolecular material. J. Mol. Liq. 2020, 305, 112840. [Google Scholar] [CrossRef]
- Letten, A.D.; Ke, P.J.; Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 2017, 87, 161–177. [Google Scholar] [CrossRef]
Code | Composition | Method of Preparation | Solubility (µg/mL) | p-Value |
---|---|---|---|---|
ARP-1 | ARP | Physical Mixing | 0.04 ± 0.0 | 0.484235 |
HPM-32 | ARP:HPβCD (1:1) PM | Physical Mixing | 1.72 ± 0.05 | 0.050069 |
HPM-33 | ARP:HPβCD (1:2.5) PM | Physical Mixing | 2.99 ± 0.06 | 0.00349 |
HPM-34 | ARP:HPβCD (1:4) PM | Physical Mixing | 5.32 ± 0.07 | 1.41 × 10−5 |
HPM-35 | ARP:HPβCD (1:9) PM | Physical Mixing | 9.81 ± 0.02 | 1.39 × 10−9 |
HPM-36 | ARP:HPβCD:LA (1:1:1) PM | Physical Mixing | 9.88 ± 0.04 | 1.2 × 10−9 |
HPM-37 | ARP:HPβCD:LA (1:1:0.27) PM | Physical Mixing | 8.34 ± 0.03 | 2.1 × 10−8 |
HPM-38 | ARP:HPβCD:LA (1:2.5:0.27) PM | Physical Mixing | 11.012 ± 0.09 | 1.75 × 10−10 |
HPM-39 | ARP:HPβCD:LA (1:3.6:3.6) PM | Physical Mixing | 20.33 ± 0.07 | 1.35 × 10−15 |
HPM-40 | ARP:HPβCD:LA (1:4:1) PM | Physical Mixing | 13.88 ± 0.05 | 2.38 × 10−12 |
HPM-41 | ARP:HPβCD:LA (1:9:1) PM | Physical Mixing | 17.067 ± 0.02 | 4.35 × 10−14 |
HLY-42 | ARP:HPβCD (1:1) LY | Lyophilization Method | 1.12 ± 0.04 | 0.13768 |
HLY-43 | ARP:HPβCD (1:2.5) LY | Lyophilization Method | 3.7 ± 0.06 | 0.000664 |
HLY-44 | ARP:HPβCD (1:4) LY | Lyophilization Method | 11.029 ± 0.06 | 1.7 × 10−10 |
HLY-45 | ARP:HPβCD (1:9) LY | Lyophilization Method | 13.786 ± 0.05 | 2.71 × 10−12 |
HLY-46 | ARP:HPβCD:LA (1:1:1) LY | Lyophilization Method | 12.04 ± 0.05 | 3.4 × 10−11 |
HLY-47 | ARP:HPβCD:LA (1:1:0.27) LY | Lyophilization Method | 28.45 ± 0.05 | 1.48 × 10−18 |
HLY-48 | ARP:HPβCD:LA (1:2.5:0.27) LY | Lyophilization Method | 23.6 ± 0.03 | 6.69 × 10−17 |
HLY-49 | ARP:HPβCD:LA (1:3.6:3.6) LY | Lyophilization Method | 24.2 ± 0.01 | 4.02 × 10−17 |
HLY-50 | ARP:HPβCD:LA (1:4:1) LY | Lyophilization Method | 18.6 ± 0.01 | 7.96 × 10−15 |
HLY-51 | ARP:HPβCD:LA (1:9:1) LY | Lyophilization Method | 21.73 ± 0.03 | 3.55 × 10−18 |
HSE-52 | ARP:HPβCD (1:1) SE | Solvent evaporation | 1.38 ± 0.00 | 0.091051 |
HSE-53 | ARP:HPβCD (1:2.5) SE | Solvent evaporation | 6.6 ± 0.00 | 7.76 × 10−7 |
HSE-54 | ARP:HPβCD (1:4) SE | Solvent evaporation | 8.9 ± 0.00 | 7.15 × 10−9 |
HSE-55 | ARP:HPβCD (1:9) SE | Solvent evaporation | 10.89 ± 0.03 | 2.13 × 10−10 |
HSE-56 | ARP:HPβCD:LA (1:1:1) SE | Solvent evaporation | 20.91 ± 0.01 | 7.69 × 10−16 |
HSE-57 | ARP:HPβCD:LA (1:1:0.27) SE | Solvent evaporation | 21.63 ± 0.02 | 3.89 × 10−16 |
HSE-58 | ARP:HPβCD:LA (1:2.5:0.27) SE | Solvent evaporation | 19.42 ± 0.02 | 3.38 × 10−15 |
HSE-59 | ARP:HPβCD:LA (1:3.6:3.6) SE | Solvent evaporation | 20.9 ± 0.03 | 7.76 × 10−16 |
HSE-60 | ARP:HPβCD:LA (1:4:1) SE | Solvent evaporation | 15.1 ± 0.01 | 4.73 × 10−13 |
HSE-61 | ARP:HPβCD:LA (1:9:1) SE | Solvent evaporation | 12.63 ± 0.01 | 1.41 × 10−11 |
Code | Composition |
---|---|
ARP-1 | ARP |
HPM-32 | ARP:HPβCD (1:1) PM |
HPM-33 | ARP:HPβCD (1:2.5) PM |
HPM-34 | ARP:HPβCD (1:4) PM |
HPM-35 | ARP:HPβCD (1:9) PM |
HPM-36 | ARP:HPβCD:LA (1:1:1) PM |
HPM-37 | ARP:HPβCD:LA (1:1:0.27) PM |
HPM-38 | ARP:HPβCD:LA (1:2.5:0.27) PM |
HPM-39 | ARP:HPβCD:LA (1:3.6:3.6) PM |
HPM-40 | ARP:HPβCD:LA (1:4:1) PM |
HPM-41 | ARP:HPβCD:LA (1:9:1) PM |
HLY-42 | ARP:HPβCD (1:1) LY |
HLY-43 | ARP:HPβCD (1:2.5) LY |
HLY-44 | ARP:HPβCD (1:4) LY |
HLY-45 | ARP:HPβCD (1:9) LY |
HLY-46 | ARP:HPβCD:LA (1:1:1) LY |
HLY-47 | ARP:HPβCD:LA (1:1:0.27) LY |
HLY-48 | ARP:HPβCD:LA (1:2.5:0.27) LY |
HLY-49 | ARP:HPβCD:LA (1:3.6:3.6) LY |
HLY-50 | ARP:HPβCD:LA (1:4:1) LY |
HLY-51 | ARP:HPβCD:LA (1:9:1) LY |
HSE-52 | ARP:HPβCD (1:1) SE |
HSE-53 | ARP:HPβCD (1:2.5) SE |
HSE-54 | ARP:HPβCD (1:4) SE |
HSE-55 | ARP:HPβCD (1:9) SE |
HSE-56 | ARP:HPβCD:LA (1:1:1) SE |
HSE-57 | ARP:HPβCD:LA (1:1:0.27) SE |
HSE-58 | ARP:HPβCD:LA (1:2.5:0.27) SE |
HSE-59 | ARP:HPβCD:LA (1:3.6:3.6) SE |
HSE-60 | ARP:HPβCD:LA (1:4:1) SE |
HSE-61 | ARP:HPβCD:LA (1:9:1) SE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, S.; Farooq, N.; Muhammad, S.A.; El-Serehy, H.A.; Ishtiaq, F.; Afridi, M.; Ahsan, H.; Ullah, A.; Nadeem, T.; Sultana, K. Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine. Molecules 2023, 28, 3860. https://doi.org/10.3390/molecules28093860
Awais S, Farooq N, Muhammad SA, El-Serehy HA, Ishtiaq F, Afridi M, Ahsan H, Ullah A, Nadeem T, Sultana K. Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine. Molecules. 2023; 28(9):3860. https://doi.org/10.3390/molecules28093860
Chicago/Turabian StyleAwais, Sophia, Nouman Farooq, Sharmeen Ata Muhammad, Hamed A. El-Serehy, Farrah Ishtiaq, Mehwish Afridi, Hina Ahsan, Amin Ullah, Tariq Nadeem, and Kishwar Sultana. 2023. "Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine" Molecules 28, no. 9: 3860. https://doi.org/10.3390/molecules28093860
APA StyleAwais, S., Farooq, N., Muhammad, S. A., El-Serehy, H. A., Ishtiaq, F., Afridi, M., Ahsan, H., Ullah, A., Nadeem, T., & Sultana, K. (2023). Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine. Molecules, 28(9), 3860. https://doi.org/10.3390/molecules28093860