Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.1.1. Biological Evaluation
2.1.2. SAR Analysis for Aldazine Derivatives 3a–h
2.1.3. SAR Analysis for Ketazine Derivatives 7, 9, 11 and 13
2.2. Molecular Docking Studies
Drug-Likeness and Oral Bioavailability Analysis of the Most Potent Compounds and Standard
3. Experimental Section
3.1. Chemistry
3.1.1. Materials and Methods
General Procedure for the Synthesis of Hydrazones 3a–j, 5a,b, 7, 9, 11 and 13
3.2. Cytotoxic Activity
3.3. Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Sample Availability
References
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.; Barzi, A.; Jemal, A. Colorectal cancer statistics. CA Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017, 125, 143–189. [Google Scholar] [CrossRef] [PubMed]
- Fadeyi, O.O.; Adamson, S.T.; Myles, E.L.; Okoro, C.O. Novel fluorinated acridone derivatives. Part 1: Synthesis and evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett. 2008, 18, 4172–4176. [Google Scholar] [CrossRef]
- Sivaprasad, G.; Perumal, P.T.; Prabavathy, V.R.; Mathivanan, N. Synthesis and anti-microbial activity of pyrazolylbisindoles-promising anti-fungal compounds. Bioorg. Med. Chem. Lett. 2006, 16, 6302–6305. [Google Scholar] [CrossRef]
- Leboho, T.C.; Michael, J.P.; van Otterlo, W.A.; van Vuuren, S.F.; de Koning, C.B. The synthesis of 2- and 3-aryl indoles and 1, 3, 4, 5-tetrahydropyrano [4, 3-b]indoles and their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett. 2009, 19, 4948–4951. [Google Scholar] [CrossRef]
- Hu, W.; Guo, Z.; Yi, X.; Guo, C.; Chu, F.; Cheng, G. Discovery of 2-phenyl-3-sulfonylphenyl- indole derivatives as a new class of selective COX-2 inhibitors. Bioorg. Med. Chem. 2003, 11, 5539–5544. [Google Scholar] [CrossRef]
- Battaglia, S.; Boldrini, E.; Da Settimo, F.; Dondio, G.; La Motta, C.; Marini, A.M.; Primofiore, G. Indole amide derivatives: Synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H 1-receptor antagonists. Eur. J. Med. Chem. 1999, 34, 93–105. [Google Scholar] [CrossRef]
- Karaaslan, C.; Kadri, H.; Coban, T.; Suzen, S.; Westwell, A.D. Synthesis and antioxidant properties of substituted 2-phenyl-1H-indoles. Bioorg. Med. Chem. Lett. 2013, 23, 2671–2674. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Wu, H.-S.; Tang, L.; Feng, C.-R.; Yu, J.-H.; Li, Y.; Yang, Y.-S.; Yang, B.; He, Q.-J. The potential insulin sensitizing and glucose lowering effects of a novel indole derivative in vitro and in vivo. Pharmacol. Res. 2007, 56, 335–343. [Google Scholar] [CrossRef]
- Abdel-Gawad, H.; Mohamed, H.A.; Dawood, K.M.; Badria, F.A.-R. Synthesis and antiviral activity of new indole-based heterocycles. Chem. Pharm. Bull. 2010, 58, 1529–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanei-Nasab, S.; Khoobi, M.; Hadizadeh, F.; Marjani, A.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. Eur. J. Med. Chem. 2016, 121, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwell, M.; Rahman, P.K.S.M. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.O.; Gomha, S.M.; Abdelriheem, N.A.; Kandeel, S.M. Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecule 2016, 21, 929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonough, M.T.; Strecker, T.E.; Hamel, E.; Hall, J.J.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(3′-hydroxy-4′-methoxyphenyl)-3-(3″,4″,5″-trimethoxybenzoyl)-6-methoxyindole (OXi8006). Bioorg. Med. Chem. 2013, 21, 6831–6843. [Google Scholar] [CrossRef] [Green Version]
- Akkoç, M.K.; Yüksel, M.Y.; Durmaz, Đ.; Atalay, R.Ç. Design, synthesis, and biological evaluation of indole-based 1, 4-disubstituted piperazines as cytotoxic agents. Turk. J. Chem. 2012, 36, 515–525. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, N.M.; Noel, B.; Shah, K. A series of 2-arylamino-5-(indolyl)-1, 3, 4-thiadiazoles as potent cytotoxic agents. Eur. J. Med. Chem. 2012, 55, 432–438. [Google Scholar] [CrossRef]
- Queiroz, M.-J.R.; Abreu, A.S.; Carvalho, M.S.D.; Ferreira, P.M.; Nazareth, N.; Nascimento, M.S.-J. Synthesis of new heteroaryl and heteroannulated indoles from dehydrophenylalanines: Antitumor evaluation. Bioorg. Med. Chem. 2008, 16, 5584–5589. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Sun, L.; Ding, L.; Gu, Y.; Gong, P. Synthesis and anti-tumor activity of 2-amino-3- cyano-6-(1H-indol-3-yl)-4-phenylpyridine derivatives in vitro. Eur. J. Med. Chem. 2011, 46, 3149–3157. [Google Scholar] [CrossRef]
- Ahmad, A.; Sakr, W.A.; Rahman, K.M. Anticancer properties of indole compounds: Mechanism of apoptosis induction and role in chemotherapy. Curr. Drug Targets. 2010, 11, 652–666. [Google Scholar] [CrossRef]
- Veena, K.; Ramaiah, M.; Shashikaladevi, K.; Avinash, T.S.; Vaidya, V.P. Synthesis and antimicrobial activity of asymmetrical azines derived from naphtho[2,1-b]furan. J. Chem. Pharm. Res. 2011, 3, 130–135. [Google Scholar]
- Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem. 2014, 74, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Danish, I.A.; Prasad, K.R. Synthesis and characterisation of N, N’-biscarbazolyl azine and N, N′-carbazolyl Hydrazine derivatives and their antimicrobial studies. Acta Pharm. 2004, 54, 133–142. [Google Scholar]
- Gul, H.I.; Calis, U.; Vepsalainen, J. Synthesis of some mono-Mannich bases and corresponding azine derivatives and evaluation of their anticonvulsant activity. Arzneim.-Forsch.-Drug Res. 2004, 54, 359–364. [Google Scholar] [CrossRef]
- Eberle, M.; Farooq, S.; Jeanguenat, A.; Mousset, D.; Steiger, A.; Trah, S.; Zambach, W.; Rindlisbacher, A. Azine derivatives as a new generation of insect growth regulators. Chimia 2003, 57, 705–709. [Google Scholar] [CrossRef]
- Dimmock, J.R.; Kumar, P.; Quail, J.W.; Pugazhenthi, U.; Yang, J.; Chen, M.; Reid, R.S.; Allen, T.M.; Kao, G.Y.; Cole, S.P.C.; et al. Synthesis and Cytotoxic Evaluation of Some Styryl Ketones and Related Compounds. Eur. J. Med. Chem. 1995, 30, 209–217. [Google Scholar] [CrossRef]
- Gul, H.I.; Gul, M.; Vepsälainen, J.; Erciyas, E.; Hänninen, O. Cytotoxicity of Some Azines of Acetophenone Derived Mono-Mannich Bases against Jurkat Cells. Biol. Pharm. Bull. 2003, 26, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Haider, N.; Kabicher, T.; Käferböck, J.; Plenk, A. Synthesis and in-vitro antitumor activity of 1-[3- (indol-1-yl) prop-1-yn-1-yl] phthalazines and related compounds. Molecules 2007, 12, 1900–1909. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents: A review. J. Chil. Chem. Soc. 2020, 65, 4900–4907. [Google Scholar] [CrossRef]
- El-Din, N.S.; Barseem, A. Synthesis, bioactivity and docking study of some new indole-hydrazone derivatives. J. Appl. Pharm. 2016, 6, 075–083. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019, 89, 103021. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, H.A. comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int. J. Bio. Macromol. 2021, 186, 1003–1166. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Gonzalez, C.; Lund, C. Green metrics in pharmaceutical development. Curr. Opin. Green Sustain. Chem. 2022, 33, 100564. [Google Scholar] [CrossRef]
- Koenig, S.G.; Bee, C.; Borovika, A.; Briddell, C.; Colberg, J.; Humphery, G.R.; Kopach, M.E.; Martinez, I.; Nambiar, S.; Plummer, S.V.; et al. Green chemistry continuum for a robust and sustainable active pharmaceutical ingredient supply chain. ACS Sustain. Chem. Eng. 2019, 7, 16937–16951. [Google Scholar] [CrossRef]
- Karhale, S.; Survase, D.; Bhat, R.; Ubale, P.; Helavi, V. A practical and green protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones using oxalic acid as organocatalyst. Res. Chem. Intermed. 2017, 43, 3915. [Google Scholar] [CrossRef]
- Gomha, S.M.; Badrey, M.G.; Arafa, W.A.A. DABCO-catalyzed green synthesis of thiazole and 1,3-thiazine derivatives linked to benzofuran. Heterocycles 2016, 92, 1450–1461. [Google Scholar] [CrossRef]
- Khalil, K.D.; Riyadh, S.M.; Gomha, S.M.; Ali, I. Synthesis, characterization and application of copper oxide chitosan nanocomposite for green regioselective synthesis of [1, 2, 3]triazoles. Int. J. Biol. Macromol. 2019, 130, 928–937. [Google Scholar] [CrossRef]
- Alshabanah, L.A.; Al-Mutabagani, L.A.; Gomha, S.M.; Ahmed, H.A. Three-component synthesis of some new coumarin derivatives as anti-cancer agents. Front. Chem. 2022, 9, 762248. [Google Scholar] [CrossRef]
- Gomha, S.M.; Abdelaziz, M.R.; Abdel-aziz, H.M.; Hassan, S.A. Green synthesis and molecular docking of thiazolyl-thiazole derivatives as potential cytotoxic agents. Mini-Rev. Med. Chem. 2017, 17, 805–815. [Google Scholar] [CrossRef]
- Gomha, S.M.; Muhammad, Z.A.; Abdel-aziz, H.M.; Matar, I.K.; El-Sayed, A.A. Green synthesis, molecular docking and anticancer activity of novel 1,4-dihydropyridine-3,5- dicarbohydrazones under grind-stone chemistry. Green Chem. Lett. Rev. 2020, 13, 6–17. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, Z.; Qu, W.; Yang, R.; Lin, X.; Yan, S.; Lin, J. An environmentally benign, mild, and catalyst-free reaction of quinones with heterocyclic ketene aminals in ethanol: Site-selective synthesis of rarely fused [1,2-a]indolone derivatives via an unexpected anti-Nenitzescu strategy. Green Chem. 2014, 16, 4359–4370. [Google Scholar] [CrossRef]
- Gomha, S.M.; Riyadh, S.M. Synthesis of triazolo[4,3-b][1,2,4,5]tetrazines and triazolo[3,4-b][1,3,4]thiadiazines using chitosan as ecofriendly catalyst under microwave irradiation. Arkivoc 2009, xi, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Kiyani, H.; Ghorbani, F. Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Res. Chem. Intermed. 2016, 42, 6831–6844. [Google Scholar] [CrossRef]
- Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys Rev. 2017, 9, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.R.; Sardi, J.D.C.O.; Freires, I.A.; Silva, A.C.B.; Rosalen, P.L. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur. J. Pharmacol. 2019, 842, 64–69. [Google Scholar] [CrossRef]
- Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS ONE 2014, 9, e90972. [Google Scholar] [CrossRef] [Green Version]
- McInnes, C. Progress in the evaluation of CDK inhibitors as anti-tumor agents. Drug Discov. Today 2008, 13, 875–881. [Google Scholar] [CrossRef]
- Helal, C.J.; Kang, Z.; Lucas, J.C.; Gant, T.; Ahlijanian, M.K.; Schachter, J.B.; Richter, K.E.G.; Cook, J.M.; Menniti, F.S.; Kelly, K.; et al. Potent and cellularly active 4-aminoimidazole inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2009, 19, 5703–5707. [Google Scholar] [CrossRef]
- Gouda, M.A.S.; Salem, M.A.I.; Mahmoud, N.F.H. 3D-pharmacophore study molecular docking and synthesis of pyrido [2, 3-d] pyrimidine-4(1H)dione derivatives with in vitro potential anticancer and antioxidant activities. J. Heterocycl. Chem. 2020, 57, 3988–4006. [Google Scholar] [CrossRef]
- Gomha, S.M.; Abdalla, M.A.; Abdelaziz, M.; Serag, N. Eco-friendly one-pot synthesis and antiviral evaluation of pyrazolyl pyrazolines of medicinal interest. Turk. J. Chem. 2016, 40, 484–498. [Google Scholar] [CrossRef] [Green Version]
- Gomha, S.M.; Muhammad, Z.A.; Abdel-aziz, M.R.; Abdel-aziz, H.M.; Gaber, H.M.; Elaasser, M.M. One pot synthesis of new thiadiazolyl-pyridines as anticancer and antioxidant agents. J. Heterocycl. Chem. 2018, 55, 530–536. [Google Scholar] [CrossRef]
- Abu-Melha, S.; Edrees, M.M.; Riyadh, S.M.; Abdelaziz, M.R.; Elfiky, A.A.; Gomha, S.M. Clean grinding technique: A facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro). Molecules 2020, 25, 4565. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.A.; Riyadh, S.M.; Abbas, I.M.; Gomha, S.M. Synthesis and biological activities of 7-arylazo-7H-pyrazolo [5,1-c][1,2,4]triazolo-6(5H)-ones and 7-arylhydrazono- 7H-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazines. J. Chin. Chem. Soc. 2005, 52, 987–994. [Google Scholar] [CrossRef]
- Abbas, I.M.; Riyadh, S.M.; Abdallah, M.A.; Gomha, S.M. A novel route to tetracyclic fused tetrazines and thiadiazines. J. Heterocycl. Chem. 2006, 43, 935–942. [Google Scholar] [CrossRef]
- Gomha, S.M. A facile one-pot synthesis of 6,7,8,9-tetrahydrobenzo[4,5]thieno[2,3-d]-1,2,4-triazolo[4,5-a]pyrimidin-5-ones. Monatsh. Chem. 2009, 140, 213–220. [Google Scholar] [CrossRef]
- Yaccoubi, F.; El-Naggar, M.; Abdelrazek, F.M.; Gomha, S.M.; Farghaly, M.S.; Abolibda, T.Z.; Ali, L.A.; Abdelmonsef, A.H. Pyrido-pyrimido-thiadiazinones: Green synthesis, molecular docking studies and biological investigation as obesity inhibitors. J. Taibah Univ. Sci. 2022, 16, 1275–1286. [Google Scholar] [CrossRef]
- Abolibda, T.Z.; Fathalla, M.; Farag, B.; Zaki, M.E.A.; Gomha, S.M. Synthesis and molecular docking of some novel 3-thiazolyl-coumarins as inhibitors of VEGFR-2 kinase. Molecules 2023, 28, 689. [Google Scholar] [CrossRef]
- Gomha, S.M.; Riyadh, S.M.; Alharbi, R.A.K.; Zaki, M.E.A.; Abolibda, T.Z.; Farag, B. Green route synthesis and molecular docking of azines using cellulose sulfuric acid under microwave irradiation. Crystals 2023, 13, 260. [Google Scholar] [CrossRef]
- Alghamdi, A.; Abouzied, A.S.; Alamri, A.; Anwar, S.; Ansari, M.; Khadra, I.; Zaki, Y.H.; Gomha, S.M. Synthesis, molecular docking and dynamic simulation tar-geting main protease (mpro) of new thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors. Curr. Issues Mol. Biol. 2023, 45, 1422–1442. [Google Scholar] [CrossRef]
- Kassem, E.M.; Mandour, A.H. Some 3-indole derivatives with evaluation of their antimicrobial activity. Egypt. J. Chem. 1999, 42, 387–402. [Google Scholar]
- Yin, L.J.; bin Ahmad Kamar, A.K.D.; Fung, G.T.; Liang, C.T.; Avupati, V.R. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed. Pharmacother. 2022, 145, 112406. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, J.; Liu, X.; Yu, Y.; Cao, S. Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorg. Chem. 2017, 75, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, J.; Liu, X.; Yu, Y.; Cao, S. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues. J. Mol. Struct. 2018, 1151, 353–365. [Google Scholar] [CrossRef]
- Meyer, M.; Wilson, P.; Schomburg, D. Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J. Mol. Biol. 1996, 264, 199–210. [Google Scholar] [CrossRef]
- Nallal, V.U.M.; Padmini, R.; Ravindran, B.; Chang, S.W.; Radhakrishnan, R.; Almoallim, H.S.M.; Alharbi, S.A.; Razia, M. Combined in vitro and in silico approach to evaluate the inhibitory potential of an underutilized allium vegetable and its pharmacologically active compounds on multidrug resistant Candida species. Saudi J. Biol. Sci. 2021, 28, 1246–1256. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Abdul-Hammed, M.; Adedotun, I.O.; Falade, V.A.; Adepoju, A.J.; Olasupo, S.B.; Akinboade, M.W. Target-based drug discovery, ADMET profiling and bioactivity studies of antibiotics as potential inhibitors of SARS-CoV-2 main protease (Mpro). Virusdisease 2021, 32, 642–656. [Google Scholar] [CrossRef]
- Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem. 2019, 13, 116. [Google Scholar] [CrossRef] [Green Version]
- Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem. Heterocycl. Compd. 2015, 51, 1030–1038. [Google Scholar] [CrossRef]
- Trivedi, M.; Vaidya, D.; Patel, C.; Prajapati, S.; Bhatt, J. In silico and in vitro studies to elucidate the role of 1HYN and 1QKI activity in BPA induced toxicity and its amelioration by Gallic acid. Chemosphere 2020, 241, 125076. [Google Scholar] [CrossRef]
- Gao, M.; Nie, K.; Qin, M.; Xu, H.; Wang, F.; Liu, L. Molecular mechanism study on stereo-selectivity of α or β hydroxysteroid dehydrogenases. Crystals 2021, 11, 224. [Google Scholar] [CrossRef]
- Hajdúch, M.; Havlíèek, L.; Veselý, J.; Novotný, R.; Mihál, V.; Strnad, M. Synthetic cyclin dependent kinase inhibitors: New generation of potent anti-cancer drugs. Drug Resist. Leuk. Lymphoma III 1999, 457, 341–353. [Google Scholar] [CrossRef]
- Labute, P. Function, and Bioinformatics, Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins Struct. Funct. Bioinform. 2009, 75, 187–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kattan, S.W.; Nafie, M.S.; Elmgeed, G.A.; Alelwani, W.; Badar, M.; Tantawy, M.A. Molecular docking, anti-proliferative activity and induction of apoptosis in human liver cancer cells treated with androstane derivatives: Implication of PI3K/AKT/mTOR pathway. J. Steroid Biochem. Mol. Biol. 2020, 198, 105604. [Google Scholar] [CrossRef]
Product No. | Conventional | Grinding Technique | ||
---|---|---|---|---|
Time (h) | Yield (%) | Time (min) | Yield (%) | |
3a | 4 | 70 | 17 | 90 |
3b | 3 | 71 | 20 | 91 |
3c | 3 | 69 | 19 | 88 |
3d | 4 | 75 | 19 | 87 |
3e | 5 | 72 | 18 | 88 |
3f | 4 | 71 | 17 | 89 |
3g | 5 | 73 | 20 | 91 |
3h | 4 | 74 | 22 | 92 |
3i | 3 | 70 | 21 | 89 |
3j | 3 | 72 | 20 | 91 |
Derivatives | In Vitro Cytotoxicity IC50 ± S. D (µM) | ||
---|---|---|---|
HCT-116 | HePG-2 | MCF-7 | |
3a | 44.24 ± 2.30 | 35.38 ± 2.30 | 53.64 ± 1.84 |
3b | 52.28 ± 3.47 | 45.29 ± 3.57 | 69.28 ± 4.16 |
3c | 8.15 ± 2.00 | 8.41 ± 2.26 | 13.36 ± 1.37 |
3d | 4.27 ± 2.41 | 4.83 ± 1.94 | 7.93 ± 1.30 |
3e | 19.07 ± 2.15 | 19.78 ± 2.72 | 17.02 ± 2.12 |
3f | 33.81 ± 3.83 | 28.27 ± 2.30 | 68.14 ± 3.16 |
3g | 29.29 ± 2.93 | 23.17 ± 2.28 | 57.45 ± 3.38 |
3h | 5.11 ± 1.75 | 5.03 ± 0.93 | 8.39 ± 2.19 |
7 | 29.38 ± 2.93 | 31.71 ± 3.19 | 50.34 ± 2.61 |
9 | 4.42 ± 0.96 | 4.09 ± 0.85 | 6.19 ± 2.37 |
11 | 10.18 ± 2.37 | 9.05 ± 2.39 | 13.27 ± 3.04 |
13 | 6.01 ± 1.39 | 4.87 ± 1.32 | 7.91 ± 2.37 |
Doxorubicin | 5.23 ± 0.29 | 4.50 ± 0.20 | 4.17 ± 0.20 |
Derivative No. | Docking Score (kcal/mol) | No. of Hydrogen Bonding | Affinity Bond Length (Å from Hydrogen Bond) | No. of Arene Interaction |
---|---|---|---|---|
3a | −7.49 | - | - | 1 (π-H) [Glu12] |
3b | −7.18 | - | - | - |
3c | −7.61 | - | - | 1 (π-H) [Glu12] |
3d | −7.82 | 1 (Asn132) | 2.93 | 1 (π-H) [Lys129] |
1 (π-cation) [Lys129] | ||||
3e | −7.44 | 1 (Glu81) | 2.93 | 1 (π-H) [Gly11] |
3f | −7.31 | 1 (Glu81) | 2.92 | 1 (π-H) [Gly11] |
1 (Asp86) | 3.61 | |||
3g | −7.36 | 1 (Gln131) | 2.91 | - |
1 (Lys33) | 2.92 | |||
3h | −7.75 | 1 (Glu81) | 2.85 | - |
1 (Lys89) | 2.91 | |||
7 | −7.27 | - | - | 1 (π-H) [Val18] |
1 (π-H) [Lys129] | ||||
9 | −8.34 | 1 (Gln131) | 3.04 | 1 (π-H) [Gly13] |
1 (π-H) [Asn132] | ||||
11 | −7.53 | - | - | 1 (π-H) [Gln85] |
13 | −8.06 | 1 (Glu81) | 3.03 3.04 | 2 (π -H) [Gly11] |
1 (Lys89) | ||||
Doxorubicin | −7.04 | 1 (Asn132) | 3.04 | 1 (π-H) [Gly11] |
1 (π-cation) [Lys129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.S.; Farag, B.; Al-Humaidi, J.Y.; Zaki, M.E.A.; Fathalla, M.; Gomha, S.M. Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents. Molecules 2023, 28, 3869. https://doi.org/10.3390/molecules28093869
Ibrahim MS, Farag B, Al-Humaidi JY, Zaki MEA, Fathalla M, Gomha SM. Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents. Molecules. 2023; 28(9):3869. https://doi.org/10.3390/molecules28093869
Chicago/Turabian StyleIbrahim, Mohamed S., Basant Farag, Jehan Y. Al-Humaidi, Magdi E. A. Zaki, Maher Fathalla, and Sobhi M. Gomha. 2023. "Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents" Molecules 28, no. 9: 3869. https://doi.org/10.3390/molecules28093869
APA StyleIbrahim, M. S., Farag, B., Al-Humaidi, J. Y., Zaki, M. E. A., Fathalla, M., & Gomha, S. M. (2023). Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents. Molecules, 28(9), 3869. https://doi.org/10.3390/molecules28093869