Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Formation of EYL
2.2. The Formation of LHDs and Calcein-Loaded LDHs
2.3. The Permeability of Calcein and Nile Red to the Protocell Membranes
2.4. The Interaction between LDHs Particles and Liposome Membranes
2.5. The Stability of the LDHs-100@EYL Dispersion
2.6. The Possible Trans-Membrane Mechanism of LDHs Particles
3. Materials and Methods
3.1. Materials
3.2. Preparation of Calcein-Loaded Liposomes (Denoted as CE@EYL)
3.3. LDHs Nanoparticle Synthesis
3.4. Intercalation of Calcein into LDHs-100 (Denoted as CE-LDHs-100)
3.5. Characterization of Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Michel, R.; Gradzielski, M. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications. Int. J. Mol. Sci. 2012, 13, 11610–11642. [Google Scholar]
- Wang, F.; Liu, J. Liposome supported metal oxide nanoparticles: Interaction mechanism, light controlled content release, and intracellular delivery. Small 2014, 10, 3927–3931. [Google Scholar] [CrossRef] [PubMed]
- Contini, C.; Hindley, J.W.; Macdonald, T.J.; Barritt, J.D.; Ces, O.; Quirke, N. Size dependency of gold nanoparticles interacting with model membranes. Commun. Chem. 2020, 3, 130. [Google Scholar] [PubMed]
- Feng, Y.; Zhang, Y.; Liu, G.; Liu, X.; Gao, S. Interaction of graphene oxide with artificial cell membranes: Role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption. Colloids Surf. B 2021, 202, 111685. [Google Scholar]
- Sun, J.; Liu, X.R.; Li, S.; He, P.; Li, W.; Gross, M.L. Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nat. Commun. 2021, 12, 7270. [Google Scholar]
- Liu, J. Interfacing zwitterionic liposomes with inorganic nanomaterials: Surface forces, membrane integrity, and applications. Langmuir 2016, 32, 4393–4404. [Google Scholar]
- Dalai, P.; Sahai, N. Mineral-lipid interactions in the origins of Life. Trends Biochem. Sci. 2019, 44, 331–341. [Google Scholar] [PubMed]
- Martin, M.; Hanczyc, S.M.F.; Jack, W.; Szostak, J.W. Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division. Science 2003, 302, 618–622. [Google Scholar]
- Hanczyc, M.M.; Mansy, S.S.; Szostak, J.W. Mineral surface directed membrane assembly. Orig. Life Evol. Biosph. 2007, 37, 67–82. [Google Scholar]
- Stephane, M.; Olivier, L.; Etienne, D.; Alain, B. The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett. 2005, 5, 281–285. [Google Scholar]
- Michel, R.; Kesselman, E.; PLoStica, T.; Danino, D.; Gradzielski, M. Internalization of silica nanoparticles into fluid liposomes: Formation of interesting hybrid colloids. Angew. Chem. Int. Ed. Engl. 2014, 53, 12441–12445. [Google Scholar]
- Ghosh, P.; Bag, S.; Roy, P.; Chakraborty, I.; Dasgupta, S. Permeation of flavonoid loaded human serum albumin nanoparticles across model membrane bilayers. Int. J. Biol. Macromol. 2022, 222, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Rasch, M.R.; Rossinyol, E.; Hueso, J.L.; Goodfellow, B.W.; Arbiol, J.; Korgel, B.A. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: Membrane-loaded and janus vesicles. Nano Lett. 2010, 10, 3733–3739. [Google Scholar] [CrossRef] [PubMed]
- Malekkhaiat Haffner, S.; Nystrom, L.; Nordstrom, R.; Xu, Z.P.; Davoudi, M.; Schmidtchen, A.; Malmsten, M. Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 23832–23842. [Google Scholar]
- Raval, J.; Gongadze, E.; Bencina, M.; Junkar, I.; Rawat, N.; Mesarec, L.; Kralj-Iglic, V.; Gozdz, W.; Iglic, A. Mechanical and electrical interaction of biological membranes with nanoparticles and nanostructured surfaces. Membranes 2021, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R.; O’Hare, D. Towards understanding, control and application of layered double hydroxide chemistry. J. Mater. Chem. 2006, 16, 3065–3074. [Google Scholar]
- Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar]
- Jin-Ho, C.; Seo-Young, K.; Jong-Sang, P.; Yong-Joo, J.; Josik, P. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J. Am. Chem. Soc. 1999, 121, 1399–1400. [Google Scholar]
- Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027–1040. [Google Scholar]
- Bégu, S.; Aubert-Pouëssel, A.; Polexe, R.; Leitmanova, E.; Lerner, D.A.; Devoisselle, J.-M.; Tichit, D. New layered double hydroxides/phospholipid bilayer hybrid material with strong potential for sustained drug delivery system. Chem. Mater. 2009, 21, 2679–2687. [Google Scholar]
- Du, N.; Hou, W.G.H.; Song, S.E. A novel composite: Layered double hydrxides encapsulated in vesicles. J. Phys. Chem. B 2007, 111, 13909–13913. [Google Scholar] [CrossRef]
- Nie, H.Q.; Hou, W.G. Vesicle formation induced by layered double hydroxides in the catanionic surfactant solution composed of sodium dodecyl sulfate and dodecyltrimethylammonium bromide. Colloid Polym. Sci. 2011, 289, 775–782. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Du, N.; Zhang, R.; Hou, W. Large-scale aqueous synthesis of layered double hydroxide single-layer nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2016, 501, 49–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Du, N.; Song, S.; Hou, W. Betamethasone dipropionate intercalated layered double hydroxide and the composite with liposome for improved water dispersity. Appl. Clay Sci. 2017, 143, 336–344. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Mi, Y.; Li, H.; Hou, W. Engineering of (10-hydroxycamptothecin intercalated layered double hydroxide)@liposome nanocomposites with excellent water dispersity. J. Phys. Chem. Solids 2017, 108, 125–132. [Google Scholar]
- Hou, W.G.; Su, Y.L.; Sun, D.J.; Zhang, C.G. Studies on zero point of charge and permanent charge density of Mg-Fe hydrotalcite-like compounds. Langmuir 2001, 17, 1885–1887. [Google Scholar] [CrossRef]
- Oh, J.M.; Choi, S.J.; Kim, S.T.; Choy, J.H. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug. Chem. 2006, 17, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Gao, M.; Li, H.; Liu, J.; Yuan, S.; Du, N.; Hou, W. Model of protocell compartments—Dodecyl hydrogen sulfate vesicles. Phys. Chem. Chem. Phys. 2018, 20, 1332–1336. [Google Scholar] [CrossRef]
- Hanczyc, M.M.; Szostak, J.W. Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 2004, 8, 660–664. [Google Scholar] [CrossRef]
- Svetina, S. Vesicle budding and the origin of cellular life. Chemphyschem 2009, 10, 2769–2776. [Google Scholar] [CrossRef]
- Du, N.; Song, R.; Li, H.; Song, S.; Zhang, R.; Hou, W. A nonconventional model of protocell-like vesicles: Anionic clay surface-mediated formation from a single-tailed amphiphile. Langmuir 2015, 31, 12579–12586. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Zhang, L.; Yi, Y.; Wang, X.; Yu, Y. Rupture of lipid membranes induced by amphiphilic Janus nanoparticles. ACS Nano 2018, 12, 3646–3657. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, V.; Gorbenko, G.P. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies. Biophys. Chem. 2005, 114, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; An, X.; Chen, Z.; Ma, X. Microstructure study of liposomes decorated by hydrophobic magnetic nanoparticles. Chem. Phys. Lipids 2012, 165, 563–570. [Google Scholar] [CrossRef]
- Michel, R.; Plostica, T.; Abezgauz, L.; Danino, D.; Gradzielski, M. Control of the stability and structure of liposomes by means of nanoparticles. Soft Matter 2013, 9, 4167–4177. [Google Scholar] [CrossRef]
- Savarala, S.; Ahmed, S.; Ilies, M.A.; Wunder, S.L. Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads. Langmuir 2010, 26, 12081–12088. [Google Scholar] [CrossRef]
- Leroueil, P.R.; Hong, S.; Mecke, A.; Baker, J.R., Jr.; Orr, B.G.; Banaszak Holl, M.M. Nanoparticle interaction with biological membranes does nanotechnology present a Janus face. Acc. Chem. Res. 2007, 40, 335–342. [Google Scholar] [CrossRef]
- Schulz, M.; Olubummo, A.; Binder, W.H. Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes. Soft Matter 2012, 8, 4849–4864. [Google Scholar] [CrossRef]
- Ogawa, M.; Kaiho, H. Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 2002, 18, 4240–4242. [Google Scholar] [CrossRef]
- Jin-Ho, C.; Seo-Young, K.; Yong-Joo, J. Inorganic layered double hydroxides as nonviral vectors. Angew. Chem. Int. Ed. 2000, 39, 4041–4045. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, Y.; Du, N. Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes. Molecules 2023, 28, 3929. https://doi.org/10.3390/molecules28093929
Liu B, Wang Y, Du N. Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes. Molecules. 2023; 28(9):3929. https://doi.org/10.3390/molecules28093929
Chicago/Turabian StyleLiu, Bin, Yanlan Wang, and Na Du. 2023. "Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes" Molecules 28, no. 9: 3929. https://doi.org/10.3390/molecules28093929
APA StyleLiu, B., Wang, Y., & Du, N. (2023). Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes. Molecules, 28(9), 3929. https://doi.org/10.3390/molecules28093929