Selenoproteins in Health
Abstract
:1. Introduction
2. Metabolic Processing of Se Compounds in Plants and In Vivo
2.1. Inorganic Se and Metabolic Processing to Organic Se in Plants
2.2. Metabolic Fates of Dietary Se In Vivo
3. Selenoproteins
3.1. The Route from Selenoamino Acids to Selenoproteins
3.2. Functional Properties of Selenoproteins in the Human Body
Selenoprotein | Name | Specific/Rich in | Main Function(s) | Reference |
---|---|---|---|---|
Glutathione Peroxidase (GPx) | GPx1 (or CGPx) | Nearly all Mammalian Tissues | A family of peroxidases that reduces H2O2, lipid peroxides and organic peroxides from the cytoplasm, cell membrane, and extracellular space of human cells using glutathione as the e− donor in reducing peroxide-induced oxidative stress. | [92,117] |
GPx2 (or GI-GPx) | Gastrointestinal Epithelial Cells (Cytoplasm, Extracellular) | |||
GPx3 (or PGPx) | Plasma/Intestine (Extracellular, Plasma) | |||
GPx4 (or PHGPx) | Sperm (Biological Membrane/Cytomembrane (Phospholipid)) | |||
GPx6 | Embryonic Tissue/Epithelial Tissue of Olfactory Organs | |||
Thioredoxin Reductase (TrxR) | TrxR1 | Extracellular Matrix | Reduces thioredoxin, the e− donor for peroxiredoxin reduction of H2O2 and other peroxides. Using flavin adenine dinucleotide (FAD) as a coenzyme, it catalyzes the reduction of thioredoxin (Trx) by NADPH. It participates in various cellular processes, including DNA synthesis, protein folding, and cell signaling, and is implicated in several diseases, including cancer and neurodegenerative disorders. | [100,101,118] |
TrxR2 | Mitochondria | |||
TrxR3 | Testis | |||
Iodothyronine Deiodinase (DIO) | DIO1 | Liver/Kidney | Regulation of thyroid gland secretion, thyroid hormone metabolism, and neuron health. | [53,119] |
DIO2 | Pituitary Gland/Skeletal Muscle/Thyroid/Heart/Fat/CNS | |||
DIO3 | Brain/Fetal Tissue/Placenta | |||
Selenophosphate synthetase 2 | SEPHS2 | Testes/Liver/Kidney/Brain | Catalyzing the synthesis of selenophosphate from selenide and adenosine triphosphate (ATP), it serves as the selenium donor for selenoprotein and helps maintain proper functioning of selenoproteins. | [107,120,121] |
Selenoprotein methionine sulfoxide reductase B1 | SelR/MsrB1 | Cell Nucleus/Cytoplasm | Maintains cellular redox balance, repairs oxidative damage to proteins, regulates cellular signaling pathways, and regulates cell proliferation and apoptosis. | [112,113] |
15-kDa Selenoprotein | Sep15 | Various Tissues and Organs | Is involved in oxidative stress regulation, protein folding, thyroid hormone metabolism, and immune function. | [122] |
Selenoprotein H | SelH | Brain/Nervous System | Cell cycle regulation. Regulates the activity of the nuclear kernel oxidative enzyme and exhibits potential in cancer prevention. | [123,124] |
Selenoprotein I | SelI | Testes | Phospholipid biosynthesis. | [53] |
Selenoprotein K | SelK | Endoplasmic Reticulum Membrane | Regulates oxidative stress and endoplasmic reticulum stress. Immunity, inflammation and calcium ion adjustment. Regulates endoplasmic reticulum homeostasis and protein folding. Protects skeletal muscles from damage and is required for satellite cells-mediated myogenic differentiation. | [125,126,127,128] |
Selenoprotein M | SelM | Brain/Heart/Liver/Kidney/Skeletal Muscle | Maintenance of Ca2+ ions, protein folding, promotion of hypothalamic leptin signaling, and thioredoxin antioxidant activity; overexpression of Sel M; activates Parkin-mediated mitophagy to reduce mitochondrial apoptosis and remove HFD-damaged mitochondria. | [129,130] |
Selenoprotein N | SelN | Skeletal Muscle | Growth and development of muscles and protein folding. | [131] |
Selenoprotein O | SelO | Brain/Liver/Kidney/Testes | Regulation of redox reactions. | [132] |
Selenoprotein P | SelP | Liver/Plasma | Se carrier. Transportation of Se to brain and other tissues of the body. Protein folding. Prevention of ferroptosis-like cell death and stress-induced nascent granule degradation. | [133,134,135] |
Selenoprotein S | SelS | Plasma/Endoplasmic Reticulum/Immune cells | Regulation of inflammation and redox reactions. | [136,137] |
Selenoprotein T | SelT | Brain | Regulation of neuronal function and protection against oxidative stress; regulation of a variety of cellular processes, including calcium signaling, endoplasmic reticulum (ER) stress response, and regulation of protein synthesis. | [138] |
Selenoprotein V | SelV | Testes | Expression of taste, regulation of redox homeostasis, and protection against oxidative stress. | [53] |
Selenoprotein W | SelW | Mitochondria/Skeletal Muscle/Heart/Brain/Liver/Testes | Oxidative stress regulation, bone remolding and muscle growth. Ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. | [124,139,140] |
3.3. Dietary Sources of Selenoproteins
Source | Se Content (μg/g) | Major Se Species | Identification Method | Study Model | Biological Effects | Reference |
---|---|---|---|---|---|---|
Se-enriched Cardamine violifolia | 2450 ± 80 | SeCys, SeMet, MeSeCys | HPLC-AFS LC-MS/MS | In vitro: antioxidant activity assessment assays (DPPH/OH/O2−·scavenging capacity test) In vivo: ICR mice (male, four-week-old, SPF grade). | Antioxidant activity and anti-fatigue activity (increase in SOD level, GSH level, and HG level, promotes GPxs activity, suppress MDA and protein carbonyl levels, decrease in BLA and BUN levels). | [76] |
Se-enriched Cardamine violifolia | 215–735 | SeMet, MeSeCys, SeCys | HPLC-AFS Nano LC-MS/MS Preparative HPLC | In vitro: antioxidant activity assessment assays (DPPH/OH/O2−/ABTS+·scavenging capacity test). | Antioxidant activity. | [143] |
Se-enriched soybean | 0.33925 | SeMet, SeCys | AFS | In vitro: Caco-2 cell In vivo: BALB/c mice (female, six to eight-week-old,18.0 ± 2.0 g body weight). | Antioxidant activity: the presence of SeP from soybean inhibited oxidative stress through upregulating the expression of antioxidant enzymes (GPx, SOD) via modulating the NRF-2/HO-1 signaling pathway. Additionally, the administration of soybean SeP to mice improved the activity of GPx and SOD. | [71] |
Se-enriched soybean | 6.35–11.47 | SeMe, SeCys, SeMeCys | AFS, HPLC ICP-MS, FT-IR SEM | / | / | [84] |
Se-enriched soybean | ~40 | SeMet, SeCys | AFS Q Exactive Orbitrap MS HPLC-MS/MS | In vitro: Caco-2, HepG2 and Endothelial EA. Hy926 cells. In vivo: ICR mice (female, six-week-old) (D-galactose-induced aging mice). | Antioxidant activity: protected cells by suppressing the form of TNF-α inflammatory factors and down-regulating the expression levels of cellular adhesion factors. Anti-inflammation and anti-aging: the administration of SeP enhanced SOD and GPx-1, reduced aspartate aminotransferase, amine aminotransferase, and NF-κB, and alleviated brain oxidative damage via modulating MAPK/NF-κB pathway in D-galactose-induced aging in mice. | [146] |
Se-enriched soybean | Soybean protein isolate: 13.79 ± 0.11 Soybean peptides: 21.78 ± 0.17 | SeCys | HPLC-ESI-MS/MS | In vivo: Sprague Dawley rats (male). | Hepatoprotective effects (alleviated liver fibrosis caused by CCL4 by promoting GPxs synthesis and increasing MMP9 mRNA expression). | [73] |
Se-enriched soybean | 1.118 | Se-MeSeCys, SeMet | AAS MRM HPLC-ESI-MS/MS | / | / | [145] |
Se-enriched soybean | 75 ± 5 | SeMet, SeCys | ICP-MS 2D HPLC-ICP-MS; HPLC-Chip-ESI-ITMS | / | / | [144] |
Se-biofortified corn (Zea mays Lin) | 32.37 | SeCys, SeMet, MeSeCys | AFS HPLC-ESI-MS/MS | In vitro: antioxidant activity assessment assays (DPPH/OH/O2−·scavenging capacity test, inhibition of linoleic acid peroxidation) In vivo: BALB/c mice (male, SPF grade) | Antioxidant, hepatoprotective (suppressed MDA, improved SOD and GPxs activities, decreased oxidative stress, inhibited hepatic injury). | [75] |
Se-enriched rice | Water-soluble SeP: 22.01 ± 0.34; alkali-soluble SeP: 8.26 ± 0.40; salt-soluble SeP: 1.67 ± 0.07; alcohol-soluble SeP: 0.073 ± 0.13 | / | AFS | In vitro: antioxidant activity assessment assays (DPPH/OH) In vivo: Kunming mice (male, four-week-old, 20–25 g body weight) | Antioxidant activity: high free radical (DPPH, OH) scavenging effect. The administration of rice SeP (25 μg/kg/day) enhanced the activities of T-AOC, GPx, SOD, reduced MDA levels, reduces adipocytes, alleviates body weight, liver damage, and the abnormal decrease of the liver coefficient in aging mice. However, the high dose of SeP administration was found to cause hypertoxicity. | [149] |
Se-enriched rice | 12.84 ± 0.05 | SeMet | ICP-MS, RP-UPLC-Triple-TOF MS/MS | In vitro: RAW264.7 cell study | Immunomodulatory activity: the SeP hydrolysate enhanced phagocytosis and proliferation of RAW 264.7 cell and suppressed NO production. However, phagocytosis rate declined when the SeP hydrolysate concentration exceeded 100 μg/mL. | [83] |
Se-enriched brown rice | SeP hydro lysates: 0.156–1.79 | SeMet | AFS, Scide Triple TOF-LC-MS/MS | In vitro: RAW264.7 cell study | Anti-inflammatory: suppressed the production of NO, PGE2, IL-6, IL-1β and TNF-α; inhibited the expression of iNOS and COX-2. | [18] |
Se-enriched rice | / | SeMet | SEC-HPLC HPLC-ICP-MS | In vitro: PC12 cell and RAW264.7 cell study | Protected against Pb2+ induced apoptosis. | [81] |
Se-enriched brown rice | 6.26 | SeCys, MeSeCys, SeMet | 2D-LC, HPLC-ICP-MS, ESI FT-ICR MS | In vitro: antioxidant activity determination (DPPH/ABTS + scavenging capacity test, ORAC value, chromium VI-reducing activity, and inhibition activity of linoleic acid emulsion peroxidation) | Antioxidant activity: SeP isolated from brown rice possessed higher ORAC values and free radical scavenging activity than native protein. | [70,148] |
Se-fertilized maize, cowpea and groundnut | / | SeMet, SeMeSeCys, SeCys | ICP-MS, HPLC-ICP-MS | / | / | [158] |
Se-enriched peanut | 9.71 | SeMet, SeCys, MeSeCys | ICP-MS, HPLC-ICP-MS | In vitro: AML-12 cell. In vivo: ICR mice (four-week-old) | Exhibited antioxidant activity: peanut SeP suppressed oxidative stress, reversed cell viability and cell death, inhibited ethanol-induced cytochrome P4502E1 activation, and restored GPx enzyme levels. Ameliorated alcohol-induced liver damage: the administration of peanut SeP reduced oxidative stress through modulating MAPK/NF-κB pathway, regulated lipid metabolism, and minimized liver damage. | [82] |
Se-containing Spirulina platensis | 0.67–1.99 | ICP-MS | In vitro: antioxidant assessment assay (ABTS+); RAW264.7 cell study | Exhibited antioxidant and anti-inflammatory activities (suppressed inflammatory cytokines, including IL-6, TNF-α, MDA, and IL-1β; decreased the production of NO but promoted the activities of SOD and GPxs). | [151] | |
Se-containing Spirulina platensis | / | / | ICP-AES | In vitro: MC3T3-E1 mouse preosteoblast cells | Prevented mitochondrial dysfunction: balanced the expression of the Bcl-2 family while controlling the opening of the mitochondrial permeability transition pore (MPTP). Additionally, recovered oxidative damage induced by cisplatin. This effect was achieved by inhibiting the excessive generation of reactive oxygen species (ROS) and superoxide anions. Consequently, the process reversed both early and late apoptosis triggered by cisplatin, as it inhibited the cleavage of PARP and the activation of caspases. | [152] |
Se-enriched Chlorella vulgaris | / | SeMet, SeCys, MeSeCys | ICP-MS, GC-APCI-HRMS, HPLC-ICP-MS GC, MS | / | The SeP from Chlorella vulgaris has higher bioaccessibility (∼49%) as compared to Se-supplements (∼32%), Se-yeast (∼21%), and Se-foods. | [155] |
Se-containing monkeypot nut seeds (Lecythis minor) | 4480 ± 22 | SeMet | ICP-MS, ESI-Q-TOF LC–MS/MS | / | / | [74] |
Se-enriched mushroom (Agaricus blazei) | 8.2–26.1 | SeCys, MeSeCys, SeMet | HG-AFS HPLC-MS/MS | / | / | [157] |
Se-enriched mushroom (Agaricus bisporus) | SeCys | LC-ESI-MS | In vivo: Sprague Dawley rats (male, 9-week-old). | Antioxidant activities and protection against colorectal cancer (promoted the gene expression of GPx-1 and GPx-2 and enzyme activity of GPx-1 in rat colon). | [78,156] |
3.3.1. Preparation and Characterization of Selenoproteins from Foods
3.3.2. Biological Activity of Selenoproteins from Food
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.; Hafeman, D.G.; Hoekstra, W. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Liu, Y.; Dong, G.; Wu, H. Effect of boiling and frying on the selenium content, speciation, and in vitro bioaccessibility of selenium-biofortified potato (Solanum tuberosum L.). Food Chem. 2021, 348, 129150. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids; National Academy Press: Washington, DC, USA, 2000; pp. 95–185. [Google Scholar]
- Thomson, C.D. Selenium and iodine intakes and status in New Zealand and Australia. Br. J. Nutr. 2004, 91, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The use of high-selenium yeast to raise selenium status: How does it measure up? Br. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Selenium in plant foods: Speciation analysis, bioavailability, and factors affecting composition. Crit. Rev. Food Sci. Nutr. 2021, 61, 1340–1352. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; Zhang, X.; Zhang, W.; Huang, L.; Zhang, Z.; Yuan, L.; Liu, X. Effects of foliar application of selenate and selenite at different growth stages on Selenium accumulation and speciation in potato (Solanum tuberosum L.). Food Chem. 2019, 286, 550–556. [Google Scholar] [CrossRef]
- Bae, M.; Kim, H. The role of vitamin C, vitamin D, and selenium in immune system against COVID-19. Molecules 2020, 25, 5346. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef]
- Dai, X.; Dai, Y.; Wang, X.; Jian, C.; Xiong, Y.; Li, N. Selenium-mediated MAPK signaling pathway regulation in endemic osteoarthritis. In Proceedings of the Selenium Research for Environment and Human Health: Perspectives, Technologies and Advancements: Proceedings of the 6th International Conference on Selenium in the Environment and Human Health (ICSEHH 2019), Xi’an, China, 27–30 October 2019; p. 173. [Google Scholar]
- Lei, X.G.; Combs, G.F., Jr.; Sunde, R.A.; Caton, J.S.; Arthington, J.D.; Vatamaniuk, M.Z. Dietary Selenium Across Species. Annu. Rev. Nutr. 2022, 42, 337–375. [Google Scholar] [CrossRef]
- Lyons, G.H.; Judson, G.J.; Ortiz-Monasterio, I.; Genc, Y.; Stangoulis, J.C.; Graham, R.D. Selenium in Australia: Selenium status and biofortification of wheat for better health. J. Trace Elem. Med. Biol. 2005, 19, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Lyons, G.; Stangoulis, J.; Graham, R. High-selenium wheat: Biofortification for better health. Nutr. Res. Rev. 2003, 16, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, N.; Li, S.; Li, L.; Su, H.; Liu, C. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Sci. Total Environ. 2008, 392, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, K.S.; Dhillon, S.K. Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci. Total Environ. 2009, 407, 6150–6156. [Google Scholar] [CrossRef] [PubMed]
- Van Mantgem, P.J.; Wu, L.; Banuelos, G.S. Bioextraction of selenium by forage and selected field legume species in selenium-laden soils under minimal field management conditions. Ecotoxicol. Environ. Saf. 1996, 34, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Wang, X.; Xiong, H.; Qiu, T.; Sun, Y. Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates in LPS-induced RAW264.7 macrophages via NF-κB/MAPKs signaling pathways. J. Funct. Foods 2021, 76, 104320. [Google Scholar] [CrossRef]
- Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med. 2018, 127, 80–97. [Google Scholar] [CrossRef]
- Jiang, W.; He, S.; Su, D.; Ye, M.; Zeng, Q.; Yuan, Y. Synthesis, characterization of tuna polypeptide selenium nanoparticle, and its immunomodulatory and antioxidant effects in vivo. Food Chem. 2022, 383, 132405. [Google Scholar] [CrossRef]
- Rua, R.M.; Nogales, F.; Carreras, O.; Ojeda, M.L. Selenium, selenoproteins and cancer of the thyroid. J. Trace Elem. Med. Biol. 2023, 76, 127115. [Google Scholar] [CrossRef]
- Jiang, Z.; Chi, J.; Li, H.; Wang, Y.; Liu, W.; Han, B. Effect of chitosan oligosaccharide-conjugated selenium on improving immune function and blocking gastric cancer growth. Eur. J. Pharmacol. 2021, 891, 173673. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, C.; Han, Z.; Chen, Z.; Wei, X.; Wang, Y. Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides. Int. J. Biol. Macromol. 2020, 154, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, H.; Ye, Z.; Zhang, X.; Ye, H.; Ye, M. Structural characterization and bioactivities of a novel polysaccharide obtained from Lachnum YM38 together with its zinc and selenium derivatives. Process Biochem. 2022, 122, 282–298. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Rao, S.; Su, Y.; Li, J.; Li, C.; Xu, S.; Yang, Y. Antidiabetic activity of mycelia selenium-polysaccharide from Catathelasma ventricosum in STZ-induced diabetic mice. Food Chem. Toxicol. 2013, 62, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; You, Y.; Li, Y.; Zhang, L.; Yin, L.; Shen, Y.; Li, C.; Chen, H.; Chen, S.; Hu, B.; et al. The characterization, selenylation and antidiabetic activity of mycelial polysaccharides from Catathelasma ventricosum. Carbohydr. Polym. 2017, 174, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Bian, J.; Xu, S.; Liu, C.; Sun, Y.; Zhang, G.; Li, D.; Liu, X. Structural features, selenization modification, antioxidant and anti-tumor effects of polysaccharides from alfalfa roots. Int. J. Biol. Macromol. 2020, 149, 207–214. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, J.; Liu, S.; Guo, S.; Jia, Y.; Li, M.; Kong, W.; Liang, J.; Zhang, J.; Wang, J. Synthesis of Se-polysaccharide mediated by selenium oxychloride: Structure features and antiproliferative activity. Carbohydr. Polym. 2020, 246, 116545. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Liu, H.; Wang, D.; Wang, J.; Liu, M.; Yang, Y.; Zhong, S. A natural selenium polysaccharide from Pleurotus ostreatus: Structural elucidation, anti-gastric cancer and anti-colon cancer activity in vitro. Int. J. Biol. Macromol. 2022, 201, 630–640. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Liu, H.; Wang, J.; Wang, D.; Deng, Z.; Li, T.; He, Y.; Yang, Y.; Zhong, S. A water-soluble selenium-enriched polysaccharide produced by Pleurotus ostreatus: Purification, characterization, antioxidant and antitumor activities in vitro. Int. J. Biol. Macromol. 2021, 168, 356–370. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, L.; Yang, Q.; Wang, Y.; Wei, X. Antitumor activity of Se-containing tea polysaccharides against sarcoma 180 and comparison with regular tea polysaccharides and Se-yeast. Int. J. Biol. Macromol. 2018, 120, 853–858. [Google Scholar] [CrossRef]
- Gu, Y.; Qiu, Y.; Wei, X.; Li, Z.; Hu, Z.; Gu, Y.; Zhao, Y.; Wang, Y.; Yue, T.; Yuan, Y. Characterization of selenium-containing polysaccharides isolated from selenium-enriched tea and its bioactivities. Food Chem. 2020, 316, 126371. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, J.; Qiu, S.; Li, Y.; Wang, D.; Liu, C.; Li, X.; Hou, R.; Yue, C.; Liu, J.; et al. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydr. Polym. 2016, 136, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, H.; Li, W.; He, Q.; Liang, J.; Yan, X.; Yuan, Y.; Yue, T. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota. Int. J. Biol. Macromol. 2022, 209, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Liu, C.; Zhang, X.; Zhao, Z.; Xu, J.; Zhang, X.; Zhou, K.; Gao, P.; Li, D. Selenium-containing polysaccharides isolated from Rosa laevigata Michx fruits exhibit excellent anti-oxidant and neuroprotective activity in vitro. Int. J. Biol. Macromol. 2022, 209, 1222–1233. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Long, H.; Wang, C.; Zhu, Z.; Yu, L.; Yang, W.; Ren, X.; Liu, X. Characterization of selenium-containing polysaccharide from Spirulina platensis and its protective role against Cd-induced toxicity. Int. J. Biol. Macromol. 2020, 164, 2465–2476. [Google Scholar] [CrossRef] [PubMed]
- Harsij, M.; Kanani, H.G.; Adineh, H. Effects of antioxidant supplementation (nano-selenium, vitamin C and E) on growth performance, blood biochemistry, immune status and body composition of rainbow trout (Oncorhynchus mykiss) under sub-lethal ammonia exposure. Aquaculture 2020, 521, 734942. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Huang, H.; Mao, S.; Wu, Q.; Huang, K. Exogenous selenium treatment promotes glucosinolate and glucoraphanin accumulation in broccoli by activating their biosynthesis and transport pathways. Appl. Sci. 2022, 12, 4101. [Google Scholar] [CrossRef]
- Blum, N.M.; Mueller, K.; Lippmann, D.; Metges, C.C.; Linn, T.; Pallauf, J.; Mueller, A.S. Feeding of selenium alone or in combination with glucoraphanin differentially affects intestinal and hepatic antioxidant and phase II enzymes in growing rats. Biol. Trace Elem. Res. 2013, 151, 384–399. [Google Scholar] [CrossRef]
- Stranges, S.; Rayman, M.P.; Winther, K.H.; Guallar, E.; Cold, S.; Pastor-Barriuso, R. Effect of selenium supplementation on changes in HbA1c: Results from a multiple-dose, randomized controlled trial. Diabetes Obes. Metab. 2019, 21, 541–549. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Wise, L.A.; Rothman, K.J. A systematic review and dose-response meta-analysis of exposure to environmental selenium and the risk of type 2 diabetes in nonexperimental studies. Environ. Res. 2021, 197, 111210. [Google Scholar] [CrossRef]
- Naseem, M.; Anwar-ul-Haq, M.; Wang, X.; Farooq, N.; Awais, M.; Sattar, H.; Ahmed Malik, H.; Mustafa, A.; Ahmad, J.; El-Esawi, M.A. Influence of selenium on growth, physiology, and antioxidant responses in maize varies in a dose-dependent manner. J. Food Qual. 2021, 2021, 6642018. [Google Scholar] [CrossRef]
- Titov, A.; Kaznina, N.; Karapetyan, T.; Dorshakova, N.; Tarasova, V. Role of Selenium in Plants, Animals, and Humans. Biol. Bull. Rev. 2022, 12, 189–200. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Salt, D.E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 2005, 86, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Terry, N.; Zayed, A.; De Souza, M.; Tarun, A. Selenium in higher plants. Annu. Rev. Plant Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E.A.; Quinn, C.F. Selenium metabolism in plants. In Cell Biology of Metals and Nutrients; Springer: Berlin/Heidelberg, Germany, 2010; pp. 225–241. [Google Scholar]
- Lewis, B.G.; Johnson, C.; Delwiche, C. Release of volatile selenium compounds by plants. Collection procedures and preliminary observations. J. Agric. Food Chem. 1966, 14, 638–640. [Google Scholar] [CrossRef]
- Neuhierl, B.; Thanbichler, M.; Lottspeich, F.; Bock, A. A family of S-methylmethionine-dependent thiol/selenol methyltransferases: Role in selenium tolerance and evolutionary relation. J. Biol. Chem. 1999, 274, 5407–5414. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.B.; Piccoli, B.C.; Oliveira, C.S. Biological and chemical interest in selenium: A brief historical account. ARKIVOC Online J. Org. Chem. 2017, 2017, 457–491. [Google Scholar] [CrossRef]
- Barceló, J.; Poschenrieder, C. Hyperaccumulation of trace elements: From uptake and tolerance mechanisms to litter decomposition; selenium as an example. Plant Soil. 2011, 341, 31–35. [Google Scholar] [CrossRef]
- Grosicka-Maciąg, E.; Szumiło, M.; Kurpios-Piec, D.; Rahden-Staroń, I. Biomedical effects of selenium in a human organism. J. Elem. 2017, 22, 1269–1284. [Google Scholar] [CrossRef]
- Hagarová, I.; Peterm, M.; Bujdoš, M. Two Different Trace Elements in Blood Serum—Their Reliable Quantification by Electrothermal Atomic Absorption Spectrometry; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2019; p. 143. [Google Scholar]
- Kieliszek, M.; Bano, I. Selenium as an important factor in various disease states: A review. EXCLI J. 2022, 21, 948–966. [Google Scholar]
- Kieliszek, M.; Błażejak, S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef]
- Ganther, H.E. Selenium metabolism and function in man and animals. Trace Elem.-Anal. Chem. Med. Biol. 2021, 3, 3–24. [Google Scholar]
- Gu, X.; Gao, C.-Q. New horizons for selenium in animal nutrition and functional foods. Anim. Nutr. 2022, 11, 80–86. [Google Scholar] [CrossRef]
- Arshad, M.A.; Ebeid, H.M.; Hassan, F.-U. Revisiting the effects of different dietary sources of selenium on the health and performance of dairy animals: A review. Biol. Trace Elem. Res. 2021, 199, 3319–3337. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Ravn-Haren, G. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review. J. Trace Elem. Med. Biol. 2021, 67, 126801. [Google Scholar] [CrossRef] [PubMed]
- Thiry, C.; Schneider, Y.-J.; Pussemier, L.; De Temmerman, L.; Ruttens, A. Selenium bioaccessibility and bioavailability in Se-enriched food supplements. Biol. Trace Elem. Res. 2013, 152, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2012, 16, 705–743. [Google Scholar] [CrossRef] [PubMed]
- Commans, S.; Böck, A. Selenocysteine inserting tRNAs: An overview. FEMS Microbiol. Rev. 1999, 23, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Santesmasses, D.; Mariotti, M.; Guigó, R. Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Comput. Biol. 2017, 13, e1005383. [Google Scholar] [CrossRef]
- Hilal, T.; Killam, B.Y.; Grozdanović, M.; Dobosz-Bartoszek, M.; Loerke, J.; Bürger, J.; Mielke, T.; Copeland, P.R.; Simonović, M.; Spahn, C.M. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon. Science 2022, 376, 1338–1343. [Google Scholar] [CrossRef]
- David, P.; Clark, N.J.P. Molecular Biology, 2nd ed.; Chapter 13—Protein Synthesis; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Zhao, L.; Zhao, G.; Zhao, Z.; Chen, P.; Tong, J.; Hu, X. Selenium distribution in a Se-enriched mushroom species of the genus Ganoderma. J. Agric. Food Chem. 2004, 52, 3954–3959. [Google Scholar] [CrossRef]
- Falandysz, J. Selenium in edible mushrooms. J. Environ. Sci. Health Part C 2008, 26, 256–299. [Google Scholar] [CrossRef] [PubMed]
- Kora, A.J. Nutritional and antioxidant significance of selenium-enriched mushrooms. Bull. Natl. Res. Cent. 2020, 44, 34. [Google Scholar] [CrossRef]
- Piepponen, S.; Pellinen, M.; Hattula, T. The selenium of mushrooms. Trace Elem. Anal. Chem. Med. Biol. 2021, 3, 159–166. [Google Scholar]
- Bierla, K.; Szpunar, J.; Yiannikouris, A.; Lobinski, R. Comprehensive speciation of selenium in selenium-rich yeast. TrAC Trends Anal. Chem. 2012, 41, 122–132. [Google Scholar] [CrossRef]
- Liu, K.; Du, R.; Chen, F. Antioxidant activities of Se-MPS: A selenopeptide identified from selenized brown rice protein hydrolysates. LWT 2019, 111, 555–560. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, J.; Hogenkamp, A.; Knippels, L.M.; Garssen, J.; Bai, J.; Yang, A.; Wu, Y.; Chen, H. Selenium-enriched soy protein has antioxidant potential via modulation of the NRF2-HO1 signaling pathway. Foods 2021, 10, 2542. [Google Scholar] [CrossRef] [PubMed]
- Medrano-Macías, J.; Narvaéz-Ortiz, W.A. Selenium and Nano-Selenium as a New Frontier of Plant Biostimulant. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement; Springer: Berlin/Heidelberg, Germany, 2022; pp. 41–54. [Google Scholar]
- Liu, W.; Hou, T.; Shi, W.; Guo, D.; He, H. Hepatoprotective effects of selenium-biofortified soybean peptides on liver fibrosis induced by tetrachloromethane. J. Funct. Foods 2018, 50, 183–191. [Google Scholar] [CrossRef]
- Németh, A.; Dernovics, M. Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: The analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds. JBIC J. Biol. Inorg. Chem. 2015, 20, 23–33. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, Y.; Zhao, J.; He, H.; Hou, T. Selenium-biofortified corn peptides: Attenuating concanavalin A—Induced liver injury and structure characterization. J. Trace Elem. Med. Biol. 2019, 51, 57–64. [Google Scholar] [CrossRef]
- Zhu, S.; Yang, W.; Lin, Y.; Du, C.; Huang, D.; Chen, S.; Yu, T.; Cong, X. Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine violifolia protein hydrolysate. J. Funct. Foods 2021, 79, 104412. [Google Scholar] [CrossRef]
- Ježek, P.; Hlušek, J.; Lošák, T.; Jůzl, M.; Elzner, P.; Kráčmar, S.; Buňka, F.; Martensson, A. Effect of foliar application of selenium on the content of selected amino acids in potato tubers (Solanum tuberosum L.). Plant Soil. Environ. 2011, 57, 315–320. [Google Scholar]
- Maseko, T.; Callahan, D.L.; Dunshea, F.R.; Doronila, A.; Kolev, S.D.; Ng, K. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus. Food Chem. 2013, 141, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, G.; Mu, Y.; Hoac, T.; Lundh, T.; Önning, G.; Åkesson, B. Selenoproteins and Selenium Speciation in Food. Selenoproteins Mimics 2012, 183–206. [Google Scholar]
- White, P.J. Selenium metabolism in plants. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2018, 1862, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xu, Z.; Shi, Y.; Pei, F.; Yang, W.; Ma, N.; Kimatu, B.M.; Liu, K.; Qiu, W.; Hu, Q. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264.7 cells. Food Chem. 2017, 219, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yuan, J.; Cheng, Y.; Chen, M.; Zhang, G.; Wu, J. Selenomethionine-dominated selenium-enriched peanut protein ameliorates alcohol-induced liver disease in mice by suppressing oxidative stress. Foods 2021, 10, 2979. [Google Scholar] [PubMed]
- Fang, Y.; Pan, X.; Zhao, E.; Shi, Y.; Shen, X.; Wu, J.; Pei, F.; Hu, Q.; Qiu, W. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem. 2019, 275, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liao, J.; Zhao, Z.; Qin, Y.; Liu, X. Distribution and speciation of selenium in soybean proteins and its effect on protein structure and functionality. Food Chem. 2022, 370, 130982. [Google Scholar] [CrossRef]
- Jin, W.; Yoon, C.; Johnston, T.V.; Ku, S.; Ji, G.E. Production of selenomethionine-enriched Bifidobacterium bifidum BGN4 via sodium selenite biocatalysis. Molecules 2018, 23, 2860. [Google Scholar] [CrossRef]
- Qamar, N.; John, P.; Bhatti, A. Emerging role of selenium in treatment of rheumatoid arthritis: An insight on its antioxidant properties. J. Trace Elem. Med. Biol. 2021, 66, 126737. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 91, 1484S–1491S. [Google Scholar] [CrossRef] [PubMed]
- Bo, A.; Forchhammer, K.; Heider, J.; Baron, C. Selenoprotein synthesis: An expansion of the genetic code. Trends Biochem. Sci. 1991, 16, 463–467. [Google Scholar]
- Alves, C.S.; Vicentini, R.; Duarte, G.T.; Pinoti, V.F.; Vincentz, M.; Nogueira, F.T. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol. Biol. 2017, 93, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium–fascinating microelement, properties and sources in food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed]
- Esworthy, R.S.; Doroshow, J.H.; Chu, F.-F. The beginning of GPX2 and 30 years later. Free Radic. Biol. Med. 2022, 188, 419–433. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Caruso, G.; Grasso, M.; Fidilio, A.; Torrisi, S.A.; Musso, N.; Geraci, F.; Tropea, M.R.; Privitera, A.; Tascedda, F.; Puzzo, D. Antioxidant activity of fluoxetine and vortioxetine in a non-transgenic animal model of Alzheimer’s disease. Front. Pharmacol. 2021, 12, 809541. [Google Scholar] [CrossRef]
- Carducci, F.; Ardiccioni, C.; Fiorini, R.; Vignini, A.; Di Paolo, A.; Alia, S.; Barucca, M.; Biscotti, M.A. The ALA5/ALA6/ALA7 repeat polymorphisms of the glutathione peroxidase-1 (GPx1) gene and autism spectrum disorder. Autism Res. 2022, 15, 215–221. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, P.; Alshwmi, M.; Jiang, N.; Xiao, Z.; Jiang, F.; Gu, J.; Wang, X.; Sun, X.; Li, S. GPX2 suppression of H2O2 stress regulates cervical cancer metastasis and apoptosis via activation of the β-catenin-WNT pathway. OncoTargets Ther. 2019, 12, 6639. [Google Scholar] [CrossRef]
- Nirgude, S.; Choudhary, B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem. Pharmacol. 2021, 184, 114365. [Google Scholar] [CrossRef]
- Chang, C.; Worley, B.L.; Phaëton, R.; Hempel, N. Extracellular glutathione peroxidase GPx3 and its role in cancer. Cancers 2020, 12, 2197. [Google Scholar] [CrossRef] [PubMed]
- Forcina, G.C.; Dixon, S.J. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 2019, 19, 1800311. [Google Scholar] [CrossRef] [PubMed]
- Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.-J.; Geng, W.-S.; Wang, Z.-Q.; Chen, L.; Zeng, X.-S. The role of thioredoxin system in cancer: Strategy for cancer therapy. Cancer Chemother. Pharmacol. 2019, 84, 453–470. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Bjørklund, G.; Skalny, A.V.; Holmgren, A.; Skalnaya, M.G.; Chirumbolo, S.; Aaseth, J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: Towards a possible prognostic marker? Cell. Mol. Life Sci. 2018, 75, 1567–1586. [Google Scholar] [CrossRef] [PubMed]
- Valverde-R, C.; Croteau, W.; LaFleur, G.J., Jr.; Orozco, A.; St. Germain, D.L. Cloning and expression of a 5′-iodothyronine deiodinase from the liver of Fundulus heteroclitus. Endocrinology 1997, 138, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeold, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 2008, 29, 898–938. [Google Scholar] [CrossRef]
- Köhrle, J. The trace element selenium and the thyroid gland. Biochimie 1999, 81, 527–533. [Google Scholar] [CrossRef]
- Köhrle, J.; Gärtner, R. Selenium and thyroid. Best. Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 815–827. [Google Scholar] [CrossRef]
- Bianco, A.C.; Kim, B.W. Deiodinases: Implications of the local control of thyroid hormone action. J. Clin. Investig. 2006, 116, 2571–2579. [Google Scholar] [CrossRef]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, U.; Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J. 2016, 30, 3669–3681. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.; Kang, D.; Jung, J.; Yoo, T.-J.; Shim, M.S.; Gladyshev, V.N.; Tsuji, P.A.; Hatfield, D.L.; Kim, J.-H.; Lee, B.J. SEPHS1: Its evolution, function and roles in development and diseases. Arch. Biochem. Biophys. 2022, 730, 109426. [Google Scholar] [CrossRef] [PubMed]
- Na, J.; Jung, J.; Bang, J.; Lu, Q.; Carlson, B.A.; Guo, X.; Gladyshev, V.N.; Kim, J.; Hatfield, D.L.; Lee, B.J. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic. Biol. Med. 2018, 127, 190–197. [Google Scholar] [CrossRef]
- Minich, W.B. Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochemistry 2022, 87, S168–S177. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Lee, S.-G.; Choo, M.-K.; Kim, J.H.; Lee, H.M.; Kim, S.; Fomenko, D.E.; Kim, H.-Y.; Park, J.M.; Gladyshev, V.N. Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci. Rep. 2017, 7, 5119. [Google Scholar] [CrossRef] [PubMed]
- Tarrago, L.; Kaya, A.; Kim, H.-Y.; Manta, B.; Lee, B.-C.; Gladyshev, V.N. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic. Biol. Med. 2022, 191, 228–240. [Google Scholar] [CrossRef]
- Brown, K.M.; Arthur, J. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001, 4, 593–599. [Google Scholar] [CrossRef]
- Raschke, S.; Ebert, F.; Kipp, A.P.; Kopp, J.; Schwerdtle, T. Selenium homeostasis in human brain cells: Effects of copper (II) and Se species. J. Trace Elem. Med. Biol. 2023, 78, 127149. [Google Scholar] [CrossRef]
- Schomburg, L.; Orho-Melander, M.; Struck, J.; Bergmann, A.; Melander, O. Selenoprotein-P deficiency predicts cardiovascular disease and death. Nutrients 2019, 11, 1852. [Google Scholar] [CrossRef]
- Andrade, I.G.A.; Suano-Souza, F.I.; Fonseca, F.L.A.; Lago, C.S.A.; Sarni, R.O.S. Selenium levels and glutathione peroxidase activity in patients with ataxia-telangiectasia: Association with oxidative stress and lipid status biomarkers. Orphanet J. Rare Dis. 2021, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, Z.-Q.; Xu, Q.; Li, Y.; Gao, K.; Fang, J. Onopordopicrin from the new genus Shangwua as a novel thioredoxin reductase inhibitor to induce oxidative stress-mediated tumor cell apoptosis. J. Enzym. Inhib. Med. Chem. 2021, 36, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Ogawa-Wong, A.N.; Berry, M.J.; Seale, L.A. Selenium and metabolic disorders: An emphasis on type 2 diabetes risk. Nutrients 2016, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Manta, B.; Makarova, N.; Mariotti, M. The selenophosphate synthetase family: A review. Free Radic. Biol. Med. 2022, 192, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Lee, J.; Jung, J.; Carlson, B.A.; Chang, M.J.; Chang, C.B.; Kang, S.-B.; Lee, B.C.; Gladyshev, V.N.; Hatfield, D.L. Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis. Nat. Commun. 2022, 13, 779. [Google Scholar] [CrossRef]
- Peeler, J.C.; Weerapana, E. Chemical biology approaches to interrogate the selenoproteome. Acc. Chem. Res. 2019, 52, 2832–2840. [Google Scholar] [CrossRef]
- Bertz, M.; Kühn, K.; Koeberle, S.C.; Müller, M.F.; Hoelzer, D.; Thies, K.; Deubel, S.; Thierbach, R.; Kipp, A.P. Selenoprotein H controls cell cycle progression and proliferation of human colorectal cancer cells. Free Radic. Biol. Med. 2018, 127, 98–107. [Google Scholar] [CrossRef]
- Ding, W.; Wang, S.; Gu, J.; Yu, L. Selenium and human nervous system. Chin. Chem. Lett. 2022, 34, 108043. [Google Scholar] [CrossRef]
- Verma, S.; Hoffmann, F.W.; Kumar, M.; Huang, Z.; Roe, K.; Nguyen-Wu, E.; Hashimoto, A.S.; Hoffmann, P.R. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J. Immunol. 2011, 186, 2127–2137. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Liu, Q.; Wang, Y.; Li, S.; Xu, S. Selenoprotein K protects skeletal muscle from damage and is required for satellite cells-mediated myogenic differentiation. Redox Biol. 2022, 50, 102255. [Google Scholar] [CrossRef]
- Li, S.; Kuo, H.-C.D.; Yin, R.; Wu, R.; Liu, X.; Wang, L.; Hudlikar, R.; Peter, R.M.; Kong, A.-N. Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem. Pharmacol. 2020, 175, 113890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, X.; Lei, Y.; Liu, X.; Zhang, Y.; Wang, Y.; Lin, H. Roles of selenoprotein K in oxidative stress and endoplasmic reticulum stress under selenium deficiency in chicken liver. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 264, 109504. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Hashimoto, A.C.; Sasuclark, A.R.; Khadka, V.S.; Gurary, A.; Pitts, M.W. Selenoprotein M promotes hypothalamic leptin signaling and thioredoxin antioxidant activity. Antioxid. Redox Signal. 2021, 35, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Huang, J.; Yang, J.; Chen, X.; Zhang, H.; Zhu, Y.; Liu, Q.; Zhang, Z. The protective effect of selenoprotein M on non-alcoholic fatty liver disease: The role of the AMPKα1–MFN2 pathway and Parkin mitophagy. Cell. Mol. Life Sci. 2022, 79, 354. [Google Scholar] [CrossRef] [PubMed]
- Negro, R. Selenium and thyroid autoimmunity. Biol. Targets Ther. 2008, 2, 265. [Google Scholar] [CrossRef]
- Mangiapane, E.; Pessione, A.; Pessione, E. Selenium and selenoproteins: An overview on differrent biological systems. Curr. Protein Pept. Sci. 2018, 19, 725. [Google Scholar] [CrossRef]
- Saito, Y. Selenoprotein P as a significant regulator of pancreatic β cell function. J. Biochem. 2020, 167, 119–124. [Google Scholar] [CrossRef]
- Dominiak, A.; Wilkaniec, A.; Wroczyński, P.; Adamczyk, A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr. Neuropharmacol. 2016, 14, 282–299. [Google Scholar] [CrossRef]
- Kitabayashi, N.; Nakao, S.; Mita, Y.; Arisawa, K.; Hoshi, T.; Toyama, T.; Ishii, K.-A.; Takamura, T.; Noguchi, N.; Saito, Y. Role of selenoprotein P expression in the function of pancreatic β cells: Prevention of ferroptosis-like cell death and stress-induced nascent granule degradation. Free Radic. Biol. Med. 2022, 183, 89–103. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y. Structure, Function, and Nutrition of Selenium-Containing Proteins from Foodstuffs. In Mineral Containing Proteins; Springer: Berlin/Heidelberg, Germany, 2017; pp. 89–116. [Google Scholar]
- Chi, Q.; Zhang, Q.; Lu, Y.; Zhang, Y.; Xu, S.; Li, S. Roles of selenoprotein S in reactive oxygen species-dependent neutrophil extracellular trap formation induced by selenium-deficient arteritis. Redox Biol. 2021, 44, 102003. [Google Scholar] [CrossRef]
- Pothion, H.; Jehan, C.; Tostivint, H.; Cartier, D.; Bucharles, C.; Falluel-Morel, A.; Boukhzar, L.; Anouar, Y.; Lihrmann, I. Selenoprotein T: An essential oxidoreductase serving as a guardian of endoplasmic reticulum homeostasis. Antioxid. Redox Signal. 2020, 33, 1257–1275. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, K.; Kim, J.M.; Kim, M.Y.; Kim, J.-R.; Lee, H.-W.; Chung, Y.W.; Shin, H.-I.; Kim, T.; Park, E.-S. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat. Commun. 2021, 12, 2258. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Lee, T.-J.; Sebastian, A.; McGuigan, J.; Liao, C.; Koo, I.; Patterson, A.D.; Rossi, R.M.; Hall, M.A.; Albert, I. Loss of selenoprotein W in murine macrophages alters the hierarchy of selenoprotein expression, redox tone, and mitochondrial functions during inflammation. Redox Biol. 2023, 59, 102571. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Xue, Z.; Zheng, Y.; Li, S.; Zhou, L.; Cao, L.; Zou, Y. Selenium supplementation enhanced the expression of selenoproteins in hippocampus and played a neuroprotective role in LPS-induced neuroinflammation. Int. J. Biol. Macromol. 2023, 234, 123740. [Google Scholar] [CrossRef] [PubMed]
- Huertas-Abril, P.V.; Prieto-Álamo, M.-J.; Jurado, J.; García-Barrera, T.; Abril, N. A selenium-enriched diet helps to recover liver function after antibiotic administration in mice. Food Chem. Toxicol. 2023, 171, 113519. [Google Scholar] [CrossRef]
- Zhu, S.; Du, C.; Yu, T.; Cong, X.; Liu, Y.; Chen, S.; Li, Y. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J. Food Sci. 2019, 84, 3504–3511. [Google Scholar] [CrossRef] [PubMed]
- Chan, Q.; Caruso, J.A. A metallomics approach discovers selenium-containing proteins in selenium-enriched soybean. Anal. Bioanal. Chem. 2012, 403, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Tie, M.; Li, B.; Zhuang, X.; Han, J.; Liu, L.; Hu, Y.; Li, H. Selenium speciation in soybean by high performance liquid chromatography coupled to electrospray ionization–tandem mass spectrometry (HPLC–ESI–MS/MS). Microchem. J. 2015, 123, 70–75. [Google Scholar] [CrossRef]
- Zhang, X.; He, H.; Xiang, J.; Li, B.; Zhao, M.; Hou, T. Selenium-containing soybean antioxidant peptides: Preparation and comprehensive comparison of different selenium supplements. Food Chem. 2021, 358, 129888. [Google Scholar] [CrossRef]
- Liu, K.; Chen, F.; Zhao, Y.; Gu, Z.; Yang, H. Selenium accumulation in protein fractions during germination of Se-enriched brown rice and molecular weights distribution of Se-containing proteins. Food Chem. 2011, 127, 1526–1531. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, Y.; Chen, F.; Fang, Y. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food Chem. 2015, 187, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Farooq, M.U.; Zhang, G.; Tang, Z.; Zheng, T.; Su, Y.; Hussain, S.; Liang, Y.; Ye, X.; Jia, X. Dissecting the potential of selenoproteins extracted from selenium-enriched rice on physiological, biochemical and anti-ageing effects in vivo. Biol. Trace Elem. Res. 2020, 196, 119–130. [Google Scholar] [CrossRef] [PubMed]
- de Lima, A.B.; de Andrade Vilalta, T.; de Lima Lessa, J.H.; Lopes, G.; Guilherme, L.R.G.; Guerra, M.B.B. Selenium bioaccessibility in rice grains biofortified via soil or foliar application of inorganic Se. J. Food Compos. Anal. 2023, 124, 105652. [Google Scholar] [CrossRef]
- Jiang, P.; Meng, J.; Zhang, L.; Huang, L.; Wei, L.; Bai, Y.; Liu, X.; Li, S. Purification and anti-inflammatory effect of selenium-containing protein fraction from selenium-enriched Spirulina platensis. Food Biosci. 2022, 45, 101469. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Hou, Y.-J.; Fu, X.-Y.; Fu, X.-T.; Ma, J.-K.; Yang, M.-F.; Sun, B.-L.; Fan, C.-D.; Oh, J. Selenium-containing protein from selenium-enriched Spirulina platensis attenuates cisplatin-induced apoptosis in MC3T3-E1 mouse preosteoblast by inhibiting mitochondrial dysfunction and ROS-mediated oxidative damage. Front. Physiol. 2019, 9, 1907. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Jiang, J.; Wong, Y.-S.; Yang, F.; Zheng, W. Selenium-containing allophycocyanin purified from selenium-enriched Spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation. J. Agric. Food Chem. 2011, 59, 8683–8690. [Google Scholar] [CrossRef]
- Chen, T.; Wong, Y.-S. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. J. Agric. Food Chem. 2008, 56, 4352–4358. [Google Scholar] [CrossRef]
- Saurav, K.; Mylenko, M.; Ranglová, K.; Kuta, J.; Ewe, D.; Masojídek, J.; Hrouzek, P. In vitro bioaccessibility of selenoamino acids from selenium (Se)-enriched Chlorella vulgaris biomass in comparison to selenized yeast; a Se-enriched food supplement; and Se-rich foods. Food Chem. 2019, 279, 12–19. [Google Scholar]
- Maseko, T.; Howell, K.; Dunshea, F.R.; Ng, K. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem. 2014, 146, 327–333. [Google Scholar] [CrossRef]
- Hu, Z.; Yao, Y.; Lv, M.; Zhang, Y.; Zhang, L.; Yuan, Y.; Yue, T. Isolation and identification of three water-soluble selenoproteins in Se-enriched Agaricus blazei Murrill. Food Chem. 2021, 344, 128691. [Google Scholar] [CrossRef]
- Muleya, M.; Young, S.D.; Reina, S.V.; Ligowe, I.S.; Broadley, M.R.; Joy, E.J.; Chopera, P.; Bailey, E.H. Selenium speciation and bioaccessibility in Se-fertilised crops of dietary importance in Malawi. J. Food Compos. Anal. 2021, 98, 103841. [Google Scholar] [CrossRef]
- Wu, G.; Liu, F.; Sun, X.; Lin, X.; Zhan, F.; Fu, Z. Preparation of selenium-enriched yeast by re-using discarded Saccharomyces cerevisiae from the beer industry for Se-supplemented fodder applications. Appl. Sci. 2019, 9, 3777. [Google Scholar] [CrossRef]
- Suhajda, A.; Hegoczki, J.; Janzso, B.; Pais, I.; Vereczkey, G. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J. Trace Elem. Med. Biol. 2000, 14, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, Q.; Chen, H.; Xiong, H. Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress. Food Chem. 2019, 272, 201–209. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Lei, H.; Cai, Y.; Shen, J.; Zhu, P.; He, Q.; Zhao, M. The Nrf-2/HO-1 signaling axis: A ray of hope in cardiovascular diseases. Cardiol. Res. Pract. 2020, 2020, 5695723. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Z.; Wang, C.; Li, E.; Qin, J.G.; Chen, L. Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress. Fish. Shellfish. Immunol. 2019, 87, 22–31. [Google Scholar] [CrossRef]
- Khalil, H.S.; Mansour, A.T.; Goda, A.M.A.; Omar, E.A. Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre, Argyrosomus regius, fingerlings. Aquaculture 2019, 501, 135–143. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Chang, W.; Chen, R.; Xu, S.; Tao, D. Protective effects of selenium yeast against cadmium-induced necroptosis via inhibition of oxidative stress and MAPK pathway in chicken liver. Ecotoxicol. Environ. Saf. 2020, 206, 111329. [Google Scholar] [CrossRef]
Name | Molecular Formula | Chemical Structure | Distribution | Reference |
---|---|---|---|---|
Selenate (SeVI) | SeO42− | Soil, plants, mammals | [49,50,51,52,53] | |
Selenite (SeIV) | SeO32− | Soil, plants, mammals | [52,53,54,55] | |
Selenide | Se2− | Se2− | Plants, mammals | [49,53,55] |
Monomethylselenonium | CH5Se+ | Mammals | [51,53] | |
Dimethylselenide | (CH3)2Se | Plants, mammals | [49,51,55] | |
Trimethylselenonium | (CH3)3Se+ | Plants, mammals | [49,51] | |
Selenophosphate | PO3Se3− | Mammals | [49,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Duan, A.; Ng, K. Selenoproteins in Health. Molecules 2024, 29, 136. https://doi.org/10.3390/molecules29010136
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules. 2024; 29(1):136. https://doi.org/10.3390/molecules29010136
Chicago/Turabian StyleQi, Ziqi, Alex Duan, and Ken Ng. 2024. "Selenoproteins in Health" Molecules 29, no. 1: 136. https://doi.org/10.3390/molecules29010136
APA StyleQi, Z., Duan, A., & Ng, K. (2024). Selenoproteins in Health. Molecules, 29(1), 136. https://doi.org/10.3390/molecules29010136