Screening and Characterization of Phenolic Compounds from Selected Unripe Fruits and Their Antioxidant Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. Measurement of Phenolic Contents of Unripe Fruits
2.2. Antioxidant Potential of Unripe Fruits
2.3. Pearson Correlation
2.4. LC-MS/MS Analysis
2.4.1. Flavonoids
2.4.2. Stilbenes and Lignans
2.4.3. Phenolic Acids
2.4.4. Other Compounds
2.5. Venn Distribution of Phenolic Compounds in Unripe Fruits
2.6. Heatmap Clustering of Quantified Phenolic Compounds in Unripe Fruits
2.7. Chemometric Analysis of Phenolic Compounds in Unripe Fruits
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation and Method Optimization for Extraction of Phenolic Compounds
3.3. Quantification of Phenolic Contents in Unripe Fruits
3.3.1. Determination of Total Phenolic Content
3.3.2. Total Flavonoid Content
3.3.3. Total Condensed Tannin
3.4. Antioxidant Activities of Unripe Fruits
3.4.1. ABTS Radical Scavenging Assay
3.4.2. DPPH Radical Scavenging Assay
3.4.3. Hydroxyl Radical Scavenging Assay
3.4.4. Fe2+ Chelating Activity (FICA)
3.5. LC-MS/MS Characterization of Phenolic Compounds
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit juice industry wastes as a source of bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Luan, Y.; Zhao, Y.; Liu, J.; Duan, Z.; Ruan, R. Current technologies and uses for fruit and vegetable wastes in a sustainable system: A review. Foods 2023, 12, 1949. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Barreca, D.; Rapisarda, A.; Cirmi, S.; Navarra, M. The second life of citrus fruit waste: A valuable source of bioactive compounds. Molecules 2021, 26, 5991. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Shen, C.; Xu, X.R.; Kuang, R.D.; Guo, Y.J.; Zeng, L.S.; Gao, L.L.; Lin, X.; Xie, J.F.; Xia, E.Q.; et al. Potential of fruit wastes as natural resources of bioactive compounds. Int. J. Mol. Sci. 2012, 13, 8308–8323. [Google Scholar] [CrossRef] [PubMed]
- Fia, G.; Bucalossi, G.; Proserpio, C.; Vincenzi, S. Unripe grapes: An overview of the composition, traditional and innovative applications, and extraction methods of a promising waste of viticulture. Aust. J. Grape Wine Res. 2022, 28, 8–26. [Google Scholar] [CrossRef]
- Bayram, Y.; Elgin Karabacak, C. Characterization of unripe grapes (Vitis vinifera L.) and its use to obtain antioxidant phenolic compounds by green extraction. Front. Sustain. Food Syst. 2022, 6, 909894. [Google Scholar] [CrossRef]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef]
- Fia, G.; Bucalossi, G.; Gori, C.; Borghini, F.; Zanoni, B. Recovery of bioactive compounds from unripe red grapes (cv. Sangiovese) through a green extraction. Foods 2020, 9, 566. [Google Scholar] [CrossRef]
- Zhou, K.; Raffoul, J.J. Potential anticancer properties of grape antioxidants. J. Oncol. 2012, 2012, 803294. [Google Scholar] [CrossRef]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Lauricella, M.; Emanuele, S.; Calvaruso, G.; Giuliano, M.; D’Anneo, A. Multifaceted health benefits of Mangifera indica L. (mango): The inestimable value of orchards recently planted in sicilian rural areas. Nutrients 2017, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Lebaka, V.R.; Wee, Y.J.; Ye, W.; Korivi, M. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gurjar, P.S.; Beer, K.; Pongener, A.; Ravi, S.C.; Singh, S.; Verma, A.; Singh, A.; Thakur, M.; Tripathy, S.; et al. A review on valorization of different byproducts of mango (Mangifera indica L.) for functional food and human health. Food Biosci. 2022, 48, 101783. [Google Scholar] [CrossRef]
- Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Liu, H.; Lei, T.; Xie, X.; Wang, H.; He, X.; Tong, R.; Wang, Y. Mangiferin: An effective therapeutic agent against several disorders. Mol. Med. Rep. 2018, 18, 4775–4786. [Google Scholar]
- Al-Qudah, T.S.; Zahra, U.; Rehman, R.; Majeed, M.I.; Sadique, S.; Nisar, S.; Tahtamouni, R.; Tahtamouni, R.W. Lemon as a source of functional and medicinal ingredient: A review. Int. J. Chem. Biochem. Sci. 2018, 14, 55–61. [Google Scholar]
- Patrón-Vázquez, J.; Baas-Dzul, L.; Medina-Torres, N.; Ayora-Talavera, T.; Sánchez-Contreras, Á.; García-Cruz, U.; Pacheco, N. The effect of drying temperature on the phenolic content and functional behavior of flours obtained from lemon wastes. Agronomy 2019, 9, 474. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Bernini, R.; Campo, M.; Vita, C.; Souto, E.B.; Lombardi-Boccia, G.; Ramadan, M.F.; Santini, A.; Romani, A. Fruit wastes as a valuable source of value-added compounds: A collaborative perspective. Molecules 2021, 26, 6338. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Kiani, H.S.; Ali, B.; Al-Sadoon, M.K.; Al-Otaibi, H.S.; Ali, A. Lc-ms/ms and gc-ms identification of metabolites from the selected herbs and spices, their antioxidant, anti-diabetic potential, and chemometric analysis. Processes 2023, 11, 2721. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The chemistry behind the folin–ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a mediterranean dietary pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.M.; Guo, X.; Fu, X.; Zhou, L.; Chen, Y.; Zhu, Y.; Yan, H.; Liu, R.H. Comparative assessment of phenolic content and in vitro antioxidant capacity in the pulp and peel of mango cultivars. Int. J. Mol. Sci. 2015, 16, 13507–13527. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; González, M. Using drying treatments to stabilise mango peel and seed: Effect on antioxidant activity. LWT Food Sci. Technol. 2012, 45, 261–268. [Google Scholar] [CrossRef]
- Rathod, Z.; Sharma, S.; Saraf, M. Identification and estimation of total phenol as a bioactive natural product from Citrus limon L. Burm. F. (lemon) and it’s endophytes. Curr. Trends Biomed. Eng. Biosci. 2022, 20, 144. [Google Scholar]
- Dong, X.; Hu, Y.; Li, Y.; Zhou, Z. The maturity degree, phenolic compounds and antioxidant activity of eureka lemon [Citrus limon (L.) Burm. F.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci. Hortic. 2019, 243, 281–289. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Dpph radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. Lc-esi-qtof/ms profiling of Australian mango peel by-product polyphenols and their potential antioxidant activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef]
- Arshiya, S. The antioxidant effect of certain fruits: A review. J. Pharm. Sci. Res. 2013, 5, 265. [Google Scholar]
- Venkatesan, T.; Choi, Y.W.; Kim, Y.K. Impact of different extraction solvents on phenolic content and antioxidant potential of Pinus densiflora bark extract. Biomed. Res. Int. 2019, 2019, 3520675. [Google Scholar] [CrossRef] [PubMed]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. Abts/pp decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z., Jr.; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (abts) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (frap) and 2,2′-diphenyl-1-picrylhydrazyl (dpph) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Madalageri, D.; Bharati, P.C.; Orsat, V.; Raghavan, V.; Kage, U. Antioxidant activity in pulp and peel of three mango varieties. J. Hortic. Sci. 2015, 10, 199–209. [Google Scholar] [CrossRef]
- Le, H.M. Antioxidative Effects of Mango Wastes on Shelf Life of Pork Products. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2012. [Google Scholar]
- Soong, Y.-Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Dolan, K.D. Total phenolics, carotenoids and antioxidant properties of tommy Atkin mango cubes as affected by drying techniques. LWT—Food Sci. Technol. 2015, 62, 564–568. [Google Scholar] [CrossRef]
- Wong, F.C.; Yong, A.L.; Ting, E.P.; Khoo, S.C.; Ong, H.C.; Chai, T.T. Antioxidant, metal chelating, anti-glucosidase activities and phytochemical analysis of selected tropical medicinal plants. Iran. J. Pharm. Res. 2014, 13, 1409–1415. [Google Scholar] [PubMed]
- Ali, A.; Kiloni, S.M.; Cáceres-Vélez, P.R.; Jusuf, P.R.; Cottrell, J.J.; Dunshea, F.R. Phytochemicals, antioxidant activities, and toxicological screening of native Australian fruits using zebrafish embryonic model. Foods 2022, 11, 4038. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Identification of phenolics profile in freeze-dried apple peel and their bioactivities during in vitro digestion and colonic fermentation. Int. J. Mol. Sci. 2023, 24, 1514. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Antioxidant, alpha-glucosidase inhibition activities, in silico molecular docking and pharmacokinetics study of phenolic compounds from native Australian fruits and spices. Antioxidants 2023, 12, 254. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Characterization, antioxidant potential, and pharmacokinetics properties of phenolic compounds from native Australian herbs and fruits. Plants 2023, 12, 993. [Google Scholar] [CrossRef] [PubMed]
- Velamuri, R.; Sharma, Y.; Fagan, J.; Schaefer, J. Application of UHPLC-ESI-QTOF-MS in phytochemical profiling of sage (Salvia officinalis) and rosemary (Rosmarinus officinalis). Planta Medica Int. Open 2020, 7, e133–e144. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef]
- Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-based screening and identification of flavonoids and derived metabolites in human urine after oral administration of Exocarpium citri grandis extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Nakajima, A.; Ohizumi, Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int. J. Mol. Sci. 2019, 20, 3380. [Google Scholar] [CrossRef] [PubMed]
- Palafox-Carlos, H.; Yahia, E.M.; González-Aguilar, G.A. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC–DAD–MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem. 2012, 135, 105–111. [Google Scholar] [CrossRef]
- Xiang, S.; Xiao, J. Protective effects of syringic acid on inflammation, apoptosis and intestinal barrier function in caco-2 cells following oxygen-glucose deprivation/reoxygenation-induced injury. Exp. Ther. Med. 2022, 23, 66. [Google Scholar] [CrossRef] [PubMed]
- Rychlicka, M.; Rot, A.; Gliszczyńska, A. Biological properties, health benefits and enzymatic modifications of dietary methoxylated derivatives of cinnamic acid. Foods 2021, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Savych, A.; Marchyshyn, S.; Kyryliv, M.; Bekus, I. Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activity. Farmacia 2021, 69, 595–601. [Google Scholar] [CrossRef]
- Deng, H.; Xu, Q.; Guo, H.-Y.; Huang, X.; Chen, F.; Jin, L.; Quan, Z.-S.; Shen, Q.-K. Application of cinnamic acid in the structural modification of natural products: A review. Phytochemistry 2023, 206, 113532. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- Peres, D.D.A.; Sarruf, F.D.; de Oliveira, C.A.; Velasco, M.V.R.; Baby, A.R. Ferulic acid photoprotective properties in association with uv filters: Multifunctional sunscreen with improved SPF and UVA-PF. J. Photochem. Photobiol. B Biol. 2018, 185, 46–49. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Health Res. Rev. 2017, 18, 167–176. [Google Scholar] [CrossRef]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic acid-human pharmacokinetics and health benefits. Planta Med. 2021, 87, 273–282. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A comprehensive review of Rosmarinic acid: From phytochemistry to pharmacology and its new insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.E.; Zambrano, R.; Sepúlveda, B.; Simirgiotis, M.J. Antioxidant properties and hyphenated HPLC-PDA-MS profiling of chilean pica mango fruits (Mangifera indica L. Cv. Piqueño). Molecules 2014, 19, 438–458. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive profiling of most widely used spices for their phenolic compounds through LC-ESI-QTOF-MS2 and their antioxidant potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Kiani, H.S.; Ahmad, W.; Nawaz, S.; Farah, M.A.; Ali, A. Optimized extraction of polyphenols from unconventional edible plants: Lc-ms/ms profiling of polyphenols, biological functions, molecular docking, and pharmacokinetics study. Molecules 2023, 28, 6703. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Song, S.; Ali, A.; Subbiah, V.; Taheri, Y.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS characterization of phenolic compounds from pyracantha coccinea m. Roem. and their antioxidant capacity. Cell. Mol. Biol. 2021, 67, 201–211. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Identification and characterization of anthocyanins and non-anthocyanin phenolics from australian native fruits and their antioxidant, antidiabetic, and anti-Alzheimer potential. Food Res. Int. 2022, 162, 111951. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. Hmdb 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
Variables | Black Lemon | Unripe Mango | Unripe Grapes |
---|---|---|---|
TPC (mg GAE/g) | 23.08 ± 2.28 b | 58.01 ± 6.37 a | 19.42 ± 1.16 c |
TFC (mg QE/g) | 16.41 ± 1.02 b | 44.94 ± 5.02 a | 15.01 ± 1.12 b |
TCT (mg CE/g) | 4.01 ± 0.32 b | 11.41 ± 0.91 a | 4.28 ± 0.62 b |
Variables | Black Lemon | Unripe Mango | Unripe Grapes |
---|---|---|---|
DPPH (mg AAE/g) | 32.53 ± 2.47 b | 114.27 ± 9.42 a | 23.71 ± 2.17 c |
ABTS (mg AAE/g) | 69.25 ± 5.17 b | 134.12 ± 9.63 a | 53.44 ± 4.79 c |
FICA (mg EDTA/g) | 14.24 ± 1.07 b | 33.16 ± 2.08 a | 11.49 ± 0.87 c |
OH-RSA (mg AAE/g) | 34.16 ± 3.08 b | 57.31 ± 4.85 a | 19.57 ± 1.42 c |
Variables | TPC | TFC | TCT | DPPH | ABTS | FICA |
---|---|---|---|---|---|---|
TFC | 1.000 | |||||
TCT | 0.993 | 0.997 | ||||
DPPH | 1.000 | 0.999 | 0.993 | |||
ABTS | 0.995 | 0.990 | 0.977 | 0.995 | ||
FICA | 1.000 | 0.997 | 0.989 | 1.000 | 0.998 | |
OH-RSA | 0.953 | 0.939 | 0.911 | 0.954 | 0.979 | 0.962 |
No. | Name | Formula | RT | ESI +/− | Theoretical (m/z) | Observed (m/z) | Mass Error (ppm) | MS/MS | Samples |
---|---|---|---|---|---|---|---|---|---|
Flavonoids | |||||||||
Anthocyanins | |||||||||
1 | Cyanidin 3-rhamnoside 5-glucoside | C27H31O15 | 20.698 | [M]+ | 595.1706 | 596.1706 | −0.50 | 449, 287 | BL |
2 | Petunidin 3-rhamnoside 5-glucoside | C28H33O16 | 22.240 | [M]+ | 625.1842 | 625.1839 | −0.48 | 480, 317 | BL |
3 | * Cyanidin | C24H25O12 | 26.649 | [M]+ | 287 | 287 | 1.98 | 287 | BL, UG, UM |
Flavanols | |||||||||
4 | * Epicatechin | C15H14O6 | 15.19 | [M − H]− | 289.0717 | 289.0711 | −2.1 | 245, 205 | UG, BL, UM |
5 | * Procyanidin B2 | C30H26O12 | 19.321 | [M − H]− | 577.1351 | 577.1366 | 2.6 | 451, 425, 407, 289 | UM, UG, BL |
6 | Procyanidin trimer C1 | C45H38O18 | 20.808 | [M + H]+ | 867.2131 | 867.2162 | 3.57 | 867 | UG, UM |
7 | Procyanidin dimer B2 | C30H26O12 | 21.056 | ** [M − H]− | 579.1497 | 579.1529 | 5.53 | 579 | UM, UG |
8 | (−)-Epigallocatechin 7-O-glucuronide | C21H22O13 | 36.003 | [M + H]+ | 483.1133 | 483.1126 | −1.45 | 483 | UM, BL |
Flavanones | |||||||||
9 | Didymin | C28H34O14 | 13.090 | [M + H]+ | 595.2022 | 595.2032 | 1.68 | 577, 287 | BL, UM |
10 | 6-Geranylnaringenin | C25H28O5 | 15.226 | [M − H]− | 407.1864 | 407.1890 | 6.39 | 287, 243, 159, 119 | BL |
11 | Hesperidin | C28H34O15 | 22.590 | [M + H]+ | 611.1971 | 611.1974 | 0.49 | 303 | UG, BL, UM |
12 | Hesperetin 3′-O-glucuronide | C22H22O12 | 23.133 | [M + H]+ | 479.1184 | 479.1199 | 3.13 | 301 | UG |
Flavones | |||||||||
13 | Nobiletin | C21H22O8 | 3.726 | ** [M − H]− | 401.1242 | 401.1225 | −4.24 | 401 | UG, BL |
14 | Apigenin 6-C-glucoside | C21H20O10 | 4.175 | ** [M − H]− | 431.0983 | 431.0990 | 1.62 | 269 | UG, BL, UM |
15 | Apigenin 7-O-glucoside | C21H24O9 | 6.652 | [M − H]− | 419.1347 | 419.1327 | −4.77 | 417 | UG, UM |
16 | Apigenin 6,8-di-C-glucoside | C27H30O15 | 16.818 | [M + H]+ | 595.1658 | 595.1691 | 5.54 | 595 | BL, UM |
17 | 6-Hydroxyluteolin 7-O-rhamnoside | C21H20O11 | 21.552 | [M + H]+ | 449.1079 | 449.1109 | 6.68 | 303, 285 | UG |
18 | * Diosmin | C28H32O15 | 22.666 | ** [M − H]− | 609.1814 | 609.1868 | 8.86 | 301 | UM, BL, UG |
Flavonols | |||||||||
19 | Kaempferol 3,7,4′-O-triglucoside | C33H40O21 | 4.530 | [M + H]+ | 773.2135 | 773.2150 | 1.94 | 773 | UM, BL |
20 | Isorhamnetin 3-O-glucuronide | C22H20O13 | 4.608 | [M + H]+ | 493.0977 | 493.0979 | 0.41 | 493 | UM, BL |
21 | Kaempferol 7-O-glucoside | C21H19O11 | 16.662 | [M + H]+ | 448.1000 | 448.1041 | 9.15 | 448 | BL, UM |
22 | Myricetin | C15H10O8 | 16.934 | [M + H]+ | 319.0449 | 319.0451 | 0.63 | 319 | UG, BL, UM |
23 | Dihydroquercetin | C15H12O7 | 22.220 | [M + H]+ | 305.0656 | 305.0668 | 3.93 | 305 | UG |
24 | Kaempferol 3-O-glucuronide | C21H18O12 | 23.133 | [M + H]+ | 463.0871 | 463.0899 | 6.05 | 463 | UG, UM |
25 | Dihydromyricetin 3-O-rhamnoside | C21H22O12 | 24.926 | [M + H]+ | 467.1184 | 467.1174 | −2.14 | 467 | BL, UG |
26 | * Quercetin | C15H10O7 | 28.760 | [M + H]+ | 303.0499 | 303.0525 | 8.58 | 285, 169 | UG, UM, BL |
Isoflavonoids | |||||||||
27 | 6″-O-Acetylglycitin | C24H24O11 | 4.055 | [M + H]+ | 489.1392 | 489.1380 | −2.45 | 489 | BL, UM |
28 | 6″-O-Acetylgenistin | C23H22O11 | 4.737 | [M + H]+ | 475.1235 | 475.1246 | 2.32 | 475 | BL, UM |
29 | 4′,7-Dihydroxyisoflavan | C15H14O3 | 12.000 | [M − H]− | 241.0870 | 241.0877 | 2.90 | 241 | BL, UM |
30 | Violanone | C17H16O6 | 26.037 | [M + H]+ | 317.1020 | 317.1034 | 4.41 | 317 | UG, UM |
31 | Dihydroformononetin | C16H14O4 | 30.090 | [M + H]+ | 271.0965 | 271.0969 | 1.48 | 271 | UG, BL |
32 | 3′-O-Methylequol | C16H16O4 | 33.387 | [M + H]+ | 273.1122 | 273.1124 | 0.73 | 273 | UM, BL |
33 | Dihydrobiochanin A | C16H14O5 | 49.864 | [M + H]+ | 287.0914 | 287.0920 | 2.09 | 269, 203, 201, 175 | UM, BL |
Chalcones | |||||||||
34 | Phloridzin | C21H24O10 | 7.307 | ** [M − H]− | 435.1297 | 435.1294 | −0.69 | 435 | BL, UG |
35 | Phloretin 2′-O-glucuronide | C21H22O11 | 22.220 | [M + H]+ | 451.1235 | 451.1256 | 4.66 | 275 | UM, UG |
Stilbenes | |||||||||
36 | 4′-Hydroxy-3,4,5-trimethoxystilbene | C17H18O4 | 4.150 | [M + H]+ | 287.1278 | 287.1272 | −2.09 | 287 | UM, UG |
37 | Piceatannol 3-O-glucoside | C20H22O9 | 6.120 | ** [M − H]− | 405.1191 | 405.1186 | −1.23 | 245 | UG, BL, UM |
38 | Dihydroresveratrol | C14H14O3 | 11.128 | ** [M − H]− | 229.0870 | 229.0872 | 0.87 | 229, 81 | UM, BL |
39 | Resveratrol | C14H12O3 | 21.552 | [M + H]+ | 229.0859 | 229.0876 | 7.42 | 211, 167, 127 | UM, UG |
40 | Piceatannol | C14H12O4 | 54.463 | [M + H]+ | 245.0809 | 245.0823 | 5.71 | 245 | BL, UM |
Lignans | |||||||||
41 | 7-Hydroxymatairesinol | C20H22O7 | 4.649 | [M + H]+ | 375.1439 | 375.1437 | −0.53 | 375 | UM, BL |
42 | Schisantherin A | C30H32O9 | 5.663 | [M − H]− | 535.1973 | 535.1946 | −5.04 | 535 | BL, UM |
43 | Lariciresinol | C20H24O6 | 6.147 | ** [M − H]− | 359.1500 | 359.1515 | 4.18 | 329, 192, 178, 175 | BL, UG |
44 | 2-Hydroxyenterolactone | C18H18O5 | 13.283 | ** [M − H]− | 313.1081 | 313.1083 | 0.64 | 255 | UG, BL, UM |
45 | 2-Hydroxyenterodiol | C18H22O5 | 13.698 | [M − H]− | 317.1394 | 317.1378 | −5.05 | 299, 287, 269, 257 | UG, BL |
46 | Schisanhenol | C23H30O6 | 14.084 | [M − H]− | 401.1969 | 401.1975 | 1.50 | 401 | BL, UM |
47 | Secoisolariciresinol | C20H26O6 | 15.100 | [M − H]− | 361.1656 | 361.1635 | −5.81 | 346, 315, 223, 165 | UM, UG |
Phenolic Acids | |||||||||
Hydroxybenzoic acids | |||||||||
48 | Protocatechuic acid 4-O-glucoside | C13H16O9 | 4.037 | ** [M − H]− | 315.0721 | 315.0746 | 7.9 | 153 | BL, UG, UM |
49 | * Gallic acid | C7H6O5 | 7.388 | ** [M − H]− | 169.0142 | 169.0144 | 0.6 | 125 | BL, UM, UG |
50 | Ellagic acid | C14H6O8 | 7.414 | ** [M − H]− | 300.9990 | 300.9990 | 0.0 | 284, 257 | BL, UM, UG |
51 | 3-O-Methylgallic acid | C8H8O5 | 11.584 | ** [M − H]− | 183.0299 | 183.0299 | 0.0 | 169 | BL, UM |
52 | Paeoniflorin | C23H28O11 | 13.732 | [M + H]+ | 481.1705 | 481.1744 | 8.1 | 481 | BL, UM |
53 | * Protocatechuic acid | C7H6O4 | 15.860 | ** [M − H]− | 153.0193 | 153.0195 | 1.3 | 109 | BL, UM, UG |
54 | Gallic acid 3-monogallate | C14H10O9 | 15.993 | ** [M − H]− | 323.0398 | 323.0381 | −5.5 | 169, 125 | BL, UM |
55 | p-Hydroxybenzoic acid | C7H6O3 | 16.818 | ** [M − H]− | 137.0234 | 137.0243 | −4.3 | 93 | UG, BL, UM |
56 | * Syringic acid | C9H10O5 | 20.168 | ** [M − H]− | 197.0455 | 197.0465 | 5.075 | 182, 153 | UM, UG, BL |
57 | * Benzoic acid | C7H6O2 | 21.713 | ** [M − H]− | 121.0295 | 121.0294 | −0.8 | 103, 93 | UG, UM, BL |
Hydroxycinnamic acids | |||||||||
58 | Cinnamoyl glucose | C15H18O7 | 9.676 | ** [M − H]− | 311.1125 | 311.1114 | −3.5 | 311 | BL, UM |
59 | Caffeic acid 4-O-glucuronide | C15H16O10 | 9.734 | ** [M − H]− | 355.0671 | 355.0653 | −5.0695 | 179 | UM, BL, UG |
60 | * Chlorogenic acid | C16H18O9 | 13.294 | ** [M − H]− | 353.0878 | 353.0874 | −1.1 | 191, 179, 161 | BL, U, UM |
61 | * p-Coumaric acid | C9H8O3 | 14.433 | ** [M − H]− | 163.0400 | 163.0411 | 6.7 | 119 | BL, UG, UM |
62 | p-Coumaric acid 4-O-glucoside | C15H18O8 | 16.629 | ** [M − H]− | 325.0929 | 325.0936 | 2.2 | 163 | BL, UM |
63 | * Caffeic acid | C9H8O4 | 17.639 | ** [M − H]− | 179.0350 | 179.0351 | 0.6 | 135 | UG, UM, BL |
64 | * Cinnamic acid | C9H8O2 | 18.021 | ** [M − H]− | 147.0451 | 147.0441 | −6.8 | 103 | UG, BL, UM |
65 | Dihydroferulic acid | C10H12O4 | 18.986 | [M + H]+ | 197.0809 | 197.0818 | 4.57 | 197 | UM, BL |
66 | * Ferulic acid | C10H10O4 | 21.124 | ** [M − H]− | 193.0506 | 193.0508 | 1.036 | 178, 149, 134 | UM, UG, BL |
67 | 1,2,2′-Triferuloylgentiobiose | C42H46O20 | 22.826 | [M + H]+ | 871.2655 | 871.2631 | −2.75 | 871 | UM, BL |
68 | * Sinapic acid | C11H12O5 | 24.062 | [M − H]− | 223.0612 | 223.0618 | 2.7 | 193, 179, 149, 134 | UM, BL |
69 | Verbascoside A | C31H40O16 | 28.316 | [M + H]+ | 669.2389 | 669.2399 | 1.49 | 669 | UM, BL |
70 | * Rosmarinic acid | C18H16O8 | 35.023 | ** [M − H]− | 361.0918 | 361.0906 | −3.32 | 197, 179 | BL |
71 | p-Coumaroyl glycolic acid | C11H10O5 | 52.416 | [M + H]+ | 223.0601 | 223.0615 | 6.28 | 223 | BL, UM |
Other compounds | |||||||||
72 | 3,4-DHPEA-EDA | C17H20O6 | 4.297 | [M − H]− | 319.1187 | 319.1191 | 1.25 | 275, 195 | UM, BL |
73 | * Pyrogallol | C6H6O3 | 9.783 | [M + H]+ | 127.0390 | 127.0395 | 3.94 | 127 | BL, UM |
74 | p-HPEA-AC | C10H12O3 | 12.551 | [M − H]− | 179.0713 | 179.0702 | −6.14 | 137, 119 | UG, BL |
75 | Quinic Acid | C7H12O6 | 13.178 | [M − H]− | 191.0561 | 191.0572 | 5.76 | 171, 127, 85 | UG, UM, BL |
76 | * Mangiferin | C19H18O11 | 13.992 | [M − H]− | 421.0776 | 421.0797 | 4.9872 | 331, 301, 259 | UM |
77 | Catechol | C6H6O2 | 14.968 | [M + H]+ | 111.0441 | 111.0449 | 7.20 | 111 | UM, UG, BL |
78 | Mangiferin 6′-gallate | C26H22O15 | 16.163 | [M − H]− | 573.0886 | 573.0898 | 2.0939 | 421 | UM |
79 | Mellein | C10H10O3 | 17.370 | ** [M − H]− | 177.0557 | 177.0555 | −1.13 | 133 | UG, BL |
80 | p-Anisaldehyde | C8H8O2 | 18.986 | [M + H]+ | 137.0597 | 137.0600 | 2.19 | 122, 109 | UM, UG, BL |
81 | Carvacrol | C10H14O | 45.040 | [M + H]+ | 151.1118 | 151.1125 | 4.63 | 151 | UM, BL |
82 | Esculetin | C9H6O4 | 47.592 | [M + H]+ | 179.0339 | 179.0347 | 4.47 | 179 | UM, BL |
83 | Coumarin | C9H6O2 | 50.738 | [M + H]+ | 147.0441 | 147.0443 | 1.36 | 103, 91 | UG, BL |
84 | 4-Hydroxycoumarin | C9H6O3 | 52.252 | [M + H]+ | 163.0390 | 163.0398 | 4.91 | 163 | BL, UG |
85 | Scopoletin | C10H8O4 | 54.433 | [M + H]+ | 193.0496 | 193.0505 | 4.66 | 193 | UM, BL, UG |
No. | Compounds | Unripe Mango | Back Lemon | Unripe Grapes |
---|---|---|---|---|
1 | Gallic Acid | 221.17 ± 9.69 | 56.91 ± 1.32 | 86.43 ± 7.42 |
2 | Protocatechuic acid | 38.56 ± 1.02 | 45.71 ± 3.21 | 89.21 ± 5.42 |
3 | Ellagic acid | 113.93 ± 8.31 | 134.91 ± 11.42 | 101.25 ± 7.61 |
4 | Caffeic acid | 177.31 ± 5.01 | 79.28 ± 5.02 | 111.47 ± 6.16 |
5 | Cinnamic acid | 22.14 ± 1.34 | 34.13 ± 3.37 | 42.22 ± 3.67 |
6 | p-coumaric acid | 37.41 ± 2.24 | 79.34 ± 4.25 | 44.91 ± 2.19 |
7 | Ferulic acid | 69.51 ± 5.69 | 91.43 ± 7.38 | 88.54 ± 5.61 |
8 | Chlorogenic acid | 115.98 ± 8.79 | 83.37 ± 4.49 | 123.57 ± 9.31 |
9 | Syringic acid | 98.68 ± 9.36 | 113.42 ± 9.01 | 82.45 ± 6.13 |
10 | Sinapic acid | 79.64 ± 5.23 | 31.34 ± 2.18 | 73.12 ± 5.35 |
11 | Kaempferol 7-O-glucoside | 59.32 ± 4.43 | 78.42 ± 5.23 | 67.48 ± 5.21 |
12 | Kaempferol 3-O-glucuronide | 67.51 ± 4.73 | 55.12 ± 5.04 | 71.51 ± 3.65 |
13 | Quercetin | 83.15 ± 6.29 | 114.17 ± 9.05 | 111.92 ± 7.32 |
14 | Epicatechin | 224.31 ± 13.41 | 151.02 ± 6.17 | 88.52 ± 6.02 |
15 | Isovitexin | 56.64 ± 4.35 | 96.64 ± 7.39 | 41.36 ± 2.26 |
16 | Diosmin | 19.21 ± 1.57 | 67.51 ± 5.07 | 36.08 ± 3.19 |
17 | Procyanidin B2 | 182.12 ± 9.34 | 224.15 ± 11.34 | 131.18 ± 10.06 |
18 | Hesperidin | 79.65 ± 7.35 | 71.16 ± 6.01 | 32.73 ± 2.08 |
19 | Pyrogallol | 39.47 ± 3.07 | 69.34 ± 4.27 | 37.73 ± 2.19 |
20 | Mangiferin | 44.93 ± 3.67 | NQ | NQ |
21 | Resveratrol | 58.62 ± 3.39 | NQ | 19.41 ± 1.54 |
22 | Scopoletin | 18.12 ± 1.36 | 13.95 ± 1.24 | 23.03 ± 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Asgher, Z.; Cottrell, J.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds from Selected Unripe Fruits and Their Antioxidant Potential. Molecules 2024, 29, 167. https://doi.org/10.3390/molecules29010167
Ali A, Asgher Z, Cottrell JJ, Dunshea FR. Screening and Characterization of Phenolic Compounds from Selected Unripe Fruits and Their Antioxidant Potential. Molecules. 2024; 29(1):167. https://doi.org/10.3390/molecules29010167
Chicago/Turabian StyleAli, Akhtar, Zeshan Asgher, Jeremy J. Cottrell, and Frank R. Dunshea. 2024. "Screening and Characterization of Phenolic Compounds from Selected Unripe Fruits and Their Antioxidant Potential" Molecules 29, no. 1: 167. https://doi.org/10.3390/molecules29010167
APA StyleAli, A., Asgher, Z., Cottrell, J. J., & Dunshea, F. R. (2024). Screening and Characterization of Phenolic Compounds from Selected Unripe Fruits and Their Antioxidant Potential. Molecules, 29(1), 167. https://doi.org/10.3390/molecules29010167