Bio-Guided Assay of Ephedra foeminea Forssk Extracts and Anticancer Activities: In Vivo, In Vitro, and In Silico Evaluations
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vivo Antitumor Activity against Ehrlich Ascites Carcinoma
2.2. Isolation of Compounds from the (EtOAc) Fraction
2.2.1. Macrocyclic Spermine Alkaloids Isolated Compounds
2.2.2. Quinoline Alkaloids Isolated Compounds
2.2.3. Proanthocyanidins Isolated Compounds
2.2.4. Phenol Isolated Compound
2.2.5. Nucleoside Compound
2.3. Cytotoxicity of Isolated Compounds
2.4. Molecular Modeling
2.4.1. Molecular Docking
2.4.2. Pharmacokinetic and Drug-Likeness Aspects Prediction
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Extraction and Fractionation
3.4. Experimental Model and Cell Culture
3.5. Ehrlich Ascites Carcinoma Test
3.6. Isolation of Compounds from Bioactive Fraction
3.7. Cell Viability Assay MTT
3.8. Sandwich Antigen Capture ELISA Assays Recorded for CA-19.9 and CA-125
3.9. Statistical Analysis
3.10. Molecular Modeling
3.10.1. Molecular Docking Study
3.10.2. Pharmacokinetic and Drug-Likeness Aspects Prediction
4. Conclusions
4.1. Study Limitations
- The findings of this study have to be seen in light of some limitations in methodology. Despite the remarkable advantages of NMR spectroscopy, certain limitations exist, including the high cost and low sensitivity of NMR instruments to sufficiently sample concentrations, higher molecular weight molecules, and molecules with ionic states, which could sometimes lead to poor spectra that need to be addressed by researchers to enable future breakthroughs.
- These weak points for NMR could be overcome by the use of mass-spectroscopy analysis (ESI-MS), which was what the authors carried out in this study, where MS-based metabolomics provides a great technique for large molecular weight ionic compounds, as it provides a combination of sensitivity and selectivity platforms for such metabolomics research. Furthermore, other MS methodologies, such as different ionization procedures and mass analyzer technologies, can be employed to improve the number of detectable metabolites.
4.2. Prospective Studies
- Further in vitro and in vivo studies are required to fully explore the possible biological activities of the non-alkaloid constituents of E. foeminea.
- Structural modifications to improve constituent activities, safety, and pharmacokinetics can be used as templates for the design of new biologically active molecules from Ephedra species.
- Endophytic fungal strains associated with Ephedra species are potential sources for development in chemical, microbiological, and pharmacological fields.
- To the best of our knowledge, this is the first study to demonstrate the cytotoxicity of 6-methoxy kynurenic acid, highlighting its potential utility in the development of a novel cytotoxic drug candidate.
- This study could be an incentive to develop and expand research on the semi-synthesis of new C-6 substituted kynurenic acid derivatives that could be used as herbal dietary supplements for cancer patients after proper clinical trials.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hollander, L.; Vander, B.; Baguley, G. Evolution of seed dispersal in North American Ephedra. Evol. Ecol. 2010, 24, 333–345. [Google Scholar] [CrossRef]
- Amakura, Y.; Yoshimura, M.; Yamakami, S.; Yoshida, T.; Wakana, D.; Hyuga, M.; Hyuga, S.; Hanawa, T.; Goda, Y. Characterization of phenolic constituents from ephedra herb extract. Molecules 2013, 18, 5326–5334. [Google Scholar] [CrossRef] [PubMed]
- González-Juárez, D.E.; Escobedo-Moratilla, A.; Flores, J.; Hidalgo-Figueroa, S.; Martínez-Tagüeña, N.; Pérez-Miranda, S.; Ramírez-Hernández, A.; Trujillo, J. A review of the Ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules 2020, 25, 3283. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, J. Research progress on Ephedra and its active ingredients. J. Xinjiang Med. Univ. 2003, 26, 606–608. [Google Scholar]
- Krizevski, R.; Bar, E.; Shalit, O.; Sitrit, Y.; Ben-Shabat, S.; Lewinsohn, E. Composition and stereochemistry of ephedrine alkaloids accumulation in Ephedra sinica Stapf. Phytochemistry 2010, 71, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Ishikawa, Y.; Kobayashi, S.; Sankawa, U.; Ebizuka, Y. N-Acylamino acids from Ephedra distachya cultures. Phytochemistry 1992, 31, 823–826. [Google Scholar] [CrossRef]
- Starratt, A.N.; Caveney, S. Four cyclopropane amino acids from Ephedra. Phytochemistry 1995, 40, 479–481. [Google Scholar] [CrossRef]
- Castledine, R.M.; Harborne, J.B. Identification of the glycosyl flavones of Ephedra and Briza by mass spectrometry of their permethyl ethers. Phytochemistry 1976, 15, 803–804. [Google Scholar] [CrossRef]
- Nawwar, M.A.; El-Sissi, H.I.; Barakat, H.H. Flavonoid constituents of Ephedra alata. Phytochemistry 1984, 23, 2937–2939. [Google Scholar] [CrossRef]
- Hussein, S.A.; Barakat, H.H.; Nawar, M.A.; Willuhn, G. Flavonoids from Ephedra aphylla. Phytochemistry 1997, 45, 1529–1532. [Google Scholar] [CrossRef]
- Mighri, H.; Akrout, A.; Bennour, N.; Eljeni, H.; Zammouri, T.; Neffati, M. LC/MS method development for the determination of the phenolic compounds of Tunisian Ephedra alata hydro-methanolic extract and its fractions and evaluation of their antioxidant activities. S. Afr. J. Bot. 2019, 124, 102–110. [Google Scholar] [CrossRef]
- Bansal, V.; Kumar, P.; Tuteja, S.K.; Siddiqui, M.W. Diverse utilization of plant-originated secondary metabolites. In Plant Secondary Metabolites; Apple Academic Press: Oxford, UK, 2017; Volume Three (235–258). [Google Scholar]
- Zhang, B.M.; Wang, Z.B.; Xin, P. Phytochemistry and pharmacology of genus Ephedra. Chin. J. Nat. Med. 2018, 16, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Elhadef, K.; Smaoui, S.; Fourati, M.; Ben Hlima, H.; Chakchouk Mtibaa, A.; Sellem, I.; Ennouri, K.; Mellouli, L. A review on worldwide Ephedra history and story: From fossils to natural products mass spectroscopy characterization and biopharmacotherapy potential. Evid. Based Complementary Altern. Med. 2020, 1540638. [Google Scholar]
- Abourashed, E.; El-Alfy, A.; Khan, I.; Walker, L. Ephedra in Perspective—A Current Review. Phytother. Res. 2003, 17, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Krizevski, R.; Bar, E.; Shalit, O.R.; Levy, A.; Hagel, J.M.; Kilpatrick, K.; Marsolais, F.; Facchini, P.J.; Ben-Shabat, S.; Sitrit, Y.; et al. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp. Phytochemistry 2012, 81, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Mendelovich, M.; Shoshan, M.; Fridlender, M.; Mazuz, M.; Namder, D.; Nallathambi, R.; Selvaraj, G.; Kumari, P.; Ion, A.; Wininger, S.; et al. Effect of Ephedra foeminea active compounds on cell viability and actin structures in cancer cell lines. J. Med. Plant Res. 2017, 11, 690–702. [Google Scholar]
- Ben-Arye, E.; Mahajna, J.; Aly, R.; Ali-Shtayeh, M.S.; Bentur, Y.; Lev, E.; Deng, G.; Samuels, N. Exploring an herbal “wonder cure” for cancer: A multidisciplinary approach. J. Cancer Res. Clin. Oncol. 2016, 142, 1499–1508. [Google Scholar] [CrossRef]
- Ballero M, Foddis C, Sanna C, et al. Pharmacological activities on Ephedra nebrodensis Tineo. Nat Product Res. 2010, 24, 1115–1124.
- Bala, A.; Kar, B.; Haldar, P.K.; Mazumder, U.K.; Bera, S. Evaluation of anticancer activity of Cleome gynandra on Ehrlich’s ascites carcinoma treated mice. J. Ethnopharmacol. 2010, 129, 131–134. [Google Scholar] [CrossRef]
- Hussein, M.A.; Boshra, S.A. Antitumor and structure antioxidant activity relationship of colchicine on Ehrlich ascites carcinoma (EAC) in female mice. Int. J. Drug Deliv. 2013, 5, 430–437. [Google Scholar]
- Fang, C.; Cao, Y.; Liu, X.; Zeng, X.T.; Li, Y. Serum CA-125 is a predictive marker for breast cancer outcomes and correlates with molecular subtypes. Oncotarget 2017, 8, 63963–63970. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, X.; Tian, B.; Wang, Y.; Du, L.; Sun, T.; Shi, Y.; Zhao, X.; Jing, J. The diagnostic value of serum tumor markers CEA, CA19-9, CA-125, CA15-3, and TPS in metastatic breast cancer. Clin. Chim. Acta 2017, 470, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Biswas, N.N.; Acharzo, A.K.; Anamika, S.; Khushi, S.; Bokshi, B. Screening of natural bioactive metabolites and investigation of antioxidant, antimicrobial, antihyperglycemic, neuropharmacological, and cytotoxicity potentials of Litsea polyantha Juss. ethanolic root extract. Evid. Based Complement. Altern. Med. 2017, 3701349. [Google Scholar]
- Cabral, C.; Efferth, T.; Pires, I.M.; Severino, P.; Lemos, M.F. Natural products as a source for new leads in cancer research and treatment. Evid. Based Complement. Altern. Med. 2018, 8243680. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rivera, G.; Ballesteros-Vivas, D.; Parada-Alfonso, F.; Ibañez, E.; Cifuentes, A. Recent applications of high-resolution mass spectrometry for the characterization of plant natural products. Trends Anal. Chem. 2019, 112, 87–101. [Google Scholar] [CrossRef]
- Aydoğan, C. Recent advances and applications in LC-HRMS for food and plant natural products: A critical review. Anal. Bioanal. Chem. 2020, 412, 1973–1991. [Google Scholar] [CrossRef]
- Smith, T.A. Phenethylamine and related compounds in plants. Phytochemistry 1977, 16, 9–18. [Google Scholar] [CrossRef]
- Schaneberg, B.T.; Crockett, S.; Bedir, E.; Khan, I.A. The role of chemical fingerprinting: Application to Ephedra. Phytochemistry 2003, 62, 911–918. [Google Scholar] [CrossRef]
- Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy, 3rd ed.; VCH: Weinheim, Germany, 1987. [Google Scholar]
- Tamada, M.; Endo, K.; Hikino, H.; Kabuto, C. Structure of ephedradine A, a hypotensive principle of Ephedra roots. Tetrahedron Lett. 1979, 20, 873–876. [Google Scholar] [CrossRef]
- Abdel Kader, M.S.; Kassem, F.F.; Abdallah, R. Two Alkaloids from Ephedra aphylla growing in Egypt. Nat. Prod. Sci. 2003, 9, 52–55. [Google Scholar]
- Lv, M.; Chen, J.; Gao, Y. Metabolomics based on liquid chromatography with mass spectrometry reveals the chemical difference in the stems and roots derived from Ephedra sinica. J. Sep. Sci. 2015, 38, 3331–3336. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, K.; Pajak, A.; Hagel, J.M.; Sumarah, W.; Lewinsohn, E.; Facchini, J.; Marsolais, F. Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids 2016, 48, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Starratt, A.N.; Caveney, S. Quinoline-2-carboxylic acids from Ephedra species. Phytochemistry 1996, 42, 1477–1478. [Google Scholar] [CrossRef]
- Orejola, J.; Matsuo, Y.; Saito, Y.; Tanaka, T. Characterization of proanthocyanidin oligomers of Ephedra sinica. Molecules 2017, 22, 1308. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Shang, M.; Xu, F.; Liang, J.; Wang, X.; Mikage, M.; Cai, S. A-type proanthocyanidins from the stems of Ephedra sinica (Ephedraceae) and their antimicrobial activities. Molecules 2013, 18, 5172–5189. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.-M.; Zhang, Q.; Bi, X.-B.; Cui, J.-L.; Wang, M.-L. A review of the phytochemistry and pharmacological activities of Ephedra herb. Chin. J. Nat. Med. 2020, 18, 321–344. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.M.; Wang, L.S.; Cui, Z.C. Dimeric proanthocyanidins from the roots of Ephedra sinica. Planta Med. 2008, 74, 1823–1825. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Park, Y.J.; Yoon, S.J.; Lee, H.B. Ephedrannin A and B from roots of Ephedra sinica inhibit lipopolysaccharide-induced inflammatory mediators by suppressing nuclear factor-κB activation in RAW 264.7 macrophages. Int. Immunopharmacol. 2010, 10, 1616–1625. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, Y.; Ding, G.; Zhou, M.; Ma, X.; Hou, Y.; Jiang, M.; Liu, D.; Bai, G. Mahuannin B An adenylate cyclase inhibitor attenuates hyperhidrosis via suppressing β2-adrenoceptor/cAMP signaling pathway. Phytomedicine 2017, 30, 18–27. [Google Scholar] [CrossRef]
- Kim, I.S.; Yoon, S.J.; Park, Y.J.; Lee, H.B. Inhibitory effect of ephedrannins A and B from roots of Ephedra sinica Stapf on melanogenesis. Biochim. Biophys. Acta 2015, 1850, 1389–1396. [Google Scholar] [CrossRef]
- Cottiglia, F.; Bonsignore, L.; Casu, L. Phenolic constituents from Ephedra nebrodensis. Nat. Prod. Res. 2005, 19, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y. Study on chemical constituents of Ephedrae herba. Anti-Infect. Pharm. 2014, 11, 416–418. [Google Scholar]
- Sheriha, G.M.; Abouamer, K.; Elshtaiwi, B.Z.; Ashour, A.S.; Abed, F.A.; Alhallaq, H.H. Quinoline alkaloids and cytotoxic lignans from Haplophyllum tuberculatum. Phytochemistry 1987, 26, 3339–3341. [Google Scholar] [CrossRef]
- Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem. 2019, 12, 4920–4946. [Google Scholar] [CrossRef]
- Walczak, K.; Wnorowski, A.; Turski, W.A.; Plech, T. Kynurenic acid and cancer: Facts and controversies. Cell. Mol. Life Sci. 2020, 77, 1531–1550. [Google Scholar] [CrossRef] [PubMed]
- Walczak, K.; Deneka-Hannemann, S.; Jarosz, B.; Zgrajka, W.; Stoma, F.; Trojanowski, T.; Turski, W.A.; Rzeski, W. Kynurenic acid inhibits proliferation and migration of human glioblastoma T98G cells. Pharmacol. Rep. 2014, 66, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Walczak, K.; Dabrowski, W.; Langner, E.; Zgrajka, W.; Pilat, J.; Kocki, T.; Rzeski, W.; Turski, W.A. Kynurenic acid synthesis and kynurenine aminotransferases expression in colon derived normal and cancer cells. Scand. J. Gastroenterol. 2011, 46, 903–912. [Google Scholar] [CrossRef]
- Walczak, K.; Zurawska, M.; Kis, J.; Starownik, R.; Zgrajka, W.; Bar, K.; Turski, W.A.; Rzeski, W. Kynurenic acid in human renal cell carcinoma: Its antiproliferative and antimigrative action on Caki-2 cells. Amino Acids 2012, 43, 1663–1670. [Google Scholar] [CrossRef]
- Golub, A.G.; Yakovenko, O.Y.; Bdzhola, V.G.; Sapelkin, V.M.; Zien, P.; Yarmoluk, S.M. Evaluation of 3-carboxy-4(1H)-quinolones as inhibitors of human protein kinase CK2. J. Med. Chem. 2006, 49, 6443–6450. [Google Scholar] [CrossRef]
- Siddiqui-Jain, A.; Drygin, D.; Streiner, N.; Chua, P.; Pierre, F.; O’Brien, S.E.; Bliesath, J.; Omori, M.; Huser, N.; Ho, C.; et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res. 2010, 70, 10288–10298. [Google Scholar] [CrossRef]
- Mettey, Y.; Vierfond, J.-M.; Baudry, M.; Cochet, C.; Sarrouilhe, D. Benzo[c]quinoliziniums: A new family of inhibitors for protein kinase CK II. Bioorganic Med. Chem. Lett. 1997, 7, 961–964. [Google Scholar] [CrossRef]
- Oramas-Royo, S.; Haidar, S.; Amesty, A.; Martin-Acosta, P.; Feresin, G.; Tapia, A.; Aichele, D.; Jose, J.; Estevez-Braun, A. Design, synthesis and biological evaluation of new embelin derivatives as CK2 inhibitors. Bioorganic Chem. 2020, 95, 103520. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Noh, E.M.; Song, H.K.; You, Y.O.; Jung, S.H.; Kim, J.S.; Kwon, K.B.; Lee, Y.R.; Youn, H.J. Silencing of casein kinase 2 inhibits pkc-induced cell invasion by targeting MMP-9 in MCF-7 cells. Mol. Med. Rep. 2018, 17, 8397–8402. [Google Scholar] [CrossRef] [PubMed]
- Battistutta, R.; Cozza, G.; Pierre, F.; Papinutto, E.; Lolli, G.; Sarno, S.; O’Brien, S.E.; Siddiqui-Jain, A.; Haddach, M.; Anderes, K.; et al. Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Biochemistry 2011, 50, 8478–8488. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.C.O.; Castro-Pinto, D.B.; Ribeiro, G.A.; Berredo-Pinho, M.M.; Gomes, L.H.F.; da Silva Bellieny, M.S.; Goulart, C.M.; Echevarria, Á.; Leon, L.L. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitol. Res. 2013, 112, 2341–2351. [Google Scholar] [CrossRef]
- Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician. 2007, 76, 391–396. [Google Scholar]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. Qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.J.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assays for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Badr, M.O.; Edrees, N.M.; Abdallah, A.A.; El-Deen, N.A.; Neamat-Allah, A.N.; Ismail, H.T. Anti-tumor effects of Egyptian propolis on Ehrlich ascites carcinoma. Vet. Ital. 2011, 47, 341–350. [Google Scholar] [PubMed]
- Molecular Operating Environment (MOE), Version 2016.08. Chemical Computing Group: Montreal, QC, Canada, 2016.
Tumor Volume | Tumor Weight | ||
---|---|---|---|
I | Normal control A | 0.0 ± 0.0 a | 0.0 ± 0.00 a |
II | EAC control | 2.80 ± 0.13 e | 1.70 ± 0.07 e |
III | EAC + Hexane fraction | 2.08 ± 0.20 d | 1.25 ± 0.05 d |
IV | EAC + Dichloromethane fraction | 2.42 ± 0.07 d | 1.37 ± 0.06 d |
V | EAC + Ethyl acetate fraction | 1.76 ± 0.06 c | 0.90 ± 0.03 c |
VI | EAC + Methanol fraction | 1.90 ± 0.03 c | 1.13 ± 0.07 c |
VII | EAC + 5FU (20 mg/kg) | 1.21 ± 0.08 b | 0.68 ± 0.05 b |
No. | 1 | 3 | 6 | 7 | 8 | 9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
13C | 1H | 13C | 1H | 13C | 1H | 13C | 1H | 13C | 1H | 13C | 1H | |
1 | 157.3 | |||||||||||
2 | 113.1 | 4.95 (d, 11.5) | 95.9 | 7.26 (s) | 152.4 | 8.36 (1s) | 150.0 | 145.0 | 105.2 | 6.62 (1d, 12.1) | ||
3 | 59.5 | 4.10 (d, 11.6) | 128.1 | 110.0 | 7.03 (s) | 104.0 | 5.94 (s) | 49.9 | 4.70 (1d, 12.2) | |||
4 | 127.2 | 153.2 | 149.0 | 165.0 | 164.2 | 126.2 | ||||||
5 | 122.5 | 7.20 (s) | 96.2 | 7.23 (d, 8.4) | 119.3 | 115.3 | 6.90 (s) | 110.5 | 7.45 (s) | 127.6 | 7.52 (1s) | |
6 | 148.2 | 78.8 | 7.21 (d, 8.7, 2.4) | 156.2 | 7.82-NH (brs) | 158.2 | 153.7 | 131.9 | ||||
7 | 122.2 | 7.10 (d, 8.2) | 126.5 | 7.41 (d, 9.0) | 110.8 | 7.43 (d, 9.3) | 126.8 | 8.20 (1d, 8.0) | ||||
8 | 114.5 | 6.61 (d, 8.0) | 132.0 | 7.62 (s) | 130.0 | 8.01 (d, 10) | 127.6 | 7.39 (d, 9.7) | 126.4 | 7.15 (d, 7.8) | ||
9 | 150.3 | 143.2 | 142.0 | 147.5 | ||||||||
10 | 149.2 | 115.0 | 120.0 | 137.0 | ||||||||
11 | 122.4 | 7.11 (d, 9.3) | 3.81, 3H, br s, OMe | 108.2 | 6.64 (brs) | |||||||
12 | 119.2 | 7.10 (d, 9.4) | 174.6 | 168.3 | 149.1 | |||||||
13 | 150.1 | 4.95 (d, 11.5) | 148.2 | |||||||||
14 | 114.5 | 6.61 (d, 8.5) | 128.0 | 6.81 (d, 8.3) | ||||||||
15 | 122.4 | 7.11 (d, 8.4) | 105.7 | 6.72 (d, 8.1) | ||||||||
16 | 169.1 | 177.5 | ||||||||||
17 | 64.7 | 4.01, 3.91–3.96 (m) | 70.0 | 4.21–4.35 (m) | ||||||||
18 | 38.6 | 2.35, 2.54 (d, 13.2) | 34.7 | 2.95, 2.70 (d, 12.9) | ||||||||
19 | 169.1 | 178.0 | ||||||||||
1′ | 8.11 (t, 11.4) | 29.7 | 2.40 (d, 7.3) | 96.0 | 6.20 (d, 6) | 7.50 (t)- NH | ||||||
2′ | 70.6 | 3.62–3.66 (m) | 127.2 | 5.95 (t, 6.0 Hz) | 72.5 | 3.60 (dd, 4, 5) | 65.5 | 3.61–3.62 (m) | ||||
3′ | 25.8 | 1.60–1.62 (m) | 130.0 | 71.0 | 3.40 (dd, 3, 4.6) | 20.3 | 1.72–1.74 (m) | |||||
4′ | 71.9 | 3.40–3.44 (m) | 15.0 | 1.60 (s) | 85.9 | 3.96 (dd, 3, 3.6) | 48.9 | 3.20–3.23 (m) | ||||
5′ | 25.4 | 1.60 (s) | 4.07 (dd, 4, 12) | |||||||||
6′ | 72.5 | 3.53–3.55 (m) | 71.5 | 3.55–3.56 (m) | ||||||||
7′ | 32.6 | 1.52–1.54 (m) | 27.2 | 1.20–1.22 m) | ||||||||
8′ | 30.3 | 1.31–1.33 (m) | 26.2 | 1.07–1.08 (m) | ||||||||
9′ | 39.1 | 2.13–2.15 (m) | 50.2 | 2.91–2.93 (m) | ||||||||
10′ | 1.7 1–1.73 (m) | 1.50–1.52 (m) | ||||||||||
11′ | 39.6 | 2.11–2.12 (m) | 49.6 | 2.84–2.86 (m) | ||||||||
12’ | 27.5 | 1.60–1.62 (m) | 22.7 | 1.72–1.74 (m) | ||||||||
13′ | 39.2 | 2.33–2.35 (m) | 49.5 | 2.70–2.72 (m) | ||||||||
14′ | 2.17–2.19 (m) | |||||||||||
1″ | 85.8 | 6.83 (d, 7.5 Hz) | ||||||||||
2″ | 70.4 | 4.20–4.22 (m) | ||||||||||
3″ | 76.1 | 3.45–3.46 (m) | ||||||||||
4″ | 71.5 | 3.60–3.62 (m) | ||||||||||
5″ | 72.5 | 3.45–3.46 (m) | ||||||||||
6″ | 62.5 | 3.70, 3.62 (dd, 11.7, 5.1) |
2 | 4 | 5 | |||||
---|---|---|---|---|---|---|---|
13C | 1H | 13C | 1H | 13C | 1H | ||
C | 2 | 114.0 | 113.7 | 112.0 | |||
3 | 67.1 | 5.24 (d, 3.4) | 35.3 | 2.35, 2.49 (d, 4.12) | 77.7 | 7.13 (d, 3.5) | |
4 | 56.2 | 3.9 (d, 3.4) | 67.5 | 3.90 (t) | 36.5 | 2.65 (d, 3.5) | |
A | 5 | 167.7 | 161.3 | 154.0 | |||
6 | 130.1 | 5.23 (brs) | 79.7 | 4.08 (brs) | 127.0 | 5.25 (brs) | |
7 | 167.7 | 152.1 | 154.1 | ||||
8 | 130.1 | 5.23 (brs) | 78.8 | 6.72 (brs) | 130.2 | 5.32 (brs) | |
9 | 158.9 | 157.2 | 160.1 | ||||
10 | 105.0 | 102.3 | 100.4 | ||||
B | 1′ | 130.8 | 127.3 | 132.4 | |||
2′ | 130.0 | 7.61 (s) | 138.2 | 6.60 (d, 8.5) | 129.2 | 7.64 (s) | |
3′ | 144.2 | 114.9 | 6.42 (d, 8.5) | 140.2 | |||
4′ | 129.7 | 153.4 | 130.8 | ||||
5′ | 144.0 | 114.9 | 6.42 (d, 8.5) | 147.3 | |||
6′ | 130.0 | 7.61 (s) | 127.5 | 6.60 (d, 8.5) | 129.2 | 7.62 (s) | |
F | 2′ | 71.2 | 4.37 (d, 7.3) | 150.2 | 67.5 | 4.25 (d, 7.4) | |
3′ | 114.2 | 4.91–4.93 (m) | 135.3 | 60.2 | 4.17–4.15 (m) | ||
4′ | 56.1 | 3.82 (d, 2.5) | 179.1 | 34.2 | 2.21, 2.41 (d, 5.2, 14.3) | ||
D | 5′ | 105.0 | 162.1 | 151.9 | |||
6′ | 115.0 | 5.00 (s) | 79.5 | 7.75 (s) | 130.5 | 5.25 (s) | |
7′ | 158.1 | 161.2 | 149.8 | ||||
8′ | 103.4 | 107.2 | 128.0 | ||||
9′ | 157.0 | 151.2 | 152.5 | ||||
10′ | 105.4 | 105.2 | 103.2 | ||||
E | 1′ | 130.8 | 123.1 | 130.1 | |||
2′ | 130.6 | 7.62 (brs) | 130.5 | 6.63 (d, 8.2) | 130.6 | 7.4 (brs) | |
3′ | 144.0 | 115.8 | 6.65 (d, 8.4) | 142.3 | |||
4′ | 129.7 | 155.2 | 144.5 | ||||
5′ | 144.0 | 114.7 | 6.41 (d, 8.4) | 112.3 | 6.7 (d, 8.1) | ||
6′ | 130.0 | 7.62 (brs) | 138.2 | 7.67 (d, 8.2) | 130.1 | 7.3 (d, 8.1) | |
I | 2″ | 71.2 | 4.37 (d, 9.4) | ||||
3″ | 68.1 | 4.15–4.17 (m) | |||||
4″ | 37.9 | 2.25, 1.80 (d, 8.5, 16.3) | |||||
G | 5″ | 167.7 | |||||
6″ | 130.1 | 5.24 (s) | |||||
7″ | 167.7 | ||||||
8″ | 105.0 | ||||||
9″ | 157.0 | ||||||
10″ | 103.5 | ||||||
H | 1 | 128.8 | |||||
2 | 131.2 | 7.43 (brs) | |||||
3 | 144.0 | ||||||
4 | 129.7 | ||||||
5 | 144.0 | ||||||
6 | 131.1 | 6.20 (brs) |
Sample Code | Name | Class | IC50 (µM) | IC90 (µM) | Remarks |
---|---|---|---|---|---|
Compound 1 | Ephedradine A | Macrocyclic spermine bjtalkaloids | - * | - * | 43.5% at 100 mM |
Compound 2 | Ephedrannin Tr5 | Proanthocyanidins | - * | - * | 24.9% at 100 mM |
Compound 3 | Nebradenside | Phenol | - * | - * | 27.2% at 100 mM |
Compound 4 | Ephedrannin B | Proanthocyanidins | - * | - * | 27.6% at 100 mM |
Compound 5 | Ephedrannin D1 | - * | - * | 25.3% at 100 mM | |
Compound 6 | adenosine | Nucleoside | - * | - * | 15.7% at 100 mM |
Compound 7 | 6-Methoxy knurenic acid | Quinoline alkaloids | 86.9 | 134.9 | 58.1% at 100 mM |
Compound 8 | 6-Hydroxy kynurenic acid | - * | - * | 31.2% at 100 mM | |
Compound 9 | Ephedradine B | Macrocyclic spermine alkaloids | - * | - * | 32.2% at 100 mM |
Doxorubicin | 45.2 | - * | 100% at 100 mM | ||
DMSO | - * | - * | 3% at 100 mM | ||
Negative control | - * | - * | 0% |
Groups | Treatment Description | CA-19.9 (ng/mL) | CA-125 (ng/mL) | ||||
---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
I | Control | 6.54 ± 0.68 cA | 6.69 ± 0.76 cA | 6.66 ± 0.51 cA | 3.12 ± 0.28 cA | 3.18 ± 0.11 cA | 3.32 ± 0.10 cA |
II | 30 µg/µL | 4.50 ± 0.36 bC | 3.50 ± 0.49 bB | 3.10 ± 0.61 bA | 2.39 ± 0.16 bC | 1.73 ± 0.14 bB | 1.26 ± 0.10 bA |
III | 60 µg/µL | 3.54 ± 0.26 aC | 2.63 ± 0.10 aB | 2.18 ± 0.32 aA | 1.96 ± 0.20 aC | 1.04 ± 0.08 aB | 0.98 ± 0.12 aA |
Cpd. | Pharmaco-Kinetics | Drug Likeness (# Number of Violations) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GIT Absorption | BBB Permeation | Pg-p Substrate | CYP2D6 | CYP2C19 | CYP1A2 | CYP3A4 | Lipiniski | Ghose | Veber | Egan | Muegge | Bioavailability Score | |
8 | High | No | No | No | No | No | No | 0 | 0 | 0 | 0 | 0 | 0.56 |
Code | Groups | Model |
---|---|---|
I | Normal control A | 3 mL of distilled water, orally for 30 days |
II | EAC control | Subcutaneous injection of 2 × 106 cells/mice in water |
III | EAC + Hexane fraction | 30 mg/kg in water for 30 days in a single oral daily dose |
IV | EAC + CH2Cl2 fraction | |
V | EAC + EtOAc fraction | |
VI | EAC + MeOH fraction | |
VII | EAC + 5FU | 20 mg/kg 5FU on alternate days for 30 days in a single daily dose (I.P) [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazeam, J.A.; Boshra, S.A.; Mohammed, E.Z.; El Gizawy, H.A. Bio-Guided Assay of Ephedra foeminea Forssk Extracts and Anticancer Activities: In Vivo, In Vitro, and In Silico Evaluations. Molecules 2024, 29, 199. https://doi.org/10.3390/molecules29010199
Nazeam JA, Boshra SA, Mohammed EZ, El Gizawy HA. Bio-Guided Assay of Ephedra foeminea Forssk Extracts and Anticancer Activities: In Vivo, In Vitro, and In Silico Evaluations. Molecules. 2024; 29(1):199. https://doi.org/10.3390/molecules29010199
Chicago/Turabian StyleNazeam, Jilan A., Sylvia A. Boshra, Esraa Z. Mohammed, and Heba A. El Gizawy. 2024. "Bio-Guided Assay of Ephedra foeminea Forssk Extracts and Anticancer Activities: In Vivo, In Vitro, and In Silico Evaluations" Molecules 29, no. 1: 199. https://doi.org/10.3390/molecules29010199
APA StyleNazeam, J. A., Boshra, S. A., Mohammed, E. Z., & El Gizawy, H. A. (2024). Bio-Guided Assay of Ephedra foeminea Forssk Extracts and Anticancer Activities: In Vivo, In Vitro, and In Silico Evaluations. Molecules, 29(1), 199. https://doi.org/10.3390/molecules29010199