Recent Advances in Functional Materials for Optical Data Storage
Abstract
:1. Introduction
2. UCNP-Based Functional Materials
3. Graphene-Based Functional Materials
4. Diarylethene-Based Functional Materials
5. Conclusions and Perspective
- (i)
- Low-cost and high-performance UCNPs: many traditional synthetic routes to UCNPs are not environmentally friendly enough, and the luminescence efficiency of the prepared rare-earth nanomaterials are usually unsatisfactory. The rising AIEgens with strong luminescence can be modified in novel UCNP systems to address the crucial issue [76,77]. Thus, obtaining multifunctional UCNPs with high quantum yields and tunable luminescence is an urgent subject for future research in optical applications [78]. In addition, to realize the industrialized application of UCNPs in practical optical storage, reducing the original cost is a vital part of the subsequent research. Controlling the synthetic time, ambient temperature, environment humidity, and mixture concentration to obtain UCNPs with remarkable uniformity, identical morphologies, and precise periodicity, the low-cost and high-performance UCNPs are expected to be successfully generated.
- (ii)
- Incorporating graphene into other luminescent materials can endow the new composites with lower energy consumption, higher sensitivity, and faster detection speeds. The specific method to prepare GDs with cheap raw materials, controllable structure and properties, and easy steps is short of study, and should be urgently investigated for putting the GD-based optical storage systems into practice. Efficiently growing high-quality graphene for subsequent production is a major issue for GDs to be applied in optical storage devices. It is worth mentioning that exploring the read–write property of optical memory by utilizing the structural transformation between graphene and graphene oxide has been an important research direction in recent years. Notably, the regulation of morphology uniformity is still a major problem in preparing GDs, and subsequent changes related to the reaction temperature, reaction time, and coating method should be carefully considered to address this problem.
- (iii)
- In general, the reported photoresponsive systems based on DTDs require short-wave UV or visible light to activate isomerization reactions of the molecules, which will lead to the crosstalk of information between recording layers during optical writing/reading. In comparison with inorganic composites, the significant downside of organic materials is the less thermal stability and weaker fatigue resistance. Thus, the future design of DTD-based optical storage systems must focus on the DTE materials equipped with intense structure rigidity, strong anti-interference performance, and large conjugated frameworks, which is expected to be achieved by introducing conjugated blocks such as macrocyclic hosts, long chains of polymers, and coordination frameworks, for meeting the requirements of rewritable and non-destructive recordings with large storage capacity, no signal crosstalk, and high signal-to-noise ratio [79,80,81,82].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Xia, Z.; Cheng, Y.B.; Gu, M. High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat. Commun. 2018, 9, 1183. [Google Scholar] [CrossRef]
- Ouyang, X.; Xu, Y.; Xian, M.; Feng, Z.; Zhu, L.; Cao, Y.; Lan, S.; Guan, B.O.; Qiu, C.W.; Gu, M.; et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photonics 2021, 15, 901–907. [Google Scholar] [CrossRef]
- Liang, L.; Feng, Z.; Zhang, Q.; Cong, T.D.; Wang, Y.; Qin, X.; Yi, Z.; Ang, M.J.Y.; Zhou, L.; Feng, H.; et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles. Nat. Nanotechnol. 2021, 16, 975–980. [Google Scholar] [CrossRef]
- Hong, P.; Liu, J.; Qin, K.X.; Tian, R.; Peng, L.Y.; Su, Y.S.; Gan, Z.; Yu, X.X.; Ye, L.; Zhu, M.Q.; et al. Towards optical information recording: A robust visible-light-driven molecular photoswitch with the ring-closure reaction yield exceeding 96.3%. Angew. Chem. Int. Ed. 2023, 62, e202316706. [Google Scholar]
- Yang, Q.; Xie, Z.; Zhang, M.; Ouyang, X.; Xu, Y.; Cao, Y.; Wang, S.; Zhu, L.; Li, X. Ultra-secure optical encryption based on tightly focused perfect optical vortex beams. Nanophotonics 2022, 11, 1063–1070. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 2016, 1, 16070. [Google Scholar] [CrossRef]
- Liu, F.; Lu, W.Q.; Huang, J.Q.; Pimenta, V.; Boles, S.; Demir-Cakan, R.; Tarascon, J.M. Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs. Nat. Commun. 2023, 14, 7350. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.; Whang, H.S.; Nam, Y.S.; Park, J.H.; Kim, K.; Kim, M.; Shin, J.; Yu, J.S.; Yoon, J.; et al. Position error-free control of magnetic domain-wall devices via spin-orbit torque modulation. Nat. Commun. 2023, 14, 7648. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.P.; Liu, S.J.; Gong, T.; Zhao, Q.; Huang, W. Polymer-based resistive memory materials and devices. Adv. Mater. 2014, 26, 570–606. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Li, X.; Cao, Y. Optical storage arrays: A perspective for future big data storage. Light Sci. Appl. 2014, 3, e177. [Google Scholar] [CrossRef]
- Hosseini, P.; Wright, C.D.; Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 2014, 511, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Fan, J.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R.R.; Liu, X.G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603. [Google Scholar] [CrossRef] [PubMed]
- Mehtab, A.; Ahmed, J.; Alshehri, S.M.; Mao, Y.B.; Ahmad, T. Rare earth doped metal oxide nanoparticles for photocatalysis: A perspective. Nanotechnology 2022, 33, 142001. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Cao, B.S.; He, Y.Y.; Liu, Z.; Li, Z.P.; Feng, Z.Q. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 2012, 24, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.F.; Zhou, L.P.; Li, H.R.; Hu, S.J.; Zheng, W.; Xu, X.; Zhang, R.; Chen, X.; Guo, X.Q.; Sun, Q.F. Excited-multimer mediated supramolecular upconversion on multicomponent lanthanide-organic assemblies. J. Am. Chem. Soc. 2023, 145, 23121–23130. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, J.; Liu, J.L.; Zhang, Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Adv. Sci. 2019, 6, 1901358. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberfore, T.; Sayed, E.T. Application of graphene in energy storage device—A review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Zhu, J.X.; He, Q.Y.; Cao, X.H.; Tan, C.L.; Chen, H.Y.; Yan, Q.Y.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Z.X.; Zhang, R.Y.; Liu, J.G.; Yu, X.; Li, Z.L. A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 2019, 373, 104–121. [Google Scholar] [CrossRef]
- Cao, X.H.; Yin, Z.Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865. [Google Scholar] [CrossRef]
- Cheng, H.B.; Zhang, S.; Qi, J.; Liang, X.J.; Yoon, J. Advances in application of azobenzene as a trigger in biomedicine: Molecular design and spontaneous assembly. Adv. Mater. 2021, 33, 2007290. [Google Scholar] [CrossRef] [PubMed]
- Alene, D.Y.; Srinivasadesikan, V.; Lin, M.C.; Chung, W.S. Construction of mechanically interlocked fluorescence photoswitchable [2]rotaxane with aggregation-induced emission and molecular shuttling behaviors. J. Org. Chem. 2023, 88, 5530–5542. [Google Scholar] [CrossRef] [PubMed]
- Bleger, D.; Hecht, S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 2015, 54, 11338–11349. [Google Scholar] [CrossRef] [PubMed]
- Goulet-Hanssens, A.; Eisenreich, F.; Hecht, S. Enlightening materials with photoswitches. Adv. Mater. 2020, 32, 1905966. [Google Scholar] [CrossRef]
- Liu, S.B.; Yan, L.; Huang, J.S.; Zhang, Q.Y.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Peng, D.F.; Ju, Q.; Wang, F. Photon upconversion in core-shell nanoparticles. Chem. Soc. Rev. 2015, 44, 1318–1330. [Google Scholar] [CrossRef]
- Liu, X.W.; Wang, Y.; Li, X.Y.; Yi, Z.G.; Deng, R.R.; Liang, L.L.; Xie, X.J.; Loong, D.T.B.; Song, S.Y.; Fan, D.Y.; et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899. [Google Scholar] [CrossRef]
- Wen, S.H.; Zhou, J.J.; Schuck, P.J.; Suh, Y.D.; Schmidt, T.W.; Jin, D.Y. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 2019, 13, 828–838. [Google Scholar] [CrossRef]
- Liu, Y.J.; Lu, Y.Q.; Yang, X.S.; Zheng, X.L.; Wen, S.H.; Wang, F.; Vidal, X.; Zhao, J.B.; Liu, D.M.; Zhou, Z.G.; et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233. [Google Scholar] [CrossRef]
- Wen, S.H.; Zhou, J.J.; Zheng, K.Z.; Bednarkiewicz, A.; Liu, X.G.; Jin, D.Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Zhang, F.; Zhao, D.Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378. [Google Scholar] [CrossRef] [PubMed]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Z.; Xu, R.H.; Wang, Z.; Zhou, Y.; Shen, Q.F.; Ji, W.C.; Dang, D.F.; Meng, L.J.; Tang, B.Z. Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. Chem. Soc. Rev. 2021, 50, 667–690. [Google Scholar] [CrossRef] [PubMed]
- Nadort, A.; Zhao, J.; Goldys, E.M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties. Nanoscale 2016, 8, 13099–13130. [Google Scholar] [CrossRef] [PubMed]
- Jyoti; Munoz, J.; Pumera, M. Quantum material-based self-propelled microrobots for the optical “on-the-fly” monitoring of DNA. ACS Appl. Mater. Interfaces 2023, 15, 58548–58555. [Google Scholar] [CrossRef]
- Deng, B.; Liu, Z.F.; Peng, H.L. Toward mass production of CVD graphene films. Adv. Mater. 2019, 31, 1800996. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Jiang, S.; Li, L.; Wang, Z.; Shan, J.; Mak, K.F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2019, 2, 159–163. [Google Scholar] [CrossRef]
- Kong, Z.Z.; Daab, M.; Yano, H.; Huang, H.Y.; Breu, J.; Sasaki, T.; Nguyen, S.T.; Huang, J.X. Visualizing transparent 2D sheets by fluorescence quenching microscopy. Small Methods 2020, 4, 2000036. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, Y.; Zhang, B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting. Acc. Chem. Res. 2018, 51, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.H.; Lam, W.H.; Yam, V.W.W. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: A promising candidate for optical memory storage materials. J. Am. Chem. Soc. 2015, 136, 16994–16997. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Wang, G.N.; Ye, Y.X.; Li, B.; Li, H.R.; Chen, B.L. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem. Int. Ed. 2019, 58, 18025–18031. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S. Light-controlled receptors for environmentally and biologically relevant anions. Chem. Eng. J. 2023, 474, 145493. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Y.; Yao, C.; Zhan, J.; Wu, P.; Han, Z.; Zuo, J.; Feng, H.; Qian, Z. Recent advances in small-molecule fluorescent photoswitches with photochromism in diverse states. J. Mater. Chem. C 2023, 11, 15393–15411. [Google Scholar] [CrossRef]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.F.; Wang, X.; Cui, M.Q.; Darmawan, P.; Wang, J.X.; Eh, A.L.S.; Lee, P.S. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 2015, 12, 258–267. [Google Scholar] [CrossRef]
- Sharma, S.; Lamichhane, N.; Parul; Sen, T.; Roy, I. Iron oxide nanoparticles conjugated with organic optical probes for in vivo diagnostic and therapeutic applications. Nanomedicine 2021, 16, 943–962. [Google Scholar] [CrossRef]
- Li, Z.Y.; Butun, S.; Aydin, K. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. ACS Photonics 2015, 2, 183–188. [Google Scholar] [CrossRef]
- Yi, C.L.; Yang, Y.Q.; Liu, B.; He, J.; Nie, Z.H. Polymer-guided assembly of inorganic nanoparticles. Chem. Soc. Rev. 2020, 49, 465–508. [Google Scholar] [CrossRef]
- Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Sarid, D.; Schechtman, B.H. A roadmap for optical data storage applications. Opt. Photonics News 2007, 18, 32–37. [Google Scholar] [CrossRef]
- Li, L.; Kong, W.; Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: A concise review and recent advances. Adv. Photonics 2022, 4, 024002. [Google Scholar] [CrossRef]
- Kolesov, R.; Reuter, R.; Xia, K.W.; Stohr, R.; Zappe, A.; Wrachtrup, J. Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys. Rev. B 2011, 84, 153413. [Google Scholar] [CrossRef]
- Zhan, Q.Q.; Liu, H.C.; Wang, B.J.; Wu, Q.S.; Pu, R.; Zhou, C.; Huang, B.R.; Peng, X.Y.; Gren, H.; He, S.L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Anissimov, Y.G.; Zhao, J.B.; Nechaev, A.V.; Nadort, A.; Jin, D.Y.; Prow, T.W.; Roberts, M.S.; Zvyagin, A.V. Background free imaging of upconversion nanoparticle distribution in human skin. J. Biomed. Opt. 2013, 18, 061215. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.H.; Wang, J.; Xu, J.; Chen, H.Y.; Zhang, C.; Hong, M.H.; Liu, X.G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef]
- Zhao, J.B.; Lu, Z.D.; Yin, Y.D.; Mcrae, C.; Piper, J.A.; Dawes, J.M.; Jin, D.Y.; Goldys, E.M. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: Role of nanocrystal size. Nanoscale 2013, 5, 944–952. [Google Scholar] [CrossRef]
- Lu, Y.Q.; Zhao, J.B.; Zhang, R.; Liu, Y.J.; Liu, D.M.; Goldys, E.M.; Yang, X.S.; Xi, P.; Sunna, A.; Lu, J.; et al. Tunable life-time multiplexing using luminescent nanocrystals. Nat. Photonics 2014, 8, 33–37. [Google Scholar] [CrossRef]
- Fu, X.; Li, T.; Cai, B.; Miao, J.; Panin, G.N.; Ma, X.; Wang, J.; Jiang, X.; Li, Q.; Dong, Y.; et al. Graphene/MoS2-xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing. Light Sci. Appl. 2023, 12, 39. [Google Scholar] [CrossRef]
- Lamon, S.; Wu, Y.; Zhang, Q.; Liu, X.; Gu, M. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv. 2021, 7, eabe2209. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Yi, S.G.; Park, M.U.; Lee, C.; Kim, M.; Yoo, K.H. Multilevel MoS2 optical memory with photoresponsive top floating gates. ACS Appl. Mater. Interfaces 2019, 11, 25306–25312. [Google Scholar] [CrossRef] [PubMed]
- Stohr, R.J.; Kolesov, R.; Xia, K.W.; Reuter, R.; Meijer, J.; Logvenov, G.; Wrachtrup, J. Super-resolution fluorescence quenching microscopy of graphene. ACS Nano 2012, 6, 9175–9181. [Google Scholar] [CrossRef] [PubMed]
- Fihey, A.; Perrier, A.; Browne, W.R.; Jacquemin, D. Multiphotochromic molecular systems. Chem. Soc. Rev. 2015, 44, 3719–3759. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.Z.; Han, S.Y.; Zeng, X.; Wu, Y.M.; Song, S.Y.; Zhang, H.J.; Liu, X.G. Rewritable optical memory through high-registry orthogonal upconversion. Adv. Mater. 2018, 30, 1801726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, H.P.; Liao, L.Y.; Feng, W.; Sun, W.; Li, Z.X.; Xu, C.H.; Fang, C.J.; Sun, L.D.; Zhang, Y.W.; et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: Rewritable optical storage with nondestructive readout. Adv. Mater. 2010, 22, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Y.; Zeng, Y.L.; Xiong, R.G. Contactless manipulation of write-read-erase data storage in diarylethene ferroelectric crystals. J. Am. Chem. Soc. 2022, 144, 8633–8640. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.; Khan, Z.H. Ag-incorporated Alq3 nanowires: Promising material for organic luminescent devices. J. Lumin. 2017, 188, 418–422. [Google Scholar] [CrossRef]
- Xu, H.; Chen, R.F.; Sun, Q.; Lai, W.Y.; Su, Q.Q.; Huang, W.; Liu, X.G. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Liao, J.; Joselevich, E.; Xu, J. Selective-area growth of aligned organic semiconductor nanowires and their device integration. Adv. Funct. Mater. 2023, 2308708. [Google Scholar] [CrossRef]
- Peng, X.; He, Y.; Zhao, J.; Tan, K.; Yuan, R.; Chen, S. CRISPR/Cas12a-mediated aptasensor based on tris-(8-hydroxyquinoline)aluminum microcrystals with crystallization-induced enhanced electrochemiluminescence for acetamiprid analysis. Anal. Chem. 2023, 95, 10068–10076. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.; Ng, M.; Hong, E.Y.H.; Wong, Y.C.; Chan, M.Y.; Yam, V.W.W. Photoresponsive dithienylethene-containing tris(8-hydroxyquinolinato)aluminum(III) complexes with photocontrollable electron-transporting properties for solution-processable optical and organic resistive memory devices. J. Am. Chem. Soc. 2020, 142, 12193–12206. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Q.; Wilson, D.; Branda, N.R. Fluorescent quenching of lanthanide-doped upconverting nanoparticles by photoresponsive polymer shells. Chem. Mater. 2014, 26, 4313–4320. [Google Scholar] [CrossRef]
- Wu, T.Q.; Boyer, J.C.; Barker, M.; Wilson, D.; Branda, N.R. A “plug-and-play” method to prepare water-soluble photoresponsive encapsulated upconverting nanoparticles containing hydrophobic molecular switches. Chem. Mater. 2013, 25, 2495–2502. [Google Scholar] [CrossRef]
- Zhang, J.; Ruiz-Molina, D.; Novio, F.; Roscini, C. Water-stable upconverting coordination polymer nanoparticles for transparent films and anticounterfeiting patterns with air-stable upconversion. ACS Appl. Mater. Interfaces 2023, 15, 8377–8386. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.R.; Wang, Y.; Zhang, D.; Yang, Y.W. Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Leung, N.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Dai, D.; Yang, J.; Wang, Y.; Yang, Y.W. Recent progress in functional materials for selective detection and removal of mercury(II) ions. Adv. Funct. Mater. 2021, 31, 2006168. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Song, C.; Yang, J.; Yang, Y.W. Separation of low-molecular-weight organics by water-soluble macrocyclic arenes. Molecules 2022, 27, 8554. [Google Scholar] [CrossRef]
- Han, T.; Liu, H.; Wang, S.; Chen, S.; Yang, K. The large-scale preparation and optical properties of MoS2/WS2 vertical hetero-junction. Molecules 2020, 25, 1857. [Google Scholar] [CrossRef]
- Dai, D.; Yang, J.; Zou, Y.C.; Wu, J.R.; Tan, L.L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y.W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew. Chem. Int. Ed. 2021, 60, 8967–8975. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.W. Metal–organic frameworks for biomedical applications. Small 2020, 16, 1906846. [Google Scholar] [CrossRef]
- Huang, X.; Guo, Q.; Yang, D.; Xiao, X.; Liu, X.; Xia, Z.; Fan, F.; Qiu, J.; Dong, G. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 2020, 14, 82–88. [Google Scholar] [CrossRef]
- Al-Bustami, H.; Bloom, B.P.; Ziv, A.; Goldring, S.; Yochelis, S.; Naaman, R.; Waldeck, D.H.; Paltiel, Y. Optical multilevel spin bit device using chiral quantum dots. Nano Lett. 2020, 20, 8675–8681. [Google Scholar] [CrossRef]
- Bloom, B.P.; Kiran, V.; Varade, V.; Naaman, R.; Waldeck, D.H. Spin selective charge transport through cysteine capped CdSe quantum dots. Nano Lett. 2016, 16, 4583–4589. [Google Scholar] [CrossRef]
- Tian, X.; Wei, R.; Ma, Z.; Qiu, J. Amplified spontaneous emission from perovskite quantum dots inside a transparent glass. Adv. Opt. Mater. 2022, 10, 2102483. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, X.; Yang, Z.; Qiu, J.; Song, Z.; Zhang, J.; Dong, G. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium. Light Sci. Appl. 2021, 10, 140. [Google Scholar] [CrossRef]
- Zhao, H.; Cun, Y.; Bai, X.; Xiao, D.; Qiu, J.; Song, Z.; Liao, J.; Yang, Z. Entirely reversible photochromic glass with high coloration and luminescence contrast for 3D optical storage. ACS Energy Lett. 2022, 7, 2060–2069. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Sheng, L.; Chen, Z. Study on the applicability of photoswitch molecules to optically-controlled thermal energy in different organic phase change materials. Chem. Eng. J. 2023, 456, 141051. [Google Scholar] [CrossRef]
- Yang, X.; Jin, H.; Tao, X.; Yao, Y.; Xie, Y.; Lin, S. Photo-responsive azobenzene-containing inverse opal films for information security. Adv. Funct. Mater. 2023, 33, 2304424. [Google Scholar] [CrossRef]
- Gounden, D.; Nombona, N.; van Zyl, W.E. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord. Chem. Rev. 2020, 420, 213359. [Google Scholar] [CrossRef]
- Mustroph, H. Cyanine dyes. Phys. Sci. Rev. 2020, 5, 20190145. [Google Scholar] [CrossRef]
UCNP-Based Systems | Methods of Preparation | Properties | Ref. |
---|---|---|---|
UCNPs-1 | Sol–gel pyrolysis technique | Stimulated absorption mechanism and emission in the range of visible light | [54] |
UCNPs-2 | Solvothermal method | Reducing the requirement of optical depletion for laser intensity | [55] |
UCNPs-3 | Oxygen-free hydrothermal protocol | Background-free and ultrahigh-sensitivity imaging | [56] |
NaYF4 nanocrystals | Solvothermal method and crystal growth | Precise control of phase, size, and optical emission features | [57] |
Different phases of NaYF4:Yb,Er | Thermal decomposition of metal oleate precursors | Defect-reduction strategies of preparing small and brighter UCNPs | [58] |
UCNPs-4 | Solvothermal method | Realizing the 28 nm super high-resolution | [30] |
Lifetime-coded microspheres | Electrostatic interaction | Enlarging the optical multiplexing range by increasing the time dimension | [59] |
GDs-Based Systems | Methods of Preparation | Properties | Ref. |
---|---|---|---|
GO-contained UCNPs-5 | Coprecipitation method and electrostatic interaction | Resonance-assisted optical writing and ultrahigh capacity optical storage | [61] |
MoS2-based memory device | Mechanical exfoliation and polydimethylsiloxane stamping | High on-off ration, long retention time, stable, and durable features | [62] |
Graphene-contained Pr:YAG | Electrostatic interaction | Background-free and ultrahigh-sensitivity imaging | [63] |
DTD-Based Systems | Methods of Preparation | Properties | Ref. |
---|---|---|---|
UCNPs-6 modified DTE-1 | Layer-by-layer epitaxial growth procedure | Highly purified emission and rewritable optical storage | [65] |
UCNPs-7 modified DTDs | Electrostatic interaction and self-assembly strategy | Application in scanning near-field optical microscopy for higher storage density | [66] |
Ferroelectric crystals with DTE enantiomers | Dropping and spreading the crystal-based precursor on ITO glass substrate to obtain thin film | Achieving a contactless integrated process of writing, reading, and erasing in data storage | [67] |
DTE-based Alq3 complex | Metal complexation | Photocontrolled electron migration and as active layers in resistive memory devices | [68] |
DTD-based photoresponsive amphiphilic polymer | Self-assembly strategy | Combination of FRET and emission reabsorption effects | [69,70] |
Functional Materials | Optical Storage Mechanism | Repeatability | Superiorities | Drawbacks |
---|---|---|---|---|
Upconversion nanoparticles | Spectral hole-burning | Yes | Great thermal stability, good quantum yields, long fluorescence lifetime | Cumbersome preparation and modification |
Graphene derivatives | Photoreduction | No | Low cost, high thermal stability, low energy consumption, good sensitivity | Non-uniform morphology and size, inconvenient synthesis |
Diarylethene derivatives | Photo-induced ring opening and ring closing changes | Yes | Easy functionalization, convenient reversible reading/writing, great repeatability | Short-wave UV or visible light for activation, moderate thermal stability, weak fatigue resistance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Zhang, Y.; Yang, S.; Kong, W.; Yang, J.; Zhang, J. Recent Advances in Functional Materials for Optical Data Storage. Molecules 2024, 29, 254. https://doi.org/10.3390/molecules29010254
Dai D, Zhang Y, Yang S, Kong W, Yang J, Zhang J. Recent Advances in Functional Materials for Optical Data Storage. Molecules. 2024; 29(1):254. https://doi.org/10.3390/molecules29010254
Chicago/Turabian StyleDai, Dihua, Yong Zhang, Siwen Yang, Weicheng Kong, Jie Yang, and Jijun Zhang. 2024. "Recent Advances in Functional Materials for Optical Data Storage" Molecules 29, no. 1: 254. https://doi.org/10.3390/molecules29010254
APA StyleDai, D., Zhang, Y., Yang, S., Kong, W., Yang, J., & Zhang, J. (2024). Recent Advances in Functional Materials for Optical Data Storage. Molecules, 29(1), 254. https://doi.org/10.3390/molecules29010254