Isoprenylated Flavonoids and 2-Arylbenzofurans from the Root Bark of Morus alba L. and Their Cytotoxic Activity against HGC27 Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structure Elucidation
2.2. Biological Activities of Compounds against HGC27 Cancer Cells
3. Experimental
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Spectroscopic Data
3.5. Cell Culture
3.6. Cytotoxicity Assay
3.7. Colony Formation Assay
3.8. Cell Apoptosis Assay
3.9. Transwell Migration Assay
3.10. Western Blot Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- State Pharmacopoeia Committee. Chinese Pharmacopoeia; China Medical Pharmaceutical Science and Technology Publishing House: Beijing, China, 2010; p. 182. [Google Scholar]
- Asano, N.; Yamashita, T.; Yasuda, K.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato Nash, A.R.J.; Lee, H.S.; Ryu, K.S. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food. Chem. 2001, 49, 4208–4213. [Google Scholar] [CrossRef] [PubMed]
- Čulenová, M.; Sychrová, A.; Hassan, S.T.S.; Berchová-Bímová, K.P.; Svobodová, P.; Helclová, A.; Michnová, H.; Hošek, J. Multiple In vitro biological effects of phenolic compounds from Morus alba root bark. J. Ethnopharmacol. 2020, 248, 112296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.J.; Li, D.Z.; Chen, R.Y.; Yu, D.Q. A new benzo-furanolignan and a new flavonol derivative from the stem of Morus australis. Chin. Chem. Lett. 2008, 19, 196–198. [Google Scholar] [CrossRef]
- Takahashi, M.; Takara, K.; Toyozato, T.; Wada, K. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J. Oleo Sci. 2012, 61, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.H.; Wang, J.J.; Lin, H.C.; Wang, J.P.; Lin, C.N. Chemistry and biological activities of constituents from Morus australis. Biochim. Biophys. Acta Gen. Subj. 1999, 1428, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.F.; Zhang, Q.J.; Chen, R.Y.; Yu, D.Q. Four new flavonoids from Morus australis. J. Asian. Nat. Prod. Res. 2012, 143, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.J.; Tang, Y.B.; Chen, R.Y.; Yu, D.Q. Three new cytotoxic Diels-Alder-type adducts from Morus australis. Chem. Biodivers. 2007, 4, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.J.; Zheng, Z.F.; Chen, R.Y.; Yu, D.Q. Two new dimeric stilbenes from the stem bark of Morus australis. J. Asian Nat. Prod. Res. 2009, 11, 138–141. [Google Scholar] [CrossRef]
- Kikuchi, T.; Nihei, M.; Nagai, H.; Fukushi, H.; Tabata, K.; Suzuki, T.; Akihisa, T. Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem. Pharm. Bull. 2010, 58, 568–572. [Google Scholar] [CrossRef]
- Cui, L.; Lee, H.S.; Oh, W.K.; Ahn, J.S. Inhibition of sangginon G isolated from Morus alba on the metastasis of cancer cells. Chin. Herb. Med. 2011, 3, 23–26. [Google Scholar]
- Agabeyli, R.A. Antimutagenic activities extracts from leaves of the Morus alba, Morus nigra and their mixtures. Intl. J. Biol. 2012, 4, 166–172. [Google Scholar] [CrossRef]
- Devi, B.; Sharma, N.; Kumar, D.; Jeet, K. Morus alba L. inn: A phytopharmacological review. Int. J. Pharm. Pharma. Sci. 2013, 5, 14–18. [Google Scholar]
- Hong, S.S.; Hong, S.; Lee, H.J.; Mar, W.; Lee, D.A. A new prenylated flavanone from the root bark of Morus. B. Korean. Chem. Soc. 2013, 34, 2528–2530. [Google Scholar]
- Nomura, T.; Fukai, T.; Shimada, T.; Chen, I.S. Mulberrofuran D, a new isoprenoid 2-arylbenzofuran from the root barks of the mulberry tree (Morus australis Poir.). Heterocycies 1982, 19, 1855–1860. [Google Scholar] [CrossRef]
- Chang, Y.S.; Jin, H.G.; Lee, H.; Lee, D.S.; Woo, E.R. Phytochemical constituents of the root bark from Morus alba and their Il-6 Inhibitory activity. Nat. Prod. Sci. 2019, 25, 268–274. [Google Scholar] [CrossRef]
- Wu, D.L.; Zhang, X.Q.; Huang, X.J.; He, X.M.; Wang, G.C.; Ye, W.C. Chenucal constituents from root barks of Morus atropurpurea. J. Chin. Med. Mater. 2010, 35, 1978–1982. [Google Scholar]
- Jeong, S.H.; Ryu, Y.B.; Curtis-Long, M.J.; Ryu, H.W.; Baek, Y.S.; Kang, J.E.; Lee, W.S.; Park, K.H. Tyrosinase Inhibitory polyphenols from roots of Morus ihou. J. Agric. Food Chem. 2009, 57, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Q.; Fukai, T.; Sakagami, H.; Chang, W.J.; Yang, F.Q.; Wang, F.P.; Nomura, T. Cytotoxic flavonoids with isoprenoid groups from Morus mongolica. J. Nat. Prod. 2001, 64, 181–188. [Google Scholar] [CrossRef]
- He, X.; Chao, X.; Yang, L.; Zhang, C.; Pi, R.; Zeng, H.; Li, G.; Xu, Y.; Lin, Y. The research on chemical ingredients of the heartwood of root of Morus atpropurpurea. Nat. Prod. Res. Dev. 2014, 26, 193–196. [Google Scholar]
- Jung, J.W.; Koo, W.M.; Park, J.H.; Seo, K.H.; Oh, E.J.; Lee, D.Y.; Lee, D.S.; Kim, Y.C.; Lim, D.W.; Han, D.; et al. Isoprenylated flavonoids from the root bark of Morus alba and their hepatoprotective and neuroprotective activities. Arch. Pharm. Res. 2015, 38, 2066–2075. [Google Scholar] [CrossRef]
- Cui, X.Q.; Chen, H.; Chen, R.Y. Study on Diels-Alder type adducts from stem bark of Morus yunanensis. J. Chin. Med. Mater. 2009, 34, 286–290. [Google Scholar]
- Cui, X.Q.; Wang, H.Q.; Liu, C.; Chen, R.Y. Study on anti-oxidant phenolic compounds from stem bark of Morus yunanensis. J. Chin. Med. Mater. 2008, 13, 1569–1572. [Google Scholar]
- He, X.M.; Wu, D.L.; Zou, Y.X.; Wang, G.C.; Zhang, X.Q.; Liao, S.T.; Sun, J.; Ye, W.C. Chemical constituents from root barks of Morus atropurpurea. JMFST 2014, 30, 219–228. [Google Scholar]
- Zhen, P.; Ni, G.; Guo, W.Q.; Shi, G.R.; Chen, R.Y.; Yu, D.Q. Isolation and identification of pharmaceutical chemical constituents from branches of Morus notabilis. Sci. Seric. 2016, 42, 0307–0312. [Google Scholar]
- Guo, Y.Q.; Tang, G.H.; Lou, L.L.; Li, W.; Zhang, B.; Liu, B.; Yin, S. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. Eur. J. Med. Chem. 2018, 144, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, W.S.; Kim, Y.S.; Marcus, J.C.L.; Lee, B.W.; Ryu, Y.B.; Park, K.H. Isolation of cholinesterase-Inhibiting flavonoids from Morus lhou. J. Agric. Food. Chem. 2011, 59, 4589–4596. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.A.; Yao, S.Y.; Xue, D.Q.; Zuo, A.; Zhang, X.M.; Jiang, Z.Y.; Ma, Y.B.; Chen, J.J. New isoprenylated flavonoid from Morus alba. J. Chin. Med. Mater. 2010, 35, 1560–1565. [Google Scholar]
- Tseng, T.H.; Chuang, S.K.; Hu, C.C.; Chang, C.F.; Huang, Y.C.; Lin, C.W.; Lee, Y.J. The synthesis of morusin as a potent antitumor agent. Tetrahedron 2010, 66, 1335–1340. [Google Scholar] [CrossRef]
- Fujimoto, T.; Hano, Y.; Nomura, T.; Uzawa, J. Components of root bark of cudrania tricuspidata 2. Structures of two new isoprenylated flavones, Cudraflavones A and B. Planta Med. 1984, 50, 161–163. [Google Scholar] [CrossRef]
- Guo, S.; Liu, L.; Zhang, S.S.; Yang, C.; Yue, W.P.; Zhao, H.A.; Ho, C.T.; Du, J.F.; Zhang, H.; Bai, N.S. Chemical characterization of the main bioactive polyphenols from the roots of Morus australis (mulberry). Food Funct. 2019, 10, 6915–6926. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Liu, C.; Chen, R.Y. Three new compounds from Morus nigra L. J. Asian Nat. Prod. Res. 2010, 12, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.P.; Tan, H.Y.; Wang, M.F. Tyrosinase inhibition constituents from the roots of Morus australis. Fitoterapia 2012, 83, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Fan, M.; He, J.; Wu, X.D.; Peng, L.Y.; Su, J.; Cheng, X.; Li, Y.; Kong, L.M.; Li, R.T.; et al. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L. Nat. Prod. Res. 2015, 29, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.D.; Freyer, A.J.; Killmer, L.; Offen, P.; Taylor, P.B.; Votta, B.J.; Johnson, R.K. A new dimeric dihydrochalcone and a new prenylated flavone from the bud covers of Artocarpus altilis: Potent inhibitors of cathepsin K. J. Nat. Prod. 2002, 65, 624–627. [Google Scholar] [CrossRef]
- Yang, D.S.; Li, Z.L.; Yang, Y.P.; Xiao, W.L.; Li, X.L. New geranylated 2-Arylbenzofuran from Morus alba. Chin. Herb. Med. 2015, 7, 191–194. [Google Scholar] [CrossRef]
- Zuo, G.Y.; Yang, C.X.; Ruan, Z.J.; Han, J.; Wang, G.C. Potent anti-MRSA activity and synergism with aminoglycosides by flavonoid derivatives from the root barks of Morus alba, a traditional chinese medicine. Med. Chem. Res. 2019, 28, 1547–1556. [Google Scholar] [CrossRef]
- Nomura, T.; Fukai, T.; Sato, E.; Fukushima, K. The formation of moracenin-D from kuwanon-G. Heterocycles 1981, 16, 983–986. [Google Scholar] [CrossRef]
- Hano, Y.; Yamanaka, J.; Momose, Y.; Nomura, T. Sorocenols C-F, four new isoprenylated phenols from the root bark of Sorocea bonplandii Baillon. Heterocycles 1995, 41, 2811–2821. [Google Scholar]
- Liu, Y.J.; Wu, J.C.; Li, H.L.; Ma, Q.; Chen, Y.G. Alkaloid and flavonoids from the seeds of Whitfordiodendron filipes. Chem. Nat. Compd. 2016, 52, 188–190. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Luo, J.G.; Wan, C.X.; Zhou, Z.B.; Kong, L.Y. Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities. Fitoterapia 2014, 92, 116–126. [Google Scholar] [CrossRef]
- Jin, Y.J.; Lin, C.C.; Lu, T.M.; Li, J.H.; Chen, I.S.; Kuo, Y.H.; Ko, H.H. Chemical constituents derived from Artocarpus xanthocarpus as inhibitors of melanin biosynthesis. Phytochemistry 2015, 117, 424–435. [Google Scholar] [CrossRef]
- Tuan Hiep, N.Y.; Kwon, J.Y.; Hong, S.G.; Kim, N.Y.; Guo, Y.Q.; Hwang, B.Y.; Mar, W.C.; Lee, D.H. Enantiomeric isoflavones with neuroprotective activities from the fruits of Maclura tricuspidata. Sci. Rep. 2019, 9, 1757. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, S.Y.; Sun, W.; Wei, C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 2018, 18, 3429–3436. [Google Scholar] [CrossRef]
- Dai, L.; Wang, G.; Pan, W. Andrographolide inhibits proliferation and metastasis of SGC7901 gastric cancer cells. Biomed. Res. Int. 2017, 10, 6242103. [Google Scholar] [CrossRef]
- Gao, Z.; Deng, G.; Li, Y.; Huang, H.; Sun, X.; Shi, H.; Luo, M. Actinidia chinensis planch prevents proliferation and migration of gastric cancer associated with apoptosis, ferroptosis activation and mesenchymal phenotype suppression. Biomed. Pharmacother. 2020, 126, 110092. [Google Scholar] [CrossRef]
No. | δH (J in Hz) | δC | No. | δH (J in Hz) | δC |
---|---|---|---|---|---|
2 | 156.7 | 1″ | 3.62 d (7.2) | 23.6 | |
3 | 6.92 s | 102.3 | 2″ | 5.40 t (7.2) | 123.6 |
3a | 124.2 | 3″ | 135.9 | ||
4 | 7.32 d (8.4) | 119.1 | 4″ | 1.89 s | 16.4 |
5 | 6.90 d (8.8) | 109.3 | 5″ | 2.02 m | 36.7 |
6 | 156.4 | 6″ | 1.60 m | 34.2 | |
7 | 114.4 | 7″ | 3.90 t (6.8) | 76.1 | |
7a | 155.3 | 8″ | 148.6 | ||
1′ | 133.8 | 9″α | 4.79 s | 111.5 | |
2′ | 6.80 * d (2.0) | 104.1 | 9″β | 4.72 s | |
3′ | 160.0 | 10″ | 1.62 s | 17.5 | |
4′ | 6.26 s | 103.6 | -OCH3 | 3.86 s | 57.0 |
5′ | 160.0 | ||||
6′ | 6.80 * d (2.0) | 104.1 |
11 a | 12 b | |||
---|---|---|---|---|
No. | δH (J in Hz) | δC | δH (J in Hz) | δC |
2 | 158.6 | 163.1 | ||
3 | 115.7 | 122.1 | ||
4 | 179.7 | 183.1 | ||
4a | 102.0 | 105.4 | ||
5 | 157.3 | 163.2 | ||
6 | 6.12 brs | 98.9 | 5.91 a s | 99.7 a |
7 | 161.3 | 165.8 | ||
8 | 6.33 brs | 93.6 | 6.00 a s | 94.0 a |
8a | 157.3 | 157.1 | ||
9α | 2.74 dd (16.2, 6.0) | 23.0 | 2.61 dd (16.8, 5.4) | 27.5 |
9β | 3.00 dd (16.2, 3.6) | 2.95 dd (16.8, 7.4) | ||
10 | 3.99 dd (6.0, 3.6) | 91.5 | 3.80 dd (16.2, 6.0) | 70.2 |
11 | 70.9 | 78.1 | ||
12 | 1.18 s | 27.3 | 1.36 s | 25.8 |
13 | 1.29 s | 24.1 | 1.28 s | 20.8 |
1′ | 114.0 | 113.8 | ||
2′ | 159.4 | 154.7 | ||
3′ | 119.9 | 110.3 | ||
4′ | 156.4 | 157.0 | ||
5′ | 6.74 d (9.0) | 110.7 | 6.42 d (8.4) | 109.9 |
6′ | 7.67 d (9.0) | 126.8 | 6.98 d (8.4) | 129.5 |
1″ | 3.36 *d (6.0) | 22.5 | 3.08 dd (7.2, 5.4) | 24.8 |
2″ | 5.13 t (7.2) | 123.2 | 5.07 t (7.2) | 122.6 |
3′ | 130.3 | 132.8 | ||
4″ | 1.61 s | 25.5 | 1.34 s | 17.6 |
5″ | 1.71.s | 17.9 | 1.58 s | 25.8 |
5-OH | 13.02 s |
Compound | Cell Viability (%) | Compound | Cell Viability (%) |
---|---|---|---|
1 | 96.42 ± 4.57 | 19 | 95.67 ± 3.65 |
2 | 97.88 ± 2.26 | 20 | 93.72 ± 2.86 |
3 | 96.27 ± 2.37 | 21 | 98.96 ± 0.92 |
4 | 92.08 ± 4.25 | 22 | 96.86 ± 1.84 |
5 | 67.31 ± 2.56 | 23 | 83.99 ± 3.92 |
6 | 89.04 ± 3.06 | 24 | 94.57 ± 2.74 |
7 | 89.47 ± 2.04 | 25 | 88.99 ± 4.62 |
8 | 59.92 ± 2.16 | 26 | 95.22 ± 3.30 |
9 | 96.62 ± 0.54 | 27 | 92.97 ± 2.72 |
10 | 39.71 ± 3.27 | 28 | 102.55 ± 3.06 |
11 | 96.27 ± 4.14 | 29 | 98.20 ± 0.37 |
12 | 74.89 ± 1.58 | 30 | 46.84 ± 3.02 |
13 | 77.66 ± 6.40 | 31 | 98.51 ± 0.97 |
14 | 95.05 ± 2.78 | 32 | 83.55 ± 1.51 |
15 | 97.90 ± 1.74 | 33 | 88.55 ± 3.20 |
16 | 97.01 ± 1.83 | 34 | 98.26 ± 1.03 |
17 | 98.36 ± 1.65 | 35 | 90.74 ± 5.24 |
18 | 95.05 ± 2.30 | a control | 100.00 ± 1.31 |
Compound | IC50 (µM) |
---|---|
5 | 33.76 ± 2.64 |
8 | 28.94 ± 0.72 |
10 | 6.08 ± 0.34 |
30 | 10.24 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, H.; Cao, D.; Zhou, X.; Li, F.; Wang, L.; Wang, M. Isoprenylated Flavonoids and 2-Arylbenzofurans from the Root Bark of Morus alba L. and Their Cytotoxic Activity against HGC27 Cancer Cells. Molecules 2024, 29, 30. https://doi.org/10.3390/molecules29010030
Pu H, Cao D, Zhou X, Li F, Wang L, Wang M. Isoprenylated Flavonoids and 2-Arylbenzofurans from the Root Bark of Morus alba L. and Their Cytotoxic Activity against HGC27 Cancer Cells. Molecules. 2024; 29(1):30. https://doi.org/10.3390/molecules29010030
Chicago/Turabian StylePu, Hangyi, Dongyi Cao, Xue Zhou, Fu Li, Lun Wang, and Mingkui Wang. 2024. "Isoprenylated Flavonoids and 2-Arylbenzofurans from the Root Bark of Morus alba L. and Their Cytotoxic Activity against HGC27 Cancer Cells" Molecules 29, no. 1: 30. https://doi.org/10.3390/molecules29010030
APA StylePu, H., Cao, D., Zhou, X., Li, F., Wang, L., & Wang, M. (2024). Isoprenylated Flavonoids and 2-Arylbenzofurans from the Root Bark of Morus alba L. and Their Cytotoxic Activity against HGC27 Cancer Cells. Molecules, 29(1), 30. https://doi.org/10.3390/molecules29010030