4-Hydroxybenzoic Acid-Based Hydrazide–Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses and Characterization
2.2. Biological Studies
2.2.1. Antifungal Activities
No. | Structure | B. cinerea | S. sclerotiorum | C. unicolor | Ki [μM] | Ref. Ki |
---|---|---|---|---|---|---|
23 | 6.8 ± 2.5 | 2.7 ± 0.4 | 5.8 ± 2.7 | – b | – | |
24 | n.o. | n.o. | 42.0 ± 2.1 | ≥1000 | [48] | |
25 | 2.8 ± 1.9 | n.o. | 70.1 ± 1.8 | ≥1000 | [48] | |
26 | 3.2 ± 0.5 | n.o. | 54.6 ± 3.1 | – b | – | |
27 | 23.4 ± 2.7 | 85.5 ± 3.2 | 42.8 ± 2.2 | 17.9 | [48] | |
28 | 50.8 ± 2.6 | 91.4 ± 2.2 | 38.2 ± 2.3 | ≥1000 | [48] | |
29 | 8.1 ± 0.6 | n.o. | 9.1 ± 1.9 | ≥1000 | [48] | |
30 | 76.2 ± 2.2 | 96.8 ± 2.2 | 89.8 ± 0.4 | 26.4 | [48] | |
31 | 2.1 ± 0.9 | n.o. | 13.8 ± 3.9 | 25.8 | [47] | |
32 | n.o. | n.o. | 14.3 ± 2.7 | 194 c | [75] | |
33 | 3.9 ± 0.6 | n.o. | 36.6 ± 1.2 | 82.0 | [47] | |
34 | 7.5 ± 0.6 | n.o. | 29.6 ± 2.7 | – b | [47] | |
35 | n.o. | n.o. | 45.7 ± 0.5 | ≥1000 | [47] | |
Fenhexamid | 99.9 ± 0.4 | 100 ± 0.3 | 39.9 ± 0.7 | – b | – |
2.2.2. Dicotyledonous Plant Germination Tests
2.2.3. Cytotoxicity Studies
3. Materials and Methods
3.1. Reagents and Materials
3.2. Synthesis
3.2.1. General Procedure for the Synthesis of Hydrazide–Hydrazones 1–35 [47]
3.2.2. In Vitro Antifungal Activity
3.2.3. Kinetic Study for 32
3.2.4. Phytotests
3.2.5. Cytotoxicity
Cell Lines
Antiproliferative Assay In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Official Journal of the European Union Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, 24, 1–50.
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide Resistance Management: Maximizing the Effective Life of Plant Protection Products. Plant Pathol. 2022, 71, 150–169. [Google Scholar] [CrossRef]
- McGrath, M.T. Fungicides and Other Chemical Approaches for Use in Plant Disease Control. In Encyclopedia of Microbiology, Pathogenesis; Schaechter, M., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 412–421. [Google Scholar]
- Hahn, M. The Rising Threat of Fungicide Resistance in Plant Pathogenic Fungi: Botrytis as a Case Study. J. Chem. Biol. 2014, 7, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Shirane, N.; Masuko, M.; Hayashi, Y. Light Microscopic Observation of Nuclei and Mitotic Chromosomes of Botrytis Species. Phytopathology 1989, 79, 728–730. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis Cinerea: The Cause of Grey Mould Disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Reino, J.L.; Hernandez-Galan, R.; Duran-Patron, R.; Collado, I.G. Virulence-Toxin Production Relationship in Isolates of the Plant Pathogenic Fungus Botrytis Cinerea. J. Phytopathol. 2004, 152, 563–566. [Google Scholar] [CrossRef]
- Sousa Melo, B.; Voltan, A.R.; Arruda, W.; Cardoso Lopes, F.A.; Georg, R.C.; Ulhoa, C.J. Morphological and Molecular Aspects of Sclerotial Development in the Phytopathogenic Fungus Sclerotinia Sclerotiorum. Microbiol. Res. 2019, 229, 126326. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and Molecular Traits of a Cosmopolitan Pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ojaghian, M.R. First Report of Coniothyrium Minitans, a Mycoparasite of Sclerotinia sclerotiorum, in Iran. Australas. Plant Dis. Notes 2009, 4, 75–77. [Google Scholar] [CrossRef]
- Łakomy, P.; Kwaśna, H. Atlas Hub; Multico Oficyna Wydawnicza: Warszawa, Poland, 2015. [Google Scholar]
- Ko, K.S.; Jung, H.S. Phylogenetic Re-Evaluation of Trametes Consors Based on Mitochondrial Small Subunit Ribosomal DNA Sequences. FEMS Microbiol. Lett. 1999, 170, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Slomczynski, D.; Nakas, J.P.; Tanenbaum, S.W. Production and Characterization of Laccase from Botrytis Cinerea 61-34. Appl. Environ. Microbiol. 1995, 61, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Radveikienė, I.; Vidžiūnaitė, R.; Meškienė, R.; Meškys, R.; Časaitė, V. Characterization of a Yellow Laccase from Botrytis Cinerea 241. J. Fungi 2021, 7, 143. [Google Scholar] [CrossRef] [PubMed]
- Moţ, A.C.; Pârvu, M.; Damian, G.; Irimie, F.D.; Darula, Z.; Medzihradszky, K.F.; Brem, B.; Silaghi-Dumitrescu, R. A “Yellow” Laccase with “Blue” Spectroscopic Features, from Sclerotinia Sclerotiorum. Process Biochem. 2012, 47, 968–975. [Google Scholar] [CrossRef]
- Rogalski, J.; Janusz, G. Purification of Extracellular Laccase from Cerrena Unicolor. Prep. Biochem. Biotechnol. 2010, 40, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Claus, H. Laccases: Structure, Reactions, Distribution. Micron 2004, 35, 93–96. [Google Scholar] [CrossRef]
- Buddhika, U.V.A.; Savocchia, S.; Steel, C.C. Copper Induces Transcription of BcLCC2 Laccase Gene in Phytopathogenic Fungus, Botrytis Cinerea. Mycology 2021, 12, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Bollag, J.-M.; Leonowicz, A. Comparative Studies of Extracellular Fungal Laccases. Appl. Environ. Microbiol. 1984, 48, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, F.; Papinutti, L. MICROBIOLOGÍA Optimization of l Accase Production by Two Strains of Ganoderma Lucidum Using Phenolic and Metallic Inducers Optimization of Laccase Production by Ganoderma Lucidum. Rev. Argent. Microbiol. 2014, 46, 144–149. [Google Scholar] [PubMed]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; de Paiva Foletto-Felipe, M.; Abrahão, J.; et al. Biosynthesis and Metabolic Actions of Simple Phenolic Acids in Plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Smith-Becker, J.; Marois, E.; Huguet, E.J.; Midland, S.L.; Sims, J.J.; Keen, N.T. Accumulation of Salicylic Acid and 4-Hydroxybenzoic Acid in Phloem Fluids of Cucumber during Systemic Acquired Resistance Is Preceded by a Transient Increase in Phenylalanine Ammonia-Lyase Activity in Petioles and Stems 1. Plant Physiol. 1998, 116, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Horváth, E.; Pál, M.; Szalai, G.; Páldi, E.; Janda, T. Exogenous 4-Hydroxybenzoic Acid and Salicylic Acid Modulate the Effect of Short-Term Drought and Freezing Stress on Wheat Plants. Biol. Plant. 2007, 51, 480–487. [Google Scholar] [CrossRef]
- Bach, M.; Schnitzler, J.-P.; Seitz, H.U. Elicitor-Lnduced Changes in Ca2+ Influx, K+ Efflux, and 4-Hydroxybenzoic Acid Synthesis in Protoplasts of Daucus Carota 1. Plant Physiol. 1993, 103, 407–412. [Google Scholar] [CrossRef]
- Koch, W.; Wagner, C.; Seitz, H.U. Elicitor-Induced Cell Death and Phytoalexin Synthesis in Daucus carota L. Planta 1998, 206, 523–532. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R. Antifungal Efficacy of Some Natural Phenolic Compounds against Significant Pathogenic and Toxinogenic Filamentous Fungi. Chemosphere 2013, 93, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Fatima, Z.; Ansari, M.A.; Anurag, A.; Hameed, S. Natural Phenolic Compounds: A Potential Antifungal Agent. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Formatex Research Center: Badajoz, Spain, 2013; pp. 1189–1195. [Google Scholar]
- Christopher, L.P.; Yao, B.; Ji, Y. Lignin Biodegradation with Laccase-Mediator Systems. Front. Energy Res. 2014, 2, 12. [Google Scholar] [CrossRef]
- Nurkenov, O.A.; Fazylov, S.D.; Satpaeva, Z.B.; Seilkhanov, T.M.; Turdybekov, D.M.; Mendibayeva, A.Z.; Akhmetova, S.B.; Shulgau, Z.T.; Alkhimova, L.E.; Kulakov, I.V. Synthesis, Structure and Biological Activity of Hydrazones Derived from 2- and 4-Hydroxybenzoic Acid Hydrazides. Chem. Data Collect. 2023, 48, 101089. [Google Scholar] [CrossRef]
- Popiołek, Ł. Updated Information on Antimicrobial Activity of Hydrazide–Hydrazones. Int. J. Mol. Sci. 2021, 22, 9389. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-Review of the Importance of Hydrazides and Their Derivatives—Synthesis and Biological Activity. Eng. Proc. 2021, 11, 21. [Google Scholar] [CrossRef]
- Altntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgn, S.; Atl, Ö.; Işcan, G.; Kaplanckl, Z.A. Synthesis and Biological Evaluation of Some Hydrazone Derivatives as New Anticandidal and Anticancer Agents. Eur. J. Med. Chem. 2012, 58, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Badiger, D.S.; Hunoor, R.S.; Patil, B.R.; Vadavi, R.S.; Mangannavar, C.V.; Muchchandi, I.S.; Patil, Y.P.; Nethaji, M.; Gudasi, K.B. Synthesis, Spectroscopic Properties and Biological Evaluation of Transition Metal Complexes of Salicylhydrazone of Anthranilhydrazide: X-ray Crystal Structure of Copper Complex. Inorganica Chim. Acta 2012, 384, 197–203. [Google Scholar] [CrossRef]
- El-Sabbagh, O.I.; Rady, H.M. Synthesis of New Acridines and Hydrazones Derived from Cyclic β-Diketone for Cytotoxic and Antiviral Evaluation. Eur. J. Med. Chem. 2009, 44, 3680–3686. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.; Zheng, Z.; Huang, Y.; Yu, L.; Wang, Z.; Wu, J. Hydrazone Modification of Non-Food Natural Product Sclareolide as Potential Agents for Plant Disease. Heliyon 2023, 8, e12391. [Google Scholar] [CrossRef] [PubMed]
- Senkardes, S.; Kaushik-Basu, N.; Durmaz, I.; Manvar, D.; Basu, A.; Atalay, R.; Guniz Kucukguzel, S. Synthesis of Novel Diflunisal Hydrazide-Hydrazones as Anti-Hepatitis C Virus Agents and Hepatocellular Carcinoma Inhibitors. Eur. J. Med. Chem. 2016, 108, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Al-Humaidi, J.Y.; Badrey, M.G.; Aly, A.A.; Nayl, A.E.A.A.; Zayed, M.E.M.; Jefri, O.A.; Gomha, S.M. Evaluation of the Binding Relationship of the RdRp Enzyme to Novel Thiazole/Acid Hydrazone Hybrids Obtainable through Green Synthetic Procedure. Polymers 2022, 14, 3160. [Google Scholar] [CrossRef] [PubMed]
- Green, D.A.; Wong, S.J.; Chitambar, C.R.; Antholine, W.E.; Richardson, D.R. Inhibition of Malignant Cell Growth by 311, a Novel Iron Chelator of the Pyridoxal Isonicotinoyl Hydrazone Class: Effect on the R2 Subunit of Ribonucleotide Reductase. Clin. Cancer Res. 2001, 7, 3574–3579. [Google Scholar] [PubMed]
- Javaid, S.; Saad, S.M.; Zafar, H.; Malik, R.; Khan, K.M.; Iqbal Choudhary, M.; Rahman, A. Thymidine Phosphorylase and Prostrate Cancer Cell Proliferation Inhibitory Activities of Synthetic 4-Hydroxybenzohydrazides: In Vitro, Kinetic, and in Silico Studies. PLoS ONE 2020, 15, e0227549. [Google Scholar] [CrossRef] [PubMed]
- Iliev, I.; Kontrec, D.; Detcheva, R.; Georgieva, M.; Galić, N.; Pajpanova, T.; Pajpanova, T. Cancer Cell Growth Inhibition by Aroylhydrazone Derivatives. Biotechnol. Biotechnol. Equip. 2019, 33, 756–763. [Google Scholar] [CrossRef]
- Rodrigues, D.A.; Guerra, F.S.; Sagrillo, F.S.; de Sena, M.; Pinheiro, P.; Alves, M.A.; Thota, S.; Chaves, L.S.; Sant’Anna, C.M.R.; Fernandes, P.D.; et al. Design, Synthesis, and Pharmacological Evaluation of First-in-Class Multitarget N-Acylhydrazone Derivatives as Selective HDAC6/8 and PI3Kα Inhibitors. ChemMedChem 2020, 15, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.C.; Henriques, R.R.; de Abreu Lopes, M.A., Jr.; Farias, A.B.; do Couto Nogueira, T.L.; Quimas, J.V.F.; Romeiro, N.C.; Silva, L.L.; Souza, A.L.F. Acylhydrazones as Isoniazid Derivatives with Multi-Target Profiles for the Treatment of Alzheimer’s Disease: Radical Scavenging, Myeloperoxidase/Acetylcholinesterase Inhibition and Biometal Chelation. Bioorg Med. Chem. 2020, 28, 115470. [Google Scholar] [CrossRef] [PubMed]
- Krátký, M.; Svrčková, K.; Vu, Q.A.; Štěpánková, Š.; Vinšová, J. Hydrazones of 4-(Trifluoromethyl)Benzohydrazide as New Inhibitors of Acetyl- and Butyrylcholinesterase. Molecules 2021, 26, 989. [Google Scholar] [CrossRef] [PubMed]
- Kucukoglu, K.; Inci, H.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Bioorganic Chemistry Investigation of Inhibitory Properties of Some Hydrazone Compounds on HCA I, HCA II and AChE Enzymes. Bioorganic Chem. 2019, 86, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Maniak, H.; Talma, M.; Giurg, M. Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies. Int. J. Mol. Sci. 2021, 22, 12307. [Google Scholar] [CrossRef] [PubMed]
- Maniak, H.; Talma, M.; Matyja, K.; Trusek, A.; Giurg, M. Synthesis and Structure-Activity Relationship Studies of Hydrazide-Hydrazones as Inhibitors of Laccase from Trametes Versicolor. Molecules 2020, 25, 1255. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, M.; Wang, J.; Peng, Y.; Li, L.; Xie, Z.Z.; Deng, B.; Chen, S.; Li, W. Synthesis, Biological Evaluation and Molecular Docking Studies of Chromone Hydrazone Derivatives as α-Glucosidase Inhibitors. Bioorganic Med. Chem. Lett. 2017, 27, 2957–2961. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Alam, I.; Huff, S.E.; Pink, J.; Flanagan, S.A.; Shewach, D.; Misko, T.A.; Oleinick, N.L.; Harte, W.E.; Viswanathan, R.; et al. Potent Competitive Inhibition of Human Ribonucleotide Reductase by a Nonnucleoside Small Molecule. Proc. Natl. Acad. Sci. USA 2017, 114, 8241–8246. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Pandey, S.; Singh, A.; Radhakrishna, M.; Basu, S. Hydrazide–Hydrazone Small Molecules as AIEgens: Illuminating Mitochondria in Cancer Cells. Chem.—A Eur. J. 2019, 25, 8229–8235. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.M.; Vitório, F.; Amaral, R.C.; Zanoni, K.P.S.; Murakami Iha, N.Y.; Kümmerle, A.E. Microwave-Assisted Synthesis and Photophysical Studies of Novel Fluorescent N-Acylhydrazone and Semicarbazone-7-OH-Coumarin Dyes. New J. Chem. 2016, 40, 8846–8854. [Google Scholar] [CrossRef]
- Dascalu, A.E.; Ghinet, A.; Lipka, E.; Furman, C.; Rigo, B.; Fayeulle, A.; Billamboz, M. Design, Synthesis and Evaluation of Hydrazine and Acyl Hydrazone Derivatives of 5-Pyrrolidin-2-One as Antifungal Agents. Bioorganic Med. Chem. Lett. 2020, 30, 127220. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Liao, A.; Kang, J.; Gao, Y.; Lu, A.; Wang, Z.; Wang, Q. Toad Alkaloid for Pesticide Discovery: Dehydrobufotenine Derivatives as Novel Agents against Plant Virus and Fungi. J. Agric. Food Chem. 2021, 69, 9754–9763. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Cai, M.; Meng, Y.; Yang, Y.; Song, H.; Liu, Y.; Wang, Q. Design, Synthesis and Biological Activities of Echinopsine Derivatives Containing Acylhydrazone Moiety. Sci. Rep. 2022, 12, 2935. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Xu, W.; Song, H.; Liu, Y.; Zhang, J.; Zhang, J.; Wang, Q. Synthesis and Antiviral/Fungicidal/Insecticidal Activities Study of Novel Chiral Indole Diketopiperazine Derivatives Containing Acylhydrazone Moiety. J. Agric. Food Chem. 2020, 68, 5555–5571. [Google Scholar] [CrossRef] [PubMed]
- Gębarowska, E.; Łyczko, J.; Rdzanek, M.; Wiatrak, B.; Plaskowska, E.; Gołębiowska, H.; Kuźniarski, A.; Gębarowski, T. Evaluation of Antimicrobial and Chemopreventive Properties and Phytochemical Analysis of Solanum nigrum L. Aerial Parts and Root Extracts. Appl. Sci. 2022, 12, 6845. [Google Scholar] [CrossRef]
- Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Burda-Grabowska, M.; Giurg, M.; Brul, S. Identification of Ebselen and Its Analogues as Potent Covalent Inhibitors of Papain-like Protease from SARS-CoV-2. Sci. Rep. 2021, 11, 3640. [Google Scholar] [CrossRef] [PubMed]
- Macegoniuk, K.; Tabor, W.; Mazzei, L.; Cianci, M.; Giurg, M.; Olech, K.; Burda-Grabowska, M.; Kaleta, R.; Grabowiecka, A.; Mucha, A.; et al. Optimized Ebselen-Based Inhibitors of Bacterial Ureases with Nontypical Mode of Action. J. Med. Chem. 2023, 66, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Zmudzinski, M.; Rut, W.; Olech, K.; Granda, J.; Giurg, M.; Burda-Grabowska, M.; Kaleta, R.; Zgarbova, M.; Kasprzyk, R.; Zhang, L.; et al. Ebselen Derivatives Inhibit SARS-CoV-2 Replication by Inhibition of Its Essential Proteins: PLpro and Mpro Proteases, and Nsp14 Guanine N7-Methyltransferase. Sci. Rep. 2023, 13, 9161. [Google Scholar] [CrossRef] [PubMed]
- Kurpińska, A.; Suraj-Prażmowska, J.; Stojak, M.; Jarosz, J.; Mateuszuk, Ł.; Niedzielska-Andres, E.; Smolik, M.; Wietrzyk, J.; Kalvins, I.; Walczak, M.; et al. Comparison of Anti-Cancer Effects of Novel Protein Disulphide Isomerase (PDI) Inhibitors in Breast Cancer Cells Characterized by High and Low PDIA17 Expression. Cancer Cell Int. 2022, 22, 218. [Google Scholar] [CrossRef] [PubMed]
- Tronina, T.; Bartmańska, A.; Popłoński, J.; Rychlicka, M.; Sordon, S.; Filip-Psurska, B.; Milczarek, M.; Wietrzyk, J.; Huszcza, E. Prenylated Flavonoids with Selective Toxicity against Human Cancers. Int. J. Mol. Sci. 2023, 24, 7408. [Google Scholar] [CrossRef] [PubMed]
- Grimster, N.P.; Connelly, S.; Baranczak, A.; Dong, J.; Krasnova, L.B.; Sharpless, K.B.; Powers, E.T.; Wilson, I.A.; Kelly, J.W. Aromatic Sulfonyl Fluorides Covalently Kinetically Stabilize Transthyretin to Prevent Amyloidogenesis While Affording a Fluorescent Conjugate. J. Am. Chem. Soc. 2013, 135, 5656–5668. [Google Scholar] [CrossRef] [PubMed]
- Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Stereoselective Ring-Opening Polymerization of a Racemic Lactide by Using Achiral Salen- and Homosalen-Aluminum Complexes. Chem.—A Eur. J. 2007, 13, 4433–4451. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G. Selective Reaction between Phenols and Formaldehyde. A Novel Route to Salicylaldehydes. J. Chem. Soc. Perkin. 1980, 1, 1862–1865. [Google Scholar] [CrossRef]
- Gou, H.; Zhang, J.; Li, P.; Li, C.; Wang, H.; Hong, W. A Practical Total Synthesis of Wedelolactone. Synth. Commun. 2023, 53, 1126–1133. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, H. A Novel Selective Oxidation of 5-Substituted 2-Hydroxy-3-Hydroxymethylbenzaldehydes. Synthesis 1991, 4, 325–326. [Google Scholar] [CrossRef]
- Fan, H.; Peng, X. Photoinduced DNA Interstrand Cross-Linking by Benzene Derivatives: Leaving Groups Determine the Efficiency of the Cross-Linker. J. Org. Chem. 2021, 86, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, R.Y.; Park, K. Total Syntheses of 4′,6′-Dimethoxy-2′-Hydroxy-3′,5′-Dimethylchalcone Derivatives. Bull. Korean Chem. Soc. 2021, 42, 66–71. [Google Scholar] [CrossRef]
- Ndikuryayo, F.; Kang, W.M.; Wu, F.X.; Yang, W.C.; Yang, G.F. Hydrophobicity-Oriented Drug Design (HODD) of New Human 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Eur. J. Med. Chem. 2019, 166, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Giurg, M.; Maniak, H. Iminowe Pochodne Aldehydów Salicylowych i Hydrazydu Kwasu 4-Hydroksybenzoesowego Oraz Sposób Ich Wytwarzania. U.S. Patent PL 233208 B1, 30 September 2019. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Socrates, G., Ed.; John Wiley &Sons, Ltd.: Chichester, UK; New York, NY, USA; Weinheim, Germany; Toronto, ON, Canada; Brisbane, Australia; Singapore, 2001. [Google Scholar]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia Sclerotiorum and Botrytis Cinerea. PLoS Genet. 2011, 7, e1002230. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.E.M.; Elfiky, M.M.; Fadda, W.A.; Ali, H.S.; Mahmoud, A.R.; Mohammedsaleh, Z.M.; Abd-Elhamid, T.H. Regulation of IL-6/STAT-3/Wnt Axis by Nifuroxazide Dampens Colon Ulcer in Acetic Acid-Induced Ulcerative Colitis Model: Novel Mechanistic Insight. Life Sci. 2021, 276, 119433. [Google Scholar] [CrossRef] [PubMed]
- Maniak, H.; Witkowska, D.; Giurg, M. Zastosowanie Hydrazydu Kwasu 4-Hydroksybenzoesowego Oraz Zastosowanie Hydrazydo-Hydrazonów Pochodnych Kwasu 4-Hydroksybenzoesowego Aldehydów Zawierających Fragment Aromatyczny. U.S. Patent PL 238660, 20 September 2021. [Google Scholar]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal Efficacy of Thymol, Carvacrol, Eugenol and Menthol as Alternative Agents to Control the Growth of Food-Relevant Fungi. J. Mycol. Med. 2014, 24, e51–e56. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova, L.; Mikityuk, O.; Arslanova, L.; Stakheev, A.; Erokhin, D.; Zavriev, S.; Dzhavakhiya, V. Studying the Ability of Thymol to Improve Fungicidal Effects of Tebuconazole and Difenoconazole Against Some Plant Pathogenic Fungi in Seed or Foliar Treatments. Front. Microbiol. 2021, 12, 629429. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Liu, Y.; Zhang, T.; Chen, Z.; Fang, H.; Hua, X. A Comprehensive Investigation of Hydrazide and Its Derived Structures in the Agricultural Fungicidal Field. J. Agric. Food Chem. 2023, 71, 8297–8316. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.D.; He, Y.H.; Ma, K.Y.; Li, H.; Zhang, Z.J.; Sun, Y.; Wang, Y.L.; Hu, G.F.; Wang, R.X.; Liu, Y.Q. Design and Discovery of Novel Antifungal Quinoline Derivatives with Acylhydrazide as a Promising Pharmacophore. J. Agric. Food Chem. 2021, 69, 8347–8357. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, Z.C.; Chen, Y.F.; Cao, L.L.; Yan, W.; Li, S.K.; Wang, J.X.; Zhang, Z.G.; Ye, Y.H. Synthesis of 1,2,3-Triazole Hydrazide Derivatives Exhibiting Anti-Phytopathogenic Activity. Eur. J. Med. Chem. 2017, 126, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Fan, Z.; Yang, L.; Bao, X. Synthesis and Antimicrobial Activities of Novel 1,2,4-Triazole-Acyl-Hydrazone Derivatives Containing the Quinazolin-4-One Moiety. Chin. J. Org. Chem. 2018, 38, 531–538. [Google Scholar] [CrossRef]
- Liu, Y.; Song, H.; Huang, Y.; Li, J.; Zhao, S.; Song, Y.; Yang, P.; Xiao, Z.; Liu, Y.; Li, Y.; et al. Design, Synthesis, and Antiviral, Fungicidal, and Insecticidal Activities of Tetrahydro-β-Carboline-3-Carbohydrazide Derivatives. J. Agric. Food Chem. 2014, 62, 9987–9999. [Google Scholar] [CrossRef]
- Konovalova, S.; Avdeenko, A.; Lubenets, V.; Novikov, V. Synthesis and Bioactivity of Benzohydrazide Derivatives. Biointerface Res. Appl. Chem. 2020, 10, 5797–5802. [Google Scholar] [CrossRef]
- Xu, R.; Gu, S.; Chen, K.; Chen, J.; Wang, Y.; Gao, Y.; Shang, S.; Song, Z.; Song, J.; Li, J. Discovery of Rosin-Based Acylhydrazone Derivatives as Potential Antifungal Agents against Rice Rhizoctonia Solani for Sustainable Crop Protection. Pest. Manag. Sci. 2023, 79, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Tarnawski, M. Phytotoxkit/Phytotestkit and Microtox®as Tools for Toxicity Assessment of Sediments. Ecotoxicol. Environ. Saf. 2013, 98, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Czerniawska-Kusza, I.; Kusza, G. The Potential of the Phytotoxkit Microbiotest for Hazard Evaluation of Sediments in Eutrophic Freshwater Ecosystems. Environ. Monit. Assess. 2011, 179, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.S.I. Metabolism of Azoxystrobin in Plants and Animals. In Pesticide Chemistry and Bioscience; Elsevier: Amsterdam, The Netherlands, 1999; pp. 265–278. [Google Scholar]
- Serra, S.; Alouane, A.; Le Saux, T.; Huvelle, S.; Plasson, R.; Schmidt, F.; Jullien, L.; Labruère, R. A Chemically Encoded Timer for Dual Molecular Delivery at Tailored Ranges and Concentrations. Chem. Commun. 2018, 54, 6396–6399. [Google Scholar] [CrossRef] [PubMed]
- Rajput, J.D.; Bagul, S.D.; Hosamani, A.A.; Patil, M.M.; Bendre, R.S. Synthesis, Characterizations, Biological Activities and Docking Studies of Novel Dihydroxy Derivatives of Natural Phenolic Monoterpenoids Containing Azomethine Linkage. Res. Chem. Intermed. 2017, 43, 5377–5393. [Google Scholar] [CrossRef]
- Nassar, M.Y.; El-Shwiniy, W.H.; El-Desoky, S.I. Synthesis of Pd(II), Ag(I), Pt(IV), and Hg(II) Complexes with Nifuroxazide, Their Structure, DFT Modeling, and Antimicrobial and Anticancer Activity. Russ. J. Gen. Chem. 2018, 88, 573–579. [Google Scholar] [CrossRef]
- Nisa, M.; Munawar, M.A.; Iqbal, A.; Ahmed, A.; Ashraf, M.; Gardener, Q.-A.A.; Khan, M.A. Synthesis of Novel 5-(Aroylhydrazinocarbonyl)Escitalopram as Cholinesterase Inhibitors. Eur. J. Med. Chem. 2017, 138, 396–406. [Google Scholar] [CrossRef]
- Freitas, R.H.C.N.; Barbosa, J.M.C.; Bernardino, P.; Sueth-Santiago, V.; Wardell, S.M.S.V.; Wardell, J.L.; Decoté-Ricardo, D.; Melo, T.G.; da Silva, E.F.; Salomão, K.; et al. Synthesis and Trypanocidal Activity of Novel Pyridinyl-1,3,4-Thiadiazole Derivatives. Biomed. Pharmacother. 2020, 127, 110162. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.H.; Damodar, K.; Kim, J.K.; Jun, J.G. Synthesis and Biological Evaluation of 2-Aroylbenzofurans, Rugchalcones A, B and Their Derivatives as Potent Anti-Inflammatory Agents. Bioorganic Med. Chem. Lett. 2016, 26, 1521–1524. [Google Scholar] [CrossRef] [PubMed]
- Jacq, J.; Einhorn, C.; Einhorn, J. A Versatile and Regiospecific Synthesis of Functionalized 1,3-Diarylisobenzofurans. Org. Lett. 2008, 10, 3757–3760. [Google Scholar] [CrossRef] [PubMed]
- Zuercher, W.J.; Gaillard, S.; Orband-Miller, L.A.; Chao, E.Y.H.; Shearer, B.G.; Jones, D.G.; Miller, A.B.; Collins, J.L.; McDonnell, D.P.; Willson, T.M. Identification and Structure-Activity of Phenolic Acyl as Selective Agonists for the Estrogen-Related Orphan Nuclear Receptors ERRβ and ERRγ. J. Med. Chem. 2005, 48, 3107–3109. [Google Scholar] [CrossRef] [PubMed]
- Rando, D.G.; Avery, M.A.; Tekwani, B.L.; Khan, S.I.; Ferreira, E.I. Antileishmanial Activity Screening of 5-Nitro-2-Heterocyclic Benzylidene Hydrazides. Bioorganic Med. Chem. 2008, 16, 6724–6731. [Google Scholar] [CrossRef]
- Han, S.Y.; Kim, B.K.; Lee, H.J.; Yoon, K. Bin Novel Compounds Preparation Method Thereof and Pharmaceutical Composition for Use in Preventing or Treating Abnormal Cell Growth Diseases Containing the Same as an Active Ingredient. U.S. Patent KR101958107B1, 14 March 2019. [Google Scholar]
- Xiong, H.; Liang, H.; Dai, K.; Tian, Q.; Dai, X.; Su, H.; Royal, G. Acylhydrazones as Sensitive Fluorescent Sensors for Discriminative Detection of Thorium(IV) from Uranyl and Lanthanide Ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122501. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.J.; Lu, X.M.; Zhu, Z.Q.; Zhu, F.X. Effect of Organic Solvent on Fungicide Toxicity to Sclerotinia Sclerotiorum and Botrytis Cinerea. Eur. J. Plant Pathol. 2016, 146, 37–45. [Google Scholar] [CrossRef]
- Cedergreen, N.; Andersen, L.; Olesen, C.F.; Spliid, H.H.; Streibig, J.C. Does the Effect of Herbicide Pulse Exposure on Aquatic Plants Depend on Kow or Mode of Action? Aquat. Toxicol. 2005, 71, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Ritz, C. Toward a Unified Approach to Dose-Response Modeling in Ecotoxicology. Environ. Toxicol. Chem. 2010, 29, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.; Bokesch, H.; Kenney, S.; Boyd, M. New Colorimetric Cytotoxicity Assay for Anti-Cancer Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Nevozhay, D. Cheburator Software for Automatically Calculating Drug Inhibitory Concentrations from in Vitroscreening Assays. PLoS ONE 2014, 9, e106186. [Google Scholar] [CrossRef] [PubMed]
No. | Structure | B. cinerea | S. sclerotiorum | C. unicolor | Ki [μM] | Ref. Ki |
---|---|---|---|---|---|---|
1 | 2.6 ± 0.2 | n.o. | 10.6 ± 1.1 | 1468 | [48] | |
2 | n.o. | n.o. | 18.0 ± 3.2 | 1919 | [48] | |
3 | 3.3 ± 1.1 | n.o. | n.o. | 251 | [48] | |
4 | 12.0 ± 2.6 | n.o. | 20.9 ± 2.8 | – b | – | |
5 | n.o. | n.o. | 23.6 ± 4.2 | ≥2400 | [48] | |
6 | 4.7 ± 1.1 | n.o. | 14.7 ± 0.3 | 674 | [48] | |
7 | 3.7 ± 1.8 | n.o. | 12.6 ± 4.1 | 2396 | [48] | |
8 | 4.2 ± 1.5 | n.o. | 14.3 ± 1.7 | 638 | [48] | |
9 | 3.3 ± 1.2 | n.o. | 22.3 ± 2.6 | 1064 | [48] | |
10 | 3.9 ± 2.4 | n.o. | n.o. | 416 | [48] | |
11 | 4.4 ± 0.9 | n.o. | 11.7 ± 3.5 | ≥2400 | [48] | |
12 | 3.3 ± 1.2 | n.o. | 19.5 ± 2.8 | – b | [48] | |
Fenhexamid | 99.9 ± 0.4 | 100 ± 0.3 | 39.9 ± 0.7 | – b | – |
No. | Structure | B. cinerea | S. sclerotiorum | C. unicolor | Ki [μM] | Ref. Ki |
---|---|---|---|---|---|---|
13 | n.o. | n.o. | n.o. | – b | [48] | |
14 | n.o. | n.o. | 56.8 ± 8.4 | ≥1000 | [48] | |
15 | n.o. | n.o. | 43.1 ± 3.0 | ≥1000 | [48] | |
16 | n.o. | n.o. | 32.1 ± 3.1 | ≥1000 | [48] | |
17 | n.o. | 7.3 ± 2.1 | 11.9 ± 0.8 | 251 | [48] | |
18 | 82.1 ± 3.1 | 97.1 ± 1.1 | 85.9 ± 2.1 | 24.0 | [48] | |
19 | 73.5 ± 3.3 | 50.6 ± 5.5 | 71.4 ± 2.1 | 25.3 | [48] | |
20 | 3.3 ± 1.2 | n.o. | 35.4 ± 2.4 | ≥1000 | [48] | |
21 | n.o. | n.o. | 30.1 ± 4.3 | 939 | [48] | |
22 | 32.0 ± 2.9 | n.o. | 75.4 ± 6.2 | – b | – | |
Fenhexamid | 99.9 ± 0.4 | 100 ± 0.3 | 39.9 ± 0.7 | – b | – |
No. | Fungus Species | Log-Logistic Model Parameters | Statistical Parameters b | IC50 a | Laccase Inhibition, Ki c | ||||
---|---|---|---|---|---|---|---|---|---|
d | b | c | e | R2 | RMSE | µg/mL | µM | ||
18 | Bc | 1 | 1 | 14.0 × 10–1 | 14.28 | 0.94 | 5.65 | 20.0 | 24.0 |
Ss | 1 | 1 | 1.66 × 10–12 | 1.80 | 0.74 | 6.80 | 1.8 | ||
Cu | 1 | 1 | 9.76 × 10–9 | 18.25 | 0.84 | 12.92 | 18.3 | ||
19 | Bc | 1 | 1 | 2.39 × 10–2 | 13.20 | 0.96 | 5.30 | 13.9 | 25.3 |
Ss | 1 | 1 | 2.74 × 10–8 | 69.86 | 0.82 | 12.62 | 69.9 | ||
Cu | 1 | 1 | 3.11 × 10–10 | 20.26 | 0.96 | 4.54 | 20.3 | ||
27 | Bc | 1 | 1 | 7.74 × 10–1 | 0.70 | 0.13 | 2.72 | n.d. d | 17.9 |
Ss | 1 | 1 | 1.04 × 10–1 | 0.42 | 0.43 | 3.13 | 0.5 | ||
Cu | 1 | 1 | 4.98 × 10–1 | 9.51 | 0.91 | 3.84 | 2194 | ||
28 | Bc | 1 | 1 | 4.59 × 10–10 | 52.68 | 0.84 | 9.80 | 52.7 | ≥1000 |
Ss | 1 | 1 | 2.34 × 10–10 | 9.82 | 0.92 | 6.97 | 9.8 | ||
Cu | 1 | 1 | 5.82 × 10–1 | 5.85 | 0.99 | 0.69 | n.d. d | ||
30 | Bc | 1 | 1 | 1.50 × 10–9 | 62.48 | 0.89 | 6.24 | 62.5 | 26.4 |
Ss | 1 | 1 | 1.14 × 10–13 | 0.81 | 0.87 | 1.72 | 0.8 | ||
Cu | 1 | 1 | 3.12 × 10–10 | 13.47 | 0.85 | 12.50 | 13.5 | ||
Control e | Bc | 1 | 1 | 2.31 × 10–14 | 0.14 | 0.95 | 0.73 | 0.1 | – |
Ss | 1 | 5.108 f | 3.00 × 10–2 | 4.19 | 1.00 | 3.35 | 4.2 | ||
Cu | 1 | 1 | 5.95 × 10–1 | 14.22 | 0.96 | 2.47 | n.d. d |
No. | Structure | MCF-10A Line | Balb/3T3 Line |
---|---|---|---|
13 | 213.26 ± 34.06 | 132.48 ± 9.22 | |
17 | 275.12 ± 41.46 | 216.51 ± 61.25 | |
18 | 6.41 ± 2.05 | 11.39 ± 2.54 | |
19 | 3.44 ± 0.83 | 3.97 ± 0.15 | |
25 | 27.48 ± 1.83 | 27.24 ± 4.30 | |
27 | 7.73 ± 1.08 | 11.65 ± 0.69 | |
30 | 8.85 ± 5.47 | 23.11 ± 3.87 | |
4-hba a | N/A b | N/A b | |
36 (4-hbah) c | N/A b | N/A b | |
3,4,5-hba d | 174.11 ± 14.33 | 163.17 ± 1.95 | |
Azoxystrobin | N/D e | 0.10 ± 0.03 | |
Cis-platin | 9.27 ± 1.63 | 9.80 ± 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniak, H.; Matyja, K.; Pląskowska, E.; Jarosz, J.; Majewska, P.; Wietrzyk, J.; Gołębiowska, H.; Trusek, A.; Giurg, M. 4-Hydroxybenzoic Acid-Based Hydrazide–Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops. Molecules 2024, 29, 2212. https://doi.org/10.3390/molecules29102212
Maniak H, Matyja K, Pląskowska E, Jarosz J, Majewska P, Wietrzyk J, Gołębiowska H, Trusek A, Giurg M. 4-Hydroxybenzoic Acid-Based Hydrazide–Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops. Molecules. 2024; 29(10):2212. https://doi.org/10.3390/molecules29102212
Chicago/Turabian StyleManiak, Halina, Konrad Matyja, Elżbieta Pląskowska, Joanna Jarosz, Paulina Majewska, Joanna Wietrzyk, Hanna Gołębiowska, Anna Trusek, and Mirosław Giurg. 2024. "4-Hydroxybenzoic Acid-Based Hydrazide–Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops" Molecules 29, no. 10: 2212. https://doi.org/10.3390/molecules29102212
APA StyleManiak, H., Matyja, K., Pląskowska, E., Jarosz, J., Majewska, P., Wietrzyk, J., Gołębiowska, H., Trusek, A., & Giurg, M. (2024). 4-Hydroxybenzoic Acid-Based Hydrazide–Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops. Molecules, 29(10), 2212. https://doi.org/10.3390/molecules29102212