Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of CoO/MnO/NC
2.2. Electrocatalytic Performance
2.3. Theoretical Calculations
3. Materials and Methods
3.1. Synthesis of CoO/MnO/NC
3.2. Theoretical Calculations
3.3. Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
| Item parameters | Units |
| Capacity | mA h g−1 |
| Current density | A g−1 |
| Voltage | V |
| Electron volt | eV |
| Scan rate | mV s−1 |
| Diffusion coefficient | cm2 s−1 |
| Resistance | Ω |
| Mass | g |
| Concentration | mol L−1 |
| Temperature | °C |
| Time | h |
| Volume | mL |
| Per cent | % |
| Current | mA |
| Atomic forces | eV Å−1 |
References
- Wu, F.X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.L.; Zhang, T.; Li, X.J.; Wu, N.T.; Cao, A.G.; Yuan, W.W.; Pan, K.M.; Guo, D.L.; Liu, X.M. MoS2@C with S vacancies vertically anchored on V2C-MXene for efficient lithium and sodium storage. Inorg. Chem. Front. 2023, 10, 1587–1602. [Google Scholar] [CrossRef]
- Xiong, P.X.; Zhang, Y.; Zhang, J.R.; Baek, S.H.; Zeng, L.X.; Yao, Y.; Park, H.S. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 2022, 4, 100076. [Google Scholar] [CrossRef]
- Wu, H.H.; Zhuo, F.; Qiao, H.; Venkataraman, L.K.; Zheng, M.; Wang, S.; Huang, H.; Li, B.; Mao, X.; Zhang, Q. Polymer-/ceramic-based dielectric composites for energy storageand conversion. Energy Environ. Mater. 2022, 5, 486–514. [Google Scholar] [CrossRef]
- Yen, H.J.; Tsai, H.; Zhou, M.; Holby, E.F.; Choudhury, S.; Chen, A.; Adamska, L.; Tretiak, S.; Sanchez, T.; Iyer, S. Structurally defined 3D nanographene assemblies via bottom-up chemical synthesis for highly efficient lithium storage. Adv. Mater. 2016, 28, 10250–10256. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Chae, S.; Ma, J.Y.; Kim, N.; Lee, H.W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113. [Google Scholar] [CrossRef]
- Fang, S.; Bresser, D.; Passerini, S. Transition Metal Oxide Anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485. [Google Scholar] [CrossRef]
- Wang, P.X.; Zhang, Y.; Yin, Y.Y.; Fan, L.S.; Zhang, N.Q.; Sun, K.N. Anchoring hollow MoO2 spheres on graphene for superior lithium storage. Chem. Eng. J. 2018, 334, 257–263. [Google Scholar] [CrossRef]
- Qi, C.X.; Zhao, M.X.; Fang, T.; Zhu, Y.P.; Wang, P.S.; Xie, A.J.; Shen, Y.H. Multifunctional hollow porous Fe3O4@N-C nanocomposites as anodes of lithium-ion battery, adsorbents and surface-enhanced Raman scattering substrates. Molecules 2023, 28, 5183. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.N.; Liu, C.Y.; Shi, J.; Huang, M.H.; Liu, S.; Shi, Z.C.; Wang, H.L. One-pot synthesis of nanosized MnO incorporated into N-doped carbon nanosheets for high performance lithium storage. J. Alloys Compd. 2022, 902, 163827. [Google Scholar] [CrossRef]
- Chen, Z.Y.; He, B.; Yan, D.; Yu, X.F.; Li, W.C. Peapod-like MnO@Hollow carbon nanofibers film as self-standing electrode for Li-ion capacitors. J. Power Sources 2020, 472, 228501. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Wang, L.; Lin, H.N.; Ma, L.B.; Zhao, P.Y.; Hu, Y.; Chen, T.; Chen, R.P.; Wang, Y.R.; Tie, Z.X.; et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1800003. [Google Scholar] [CrossRef]
- Huang, H.W.; Fan, S.S.; Dong, W.D.; Zhou, W.; Yan, M.; Deng, Z.; Zheng, X.F.; Liu, J.; Wang, H.E.; Chen, L.H.; et al. Nitrogen-doped graphene in-situ modifying MnO nanoparticles for highly improved lithium storage. Appl. Surf. Sci. 2019, 473, 893–901. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Feng, J.B.; Qin, J.D.; Zhong, Y.L.; Zhang, S.Q.; Wang, H.; Bell, J.; Guo, Z.P.; Song, P.A. Pathways to next-generation fire-safe alkali-ion batteries. Adv. Sci. 2023, 10, 2301056. [Google Scholar] [CrossRef]
- Zhu, J.; Wierzbicki, T.; Li, W. Areview of safety-focused mechanical modeling of commercial lithium-ion batteries. J. Power Sources 2018, 378, 153–168. [Google Scholar] [CrossRef]
- Gong, Y.; Sun, L.; Si, H.C.; Zhang, Y.X.; Shi, Y.; Wu, L.; Gu, J.L.; Zhang, Y.H. MnO nanorods coated by Co-decorated N-doped carbon as anodes for high performance lithium ion batteries. Appl. Surf. Sci. 2020, 504, 144479. [Google Scholar] [CrossRef]
- Zhang, L.L.; Ge, D.H.; Qu, G.L.; Zheng, J.W.; Cao, X.Q.; Gu, H.W. Formation of porous nitrogen-doped carbon-coating MnO nanospheres for advanced reversible lithium storage. Nanoscale 2017, 9, 5451–5457. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Luo, J.D.; Qi, X.T.; Yu, J.; Cai, J.X.; Yang, Z.Y. Molten-salt-assisted synthesis of hierarchical porous MnO@Biocarbon composites as promising electrode materials for supercapacitors and lithium-ion batteries. ChemSusChem 2019, 12, 283–290. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.H.; Zhou, C.; Li, A.G.; Gong, Y.; Muhammad, N.; Song, H.H. Controlled synthesis of porous 3D interconnected MnO/C composite aerogel and their excellent lithium-storage properties. Electrochim. Acta 2019, 306, 143–150. [Google Scholar] [CrossRef]
- Feng, T.T.; Li, H.L.; Tan, J.; Liang, Y.F.; Zhu, W.Q.; Zhang, S.; Wu, M.Q. Synthesis, characterization and electrochemical behavior of Zn-doped MnO/C submicrospheres for lithium ion batteries. J. Alloys Compd. 2022, 897, 163153. [Google Scholar] [CrossRef]
- Kong, X.Z.; Pan, A.Q.; Wang, Y.P.; Selvakumaran, D.; Lin, J.D.; Cao, X.X.; Liang, S.Q.; Cao, G.Z. In situ formation of porous graphitic carbon wrapped MnO/Ni microsphere networks as binder-free anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 2018, 6, 12316–12322. [Google Scholar] [CrossRef]
- Kong, X.Z.; Wang, Y.P.; Lin, J.D.; Liang, S.Q.; Pan, A.Q.; Cao, G.Z. Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries. Electrochim. Acta 2018, 259, 419–426. [Google Scholar] [CrossRef]
- Zhang, X.D.; He, X.; Yin, S.; Cai, W.L.; Wang, Q.; Wu, H.; Wu, K.P.; Zhang, Y. Rational design of space-confined Mn-based heterostructures with synergistic interfacial charge transport and structural integrity for lithium storage. Inorg. Chem. 2022, 61, 8366–8378. [Google Scholar] [CrossRef]
- Fang, L.B.; Lan, Z.Y.; Guan, W.H.; Zhou, P.; Bahlawane, N.; Sun, W.P.; Lu, Y.H.; Liang, C.; Yan, M.; Jiang, Y.Z. Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 2019, 18, 107–113. [Google Scholar] [CrossRef]
- Shen, Y.H.; Jiang, Y.L.; Yang, Z.Z.; Dong, J.; Yang, W.; An, Q.Y.; Mai, L.Q. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage. Adv. Sci. 2022, 9, 2104504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.P.; Fang, S.F.; Guo, M.Y.; Fang, Z.; Qi, L.Y.; Guo, L.P.; Qin, Y.M.; Bao, H.F. Heterostructure MnO/MnSe nanoparticles encapsulated in a nitrogen-doped carbon shell for high-performance lithium/sodium-ion batteries. J. Energy Storage 2024, 82, 110584. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhao, Y.M.; Jin, Y.; Fan, Q.H.; Dong, Y.Z.; Kuang, Q. Bimetallic phosphide Ni2P/CoP@rGO heterostructure for high-performance lithium/sodium-ion batteries. J. Power Sources 2023, 560, 232715. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.B.; Wang, W.L.; Han, G.F.; Zhang, J.D.; Zhang, S.W.; Wang, J.C.; Du, Y. Design and construction of carbon-coated Fe3O4/Cr2O3 heterostructures nanoparticles as high-performance anodes for lithium storage. Small 2023, 19, 2304264. [Google Scholar] [CrossRef]
- Chen, C.; Xie, X.Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.Q.; Urbankowski, P.; Miao, L.; Jiang, J.J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 2018, 57, 1846–1850. [Google Scholar] [CrossRef]
- Zhu, J.K.; Tu, W.M.; Pan, H.F.; Zhang, H.; Liu, B.; Cheng, Y.P.; Deng, Z.; Zhang, H.N. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano 2020, 14, 5780–5787. [Google Scholar] [CrossRef]
- Wang, J.Y.; Tang, H.J.; Wang, H.; Yu, R.B.; Wang, D. Multi-shelled hollow micro-/nanostructures: Promising platforms for lithium-ion batteries. Mater. Chem. Front. 2017, 1, 414–430. [Google Scholar] [CrossRef]
- Ren, W.H.; Zheng, Z.P.; Xu, C.; Niu, C.J.; Wei, Q.L.; An, Q.Y.; Zhao, K.G.; Yan, M.Y.; Qin, M.S.; Mai, L.Q. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145–153. [Google Scholar] [CrossRef]
- Yang, B.J.; Chen, J.T.; Liu, B.; Ding, Y.X.; Tang, Y.; Yan, X.B. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors. J. Mater. Chem. A 2021, 9, 6352–6360. [Google Scholar] [CrossRef]
- Gao, L.L.; Ren, H.B.; Lu, X.J.; Joo, S.W.; Liu, T.X.; Huang, J.R. Heterostructure of NiSe2/MnSe nanoparticles distributed on cross-linked carbon nanosheets for high-performance sodium-ion battery. Appl. Surf. Sci. 2022, 599, 154067. [Google Scholar] [CrossRef]
- Li, H.S.; Hu, Z.Q.; Xia, Q.T.; Zhang, H.; Li, Z.H.; Wang, H.Z.; Li, X.K.; Zuo, F.K.; Zhang, F.L.; Wang, X.X.; et al. Operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries. Adv. Mater. 2021, 33, 2006629. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.H.; Wang, M.; Kou, Z.K.; Amiinu, I.S.; Mu, S.C. Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chem. Comm. 2016, 52, 12753–12756. [Google Scholar] [CrossRef] [PubMed]
- Si, L.Q.; Yan, K.; Li, C.L.; Huang, Y.F.; Pang, X.C.; Yang, X.M.; Sui, D.; Zhang, Y.S.; Wang, J.S.; Xu, C.C. Binder-free SiO2 nanotubes/carbon nanofibers mat as superior anode for lithium-ion batteries. Electrochim. Acta 2022, 404, 139747. [Google Scholar] [CrossRef]
- Lu, Y.; Ang, H.X.; Yan, Q.Y.; Fong, E. Bioinspired synthesis of hierarchically porous MoO2/Mo2C nanocrystal decorated N-doped carbon foam for lithium-oxygen batteries. Chem. Mater. 2016, 28, 5743–5752. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wu, H.; Huang, L.; Zhao, H.; Liu, Z.F.; Chen, X.C.; Liu, H.; Zhang, Y. Hierarchically porous N,S-codoped carbon-embedded dual phase MnO/MnS nanoparticles for efficient lithium ion storage. Inorg. Chem. 2018, 57, 7993–8001. [Google Scholar] [CrossRef]
- Shao, M.H. In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials. J. Power Sources 2014, 270, 475–486. [Google Scholar] [CrossRef]
- Cui, J.; Zheng, H.K.; He, K. In situ TEM study on conversion-type electrodes for rechargeable ion batteries. Adv. Mater. 2021, 33, 2000699. [Google Scholar] [CrossRef]
- Yuan, T.Z.; Jiang, Y.Z.; Sun, W.P.; Xiang, B.; Li, Y.; Yan, M.; Xu, B.; Dou, S.X. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv. Funct. Mater. 2016, 26, 2198–2206. [Google Scholar] [CrossRef]
- Linares, N.; Silvestre-Albero, A.M.; Serrano, E.; Silvestre-Albero, J.; García-Martínez, J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 2014, 43, 7681–7717. [Google Scholar] [CrossRef]
- Xiong, P.X.; Kang, Y.B.; Yao, N.; Chen, X.; Mao, H.Y.; Jang, W.S.; Halat, D.M.; Fu, Z.H.; Jung, M.H.; Jeong, H.W.; et al. Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 2023, 8, 1613–1625. [Google Scholar] [CrossRef]
- Zheng, F.C.; Yin, Z.C.; Xia, H.Y.; Bai, G.L.; Zhang, Y.G. Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chem. Eng. J. 2017, 327, 474–480. [Google Scholar] [CrossRef]
- Xiong, P.X.; Lin, C.Y.; Wei, Y.; Kim, J.H.; Jang, G.; Dai, K.; Zeng, L.X.; Huang, S.P.; Kwon, S.J.; Lee, S.Y.; et al. Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 2023, 8, 2718–2727. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Zhang, H.P.; Fu, L.J.; Wu, Y.P.; Wu, H.Q. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sources 2006, 159, 717–720. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.Z.; Zheng, S.; Hu, G.B.; Zhang, K.Y.; Luo, Y.; Qin, A.M. Hybrid structures of sisal fiber derived interconnected carbon nanosheets/MoS2/polyaniline as advanced electrode materials in lithium-ion batteries. Molecules 2021, 26, 3710. [Google Scholar] [CrossRef] [PubMed]
- Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Xiao, S.H.; Li, X.Y.; Li, Z.Z.; Li, X.R.; Zhang, W.S.; Xiang, Y.; Niu, X.B.; Chen, J.S. Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem. Eng. J. 2021, 417, 129279. [Google Scholar] [CrossRef]
- Zhang, K.; Park, M.H.; Zhou, L.M.; Lee, G.H.; Shin, J.Y.; Hu, Z.; Chou, S.L.; Chen, J.; Kang, Y.M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 2016, 55, 12822–12826. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Yang, S.; Wang, F.X.; Zhuang, X.D.; Müllen, K.; Feng, X.L. Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 2018, 8, 1702254. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Park, M.S.; Woo, H.S.; Sun, Y.K.; Kim, D.W. Closely coupled binary metal sulfide nanosheets shielded molybdenum sulfide nanorod hierarchical structure via eco-benign surface exfoliation strategy towards efficient lithium and sodium-ion batteries. Energy Storage Mater. 2021, 38, 344–353. [Google Scholar] [CrossRef]
- Wu, C.P.; Xie, K.X.; He, J.P.; Wang, Q.P.; Ma, J.M.; Yang, S.; Wang, Q.H. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021, 40, 48–58. [Google Scholar] [CrossRef]
- Liu, W.F.; Pang, Y.D.; Shi, Z.P.; Yue, H.Y.; Dong, H.Y.; Cao, Z.X.; Yang, Z.X.; Yang, S.T.; Yin, Y.H. Ultrafast kinetics in a PAN/MgFe2O4 flexible free-standing anode induced by heterojunction and oxygen vacancies. ACS Appl. Mater. Interfaces 2022, 14, 11575–11586. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Chen, P.; Wang, Q.Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.L.; Cao, D.X.; Yan, J.; Zhang, Q. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Adv. Energy Mater. 2021, 11, 2101712. [Google Scholar] [CrossRef]
- Jin, J.; Xiao, T.; Zhang, Y.F.; Zheng, H.; Wang, H.W.; Wang, R.; Gong, Y.S.; He, B.B.; Liu, X.H.; Zhou, K. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale 2021, 13, 19740–19770. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.B.; Sun, G.; Zhang, Y.M.; Hua, R.; Wang, X.T.; Wu, N.T.; Li, J.; Liu, G.L.; Guo, D.L.; Cao, A.G.; et al. Introduction of SnS2 to regulate the ferrous disulfide phase evolution for the construction of triphasic heterostructures enabling kinetically accelerated and durable sodium storage. Adv. Funct. Mater. 2024, 34, 2314679. [Google Scholar] [CrossRef]
- Hao, J.N.; Zhang, J.; Xia, G.L.; Liu, Y.J.; Zheng, Y.; Zhang, W.C.; Tang, Y.B.; Pang, W.K.; Guo, Z.P. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018, 12, 10430–10438. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.H.; Liu, H.D.; Xu, P.D.; Yang, L.T.; Pei, K.; Zeng, Q.W.; Feng, Y.Z.; Wang, P.; Che, R.C. Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 2019, 13, 11921–11934. [Google Scholar] [CrossRef]
- Ding, X.B.; Meng, F.B.; Zhou, Q.F.; Li, X.D.; Kuai, H.X.; Xiong, X.H. Complementary niobium-based heterostructure for ultrafast and durable lithium storage. Nano Energy 2024, 121, 109188. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Xu, Y.; Xu, J.; Guo, K.; Wu, N.; Cao, A.; Liu, G.; Liu, X. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules 2024, 29, 2228. https://doi.org/10.3390/molecules29102228
Guo D, Xu Y, Xu J, Guo K, Wu N, Cao A, Liu G, Liu X. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules. 2024; 29(10):2228. https://doi.org/10.3390/molecules29102228
Chicago/Turabian StyleGuo, Donglei, Yaya Xu, Jiaqi Xu, Kailong Guo, Naiteng Wu, Ang Cao, Guilong Liu, and Xianming Liu. 2024. "Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries" Molecules 29, no. 10: 2228. https://doi.org/10.3390/molecules29102228
APA StyleGuo, D., Xu, Y., Xu, J., Guo, K., Wu, N., Cao, A., Liu, G., & Liu, X. (2024). Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules, 29(10), 2228. https://doi.org/10.3390/molecules29102228

