Substrate Affinity Is Not Crucial for Therapeutic L-Asparaginases: Antileukemic Activity of Novel Bacterial Enzymes
Abstract
:1. Introduction
2. Results
2.1. Biochemical Properties of Tested L-Asparaginases
2.2. Preparation of Enzymes for Cell Line Studies
2.3. Antiproliferative Effect of L-Asparaginases
2.4. Proapoptotic Effect of L-Asparaginases
3. Discussion
4. Materials and Methods
4.1. Enzyme Expression and Purification
4.2. Preparation of Proteins for Human Cell Line Studies
4.3. Determination of Enzyme Kinetic Parameters and Thermal Stability
4.4. Cell Proliferation
4.5. Cell Apoptosis
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
References
- Kidd, J.G. Regression of Transplanted Lymphomas Induced in Vivo by Means of Normal Guinea Pig Serum. J. Exp. Med. 1953, 98, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Broome, J.D. Evidence That the L-Asparaginase Activity of Guinea Pig Serum Is Responsible for Its Antilymphoma Effects. Nature 1961, 191, 1114–1115. [Google Scholar] [CrossRef]
- Karamitros, C.S.; Labrou, N.E. Extracellular Expression and Affinity Purification of L-Asparaginase from E. chrysanthemi in E. coli. Sustain. Chem. Process. 2014, 2, 16. [Google Scholar] [CrossRef]
- Van Trimpont, M.; Peeters, E.; De Visser, Y.; Schalk, A.M.; Mondelaers, V.; De Moerloose, B.; Lavie, A.; Lammens, T.; Goossens, S.; Van Vlierberghe, P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers 2022, 14, 902. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, F.; Jahanafrooz, Z.; Mokhtarzadeh, A. Microbial L-Asparaginase as a Promising Enzyme for Treatment of Various Cancers. Appl. Microbiol. Biotechnol. 2022, 106, 5335–5347. [Google Scholar] [CrossRef] [PubMed]
- Blachier, J.; Cleret, A.; Guerin, N.; Gil, C.; Fanjat, J.M.; Tavernier, F.; Vidault, L.; Gallix, F.; Rama, N.; Rossignol, R.; et al. L-Asparaginase Anti-Tumor Activity in Pancreatic Cancer Is Dependent on Its Glutaminase Activity and Resistance Is Mediated by Glutamine Synthetase. Exp. Cell Res. 2023, 426, 113568. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ye, L.; Fan, J.; Zhang, X.; Wang, H.; Liao, S.; Song, P.; Wang, Z.; Wang, S.; Li, Y.; et al. Autophagy Suppression Potentiates the Anti-Glioblastoma Effect of Asparaginase in Vitro and in Vivo. Oncotarget 2017, 8, 91052–91066. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.S.; Doonan, L.B.; Pessoa, A.; de Oliveira, M.A.; Long, P.F. Structural and Functional Diversity of Asparaginases: Overview and Recommendations for a Revised Nomenclature. Biotechnol. Appl. Biochem. 2022, 69, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Loch, J.I.; Jaskolski, M. Structural and Biophysical Aspects of L-Asparaginases: A Growing Family with Amazing Diversity. IUCrJ 2021, 8, 514–531. [Google Scholar] [CrossRef]
- Yun, M.K.; Nourse, A.; White, S.W.; Rock, C.O.; Heath, R.J. Crystal Structure and Allosteric Regulation of the Cytoplasmic Escherichia coli L-Asparaginase I. J. Mol. Biol. 2007, 369, 794–811. [Google Scholar] [CrossRef]
- Jones, G.E.; Mortimer, R.K. Biochemical Properties of Yeast L-Asparaginase. Biochem. Genet. 1973, 9, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Schalk, A.M.; Nguyen, H.A.; Rigouin, C.; Lavie, A. Identification and Structural Analysis of an L-Asparaginase Enzyme from Guinea Pig with Putative Tumor Cell Killing Properties. J. Biol. Chem. 2014, 289, 33175–33186. [Google Scholar] [CrossRef] [PubMed]
- Karamitros, C.S.; Konrad, M. Human 60-KDa Lysophospholipase Contains an N-Terminal L-Asparaginase Domain That Is Allosterically Regulated by L-Asparagine. J. Biol. Chem. 2014, 289, 12962–12975. [Google Scholar] [CrossRef] [PubMed]
- Srikhanta, Y.N.; Atack, J.M.; Beacham, I.R.; Jennings, M.P. Distinct Physiological Roles for the Two L-Asparaginase Isozymes of Escherichia Coli. Biochem. Biophys. Res. Commun. 2013, 436, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Sodek, L.; Lea, P.J.; Miflin, B.J. Distribution and Properties of a Potassium-Dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants. Plant Physiol. 1980, 65, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Linhorst, A.; Lübke, T. The Human Ntn-Hydrolase Superfamily: Structure, Functions and Perspectives. Cells 2022, 11, 1592. [Google Scholar] [CrossRef] [PubMed]
- Loch, J.I.; Klonecka, A.; Kądziołka, K.; Bonarek, P.; Barciszewski, J.; Imiolczyk, B.; Brzezinski, K.; Gilski, M.; Jaskolski, M. Structural and Biophysical Studies of New L-Asparaginase Variants: Lessons from Random Mutagenesis of the Prototypic Escherichia coli Ntn-Amidohydrolase. Acta Crystallogr. Sect. D Struct. Biol. 2022, 78, 911–926. [Google Scholar] [CrossRef] [PubMed]
- Borek, D.; Jaskólski, M. Sequence Analysis of Enzymes with Asparaginase Activity. Acta Biochim. Pol. 2001, 48, 893–902. [Google Scholar] [CrossRef]
- Loch, J.I.; Worsztynowicz, P.; Sliwiak, J.; Grzechowiak, M.; Imiolczyk, B.; Pokrywka, K.; Chwastyk, M.; Gilski, M.; Jaskolski, M. Rhizobium Etli Has Two L-Asparaginases with Low Sequence Identity but Similar Structure and Catalytic Center. Acta Crystallogr. Sect. D Struct. Biol. 2023, 79, 775–791. [Google Scholar] [CrossRef]
- Tosta Pérez, M.; Herrera Belén, L.; Letelier, P.; Calle, Y.; Pessoa, A.; Farías, J.G. L-Asparaginase as the Gold Standard in the Treatment of Acute Lymphoblastic Leukemia: A Comprehensive Review. Med. Oncol. 2023, 40, 150. [Google Scholar] [CrossRef]
- Schalk, A.M.; Lavie, A. Structural and Kinetic Characterization of Guinea Pig L-Asparaginase Type III. Biochemistry 2014, 53, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.; Mittelman, S.D.; Parmentier, J.H.; Colombo, G.; Meli, M.; Whitmire, J.M.; Merrell, D.S.; Whitelegge, J.; Scotti, C. A Protease-Resistant Escherichia coli Asparaginase with Outstanding Stability and Enhanced Anti-Leukaemic Activity in Vitro. Sci. Rep. 2017, 7, 14479. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.; Meli, M.; Colombo, G.; Scotti, C. Revealing Escherichia coli Type II L-Asparaginase Active Site Flexible Loop in Its Open, Ligand-Free Conformation. Sci. Rep. 2021, 11, 18885. [Google Scholar] [CrossRef] [PubMed]
- Anishkin, A.; Vanegas, J.M.; Rogers, D.M.; Lorenzi, P.L.; Chan, W.K.; Purwaha, P.; Weinstein, J.N.; Sukharev, S.; Rempe, S.B. Catalytic Role of the Substrate Defines Specificity of Therapeutic L-Asparaginase. J. Mol. Biol. 2015, 427, 2867–2885. [Google Scholar] [CrossRef] [PubMed]
- Asselin, B.; Rizzari, C. Asparaginase Pharmacokinetics and Implications of Therapeutic Drug Monitoring. Leuk. Lymphoma 2015, 56, 2273–2280. [Google Scholar] [CrossRef] [PubMed]
- Kitto, G.B.; Smith, G.; Thiet, T.Q.; Mason, M.; Davidson, L. Tumor Inhibitory and Non Tumor Inhibitory L-Asparaginases from Pseudomonas Geniculata. J. Bacteriol. 1979, 137, 204–212. [Google Scholar] [CrossRef]
- Derst, C.; Henseling, J.; Röhm, K.-H. Engineering the Substrate Specificity of Escherichia coli Asparaginase II. Selective Reduction of Glutaminase Activity by Amino Acid Replacements at Position 248. Protein Sci. 2000, 9, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Morikawa, Y.; Fujio, T.; Tanaka, M. L-Asparaginase from E. coli: Part I. Crystallization and Properties. Agric. Biol. Chem. 1971, 35, 219–225. [Google Scholar] [CrossRef]
- Willis, R.C.; Woolfolk, C.A. Asparagine Utilization in Escherichia coli. J. Bacteriol. 1974, 118, 231–241. [Google Scholar] [CrossRef]
- Boyse, E.A.; Old, L.J.; Campbell, H.A.; Mashburn, L.T. Suppression of Murine Leukemias by L-Asparaginase. Incidence of Sensitivity among Leukemias of Various Types: Comparative Inhibitory Activities of Guinea Pig Serum L-Asparaginase and Escherichia coli L-Asparaginase. J. Exp. Med. 1967, 125, 17–31. [Google Scholar] [CrossRef]
- Sliwiak, J.; Worsztynowicz, P.; Pokrywka, K.; Loch, J.I.; Grzechowiak, M.; Jaskolski, M. Biochemical Characterization of L-Asparaginase Isoforms from Rhizobium Etli—The Boosting Effect of Zinc. Front. Chem. 2024, 12, 1373312. [Google Scholar] [CrossRef]
- Sidhu, J.; Gogoi, M.P.; Agarwal, P.; Mukherjee, T.; Saha, D.; Bose, P.; Roy, P.; Phadke, Y.; Sonawane, B.; Paul, P.; et al. Unsatisfactory Quality of E. coli Asparaginase Biogenerics in India: Implications for Clinical Outcomes in Acute Lymphoblastic Leukaemia. Pediatr. Blood Cancer 2021, 68, e29046. [Google Scholar] [CrossRef]
- Schnuchel, A.; Radcke, C.; Theobald, L.; Doeding, S. Quality Comparison of a State-of-the-Art Preparation of a Recombinant L-Asparaginase Derived from Escherichia coli with an Alternative Asparaginase Product. PLoS ONE 2023, 18, e0285948. [Google Scholar] [CrossRef] [PubMed]
- Aslanian, A.M.; Kilberg, M.S. Multiple Adaptive Mechanisms Affect Asparagine Synthetase Substrate Availability in Asparaginase-Resistant MOLT-4 Human Leukaemia Cells. Biochem. J. 2001, 67, 59–67. [Google Scholar] [CrossRef]
- Roberts, J.; Prager, M.D.; Bachynsky, N. The Antitumor Activity of Escherichia coli L-Asparaginase. Cancer Res. 1966, 26, 2213–2217. [Google Scholar] [PubMed]
- Medawar, C.V.; Mosegui, G.B.G.; Vianna, C.M.d.M.; da Costa, T.M.A. PEG-Asparaginase and Native Escherichia coli L-Asparaginase in Acute Lymphoblastic Leukemia in Children and Adolescents: A Systematic Review. Hematol. Transfus. Cell Ther. 2020, 42, 54–61. [Google Scholar] [CrossRef]
- Kalisz, K.; Alessandrino, F.; Beck, R.; Smith, D.; Kikano, E.; Ramaiya, N.H.; Tirumani, S.H. An Update on Burkitt Lymphoma: A Review of Pathogenesis and Multimodality Imaging Assessment of Disease Presentation, Treatment Response, and Recurrence. Insights Imaging 2019, 10, 56. [Google Scholar] [CrossRef]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M.; Zajac, B.; Henle, G.; Henle, W. Morphological and Virological Investigations on Cultured Burkitt Tumor Lymphoblasts (Strain Raji). JNCI J. Natl. Cancer Inst. 1966, 37, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Camellos, G.P.; Carbone, P.P.; Ziegler, Z.L. L-Asparaginase and Burkitt’s Lymphoma. Lancet 1969, 294, 380. [Google Scholar] [CrossRef]
- Carbone, P.P.; Haskell, C.M.; Leventhal, B.G.; Block, J.B.; Selawry, O.S. Clinical Experience with L-Asparaginase. Recent results cancer Res. 1970, 33, 236–243. [Google Scholar] [CrossRef]
- Perez-Bercoff, R.; Carrara, G.; Cioe, L.; Rita, G.; Caputo, A.; Castelli, L. L-Asparaginase-Induced Alterations of Burkitt’s Lymphoma Cells. J. Natl. Cancer Inst. 1973, 50, 833–840. [Google Scholar] [CrossRef]
- Métayer, L.E.; Brown, R.D.; Carlebur, S.; Burke, G.A.A.; Brown, G.C. Mechanisms of Cell Death Induced by Arginase and Asparaginase in Precursor B-Cell Lymphoblasts. Apoptosis 2019, 24, 145–156. [Google Scholar] [CrossRef]
- Sang, W.; Tu, D.; Zhang, M.; Qin, Y.; Yin, W.; Song, X.; Sun, C.; Yan, D.; Wang, X.; Zeng, L.; et al. L-Asparaginase Synergizes with Etoposide via the PI3K/Akt/MTOR Pathway in Epstein-Barr Virus-Positive Burkitt Lymphoma. J. Biochem. Mol. Toxicol. 2022, 36, e23117. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Hongo, T.; Yamada, S.; Watanabe, C.; Fujii, Y.; Ohzeki, T.; Horikoshi, Y.; Ito, T.; Yazaki, M.; Komada, Y.; et al. In Vitro Efficacy of L-Asparaginase in Childhood Acute Myeloid Leukaemia. Br. J. Haematol. 2003, 123, 802–809. [Google Scholar] [CrossRef]
- Willems, L.; Jacque, N.; Jacquel, A.; Neveux, N.; Maciel, T.T.; Lambert, M.; Schmitt, A.; Poulain, L.; Green, A.S.; Uzunov, M.; et al. Inhibiting Glutamine Uptake Represents an Attractive New Strategy for Treating Acute Myeloid Leukemia. Blood 2013, 122, 3521–3532. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Su, Y.; Lavie, A. Design and Characterization of Erwinia Chrysanthemi L-Asparaginase Variants with Diminished L-Glutaminase Activity. J. Biol. Chem. 2016, 291, 17664–17676. [Google Scholar] [CrossRef]
- Kotzia, G.A.; Labrou, N.E. Engineering Thermal Stability of L-Asparaginase by in Vitro Directed Evolution. FEBS J. 2009, 276, 1750–1761. [Google Scholar] [CrossRef] [PubMed]
- Emadi, A.; Law, J.Y.; Strovel, E.T.; Lapidus, R.G.; Jeng, L.J.B.; Lee, M.; Blitzer, M.G.; Carter-Cooper, B.A.; Sewell, D.; Van Der Merwe, I.; et al. Asparaginase Erwinia Chrysanthemi Effectively Depletes Plasma Glutamine in Adult Patients with Relapsed/Refractory Acute Myeloid Leukemia. Cancer Chemother. Pharmacol. 2018, 81, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; Hui, S.; Ghergurovich, J.M.; Fan, J.; Intlekofer, A.M.; White, R.M.; Rabinowitz, J.D.; Thompson, C.B.; Zhang, J. As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell Metab. 2018, 27, 428–438.e5. [Google Scholar] [CrossRef]
- Fonseca, M.H.G.; Fiúza, T.d.S.; Bath de Morais, S.; Souza, T.d.A.C.B.d.; Trevizani, R. Circumventing the Side Effects of L-Asparaginase. Biomed. Pharmacother. 2021, 139, 111616. [Google Scholar] [CrossRef]
- Darwesh, D.B.; Al-Awthan, Y.S.; Elfaki, I.; Habib, S.A.; Alnour, T.M.; Darwish, A.B.; Youssef, M.M. Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia Pseudomallei. J. Microbiol. Biotechnol. 2022, 32, 551–563. [Google Scholar] [CrossRef]
- Kataria, A.; Patel, A.K.; Kundu, B. Distinct Functional Properties of Secretory L-Asparaginase Rv1538c Involved in Phagosomal Survival of Mycobacterium tuberculosis. Biochimie 2021, 182, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Saeed, H.; Hemida, A.; El-Nikhely, N.; Abdel-Fattah, M.; Shalaby, M.; Hussein, A.; Eldoksh, A.; Ataya, F.; Aly, N.; Labrou, N.; et al. Highly Efficient Pyrococcus furiosus Recombinant L-Asparaginase with No Glutaminase Activity: Expression, Purification, Functional Characterization, and Cytotoxicity on THP-1, A549 and Caco-2 Cell Lines. Int. J. Biol. Macromol. 2020, 156, 812–828. [Google Scholar] [CrossRef] [PubMed]
- Husain, I.; Sharma, A.; Kumar, S.; Malik, F. Purification and Characterization of Glutaminase Free Asparaginase from Enterobacter cloacae: In-Vitro Evaluation of Cytotoxic Potential against Human Myeloid Leukemia HL-60 Cells. PLoS ONE 2016, 11, e0148877. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Patel, A.; Agarwal-Rajput, R.; Rawal, R.; Dave, B.; Gosai, H. Characterization, Anti-Proliferative Activity, and Bench-Scale Production of Novel PH-Stable and Thermotolerant L-Asparaginase from Bacillus licheniformis PPD37. Appl. Biochem. Biotechnol. 2023, 195, 3122–3141. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, L.; Lin, Q. Antitumor Activity and Ability to Prevent Acrylamide Formation in Fried Foods of Asparaginase from Soybean Root Nodules. J. Food Biochem. 2019, 43, e12756. [Google Scholar] [CrossRef]
- Mazloum-Ravasan, S.; Madadi, E.; Fathi, Z.; Mohammadi, A.; Mosafer, J.; Mansoori, B.; Mokhtarzadeh, A.; Baradaran, B.; Darvishi, F. The Effect of Yarrowia lipolytica L-Asparaginase on Apoptosis Induction and Inhibition of Growth in Burkitt’s Lymphoma Raji and Acute Lymphoblastic Leukemia MOLT-4 Cells. Int. J. Biol. Macromol. 2020, 146, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, F.; Faraji, N.; Shamsi, F. Production and Structural Modeling of a Novel Asparaginase in Yarrowia lipolytica. Int. J. Biol. Macromol. 2019, 125, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.S.; Khan, J.A.; Al-Ghamdi, M.A.; Khan, M.I.; Zeyadi, M.A. Studies on the Recombinant Production and Anticancer Activity of Thermostable L-Asparaginase I from Pyrococcus abyssi. Braz. J. Biol. 2022, 82, e244735. [Google Scholar] [CrossRef]
- Loch, J.I.; Imiolczyk, B.; Sliwiak, J.; Wantuch, A.; Bejger, M.; Gilski, M.; Jaskolski, M. Crystal Structures of the Elusive Rhizobium etli L-Asparaginase Reveal a Peculiar Active Site. Nat. Commun. 2021, 12, 6717. [Google Scholar] [CrossRef]
- Loch, J.I.; Ściuk, A.; Kilichowska, M.; Pieróg, I.; Łukaszczyk, W.; Zimowska, K.; Jaskolski, M. Probing the Enzymatic Activity and Maturation Process of the EcAIII Ntn-Amidohydrolase Using Local Random Mutagenesis. Acta Biochim. Pol. 2024, 72, 12299. [Google Scholar] [CrossRef] [PubMed]
- Goldring, J.P.D. Concentrating Proteins by Salt, Polyethylene Glycol, Solvent, Sds Precipitation, Three-Phase Partitioning, Dialysis, Centrifugation, Ultrafiltration, Lyophilization, Affinity Chromatography, Immunoprecipitation or Increased Temperature for Protein Isolation, Drug Interaction, and Proteomic and Peptidomic Evaluation. Methods Mol. Biol. 2019, 1855, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Wlodarczyk, S.R.; Costa-Silva, T.A.; Pessoa-Jr, A.; Madeira, P.; Monteiro, G. Effect of Osmolytes on the Activity of Anti-Cancer Enzyme L-Asparaginase II from Erwinia chrysanthemi. Process Biochem. 2019, 81, 123–131. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, Y.; Wei, Y.; Chen, X.; Xu, J.; Xu, X. Development of a Thermally Stable Formulation for L-Asparaginase Storage in Aqueous Conditions. J. Mol. Catal. B Enzym. 2015, 122, 8–14. [Google Scholar] [CrossRef]
- Flores-Santos, J.C.; Moguel, I.S.; Monteiro, G.; Pessoa, A.; Vitolo, M. Improvement in Extracellular Secretion of Recombinant L-Asparaginase II by Escherichia coli BL21 (DE3) Using Glycine and n-Dodecane. Brazilian J. Microbiol. 2021, 52, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Mamat, U.; Woodard, R.W.; Wilke, K.; Souvignier, C.; Mead, D.; Steinmetz, E.; Terry, K.; Kovacich, C.; Zegers, A.; Knox, C. Endotoxin-Free Protein Production—ClearColiTM Technology. Nat. Methods 2013, 10, 916. [Google Scholar] [CrossRef]
- Sampath, V.P. Bacterial Endotoxin-Lipopolysaccharide; Structure, Function and Its Role in Immunity in Vertebrates and Invertebrates. Agric. Nat. Resour. 2018, 52, 115–120. [Google Scholar] [CrossRef]
- Janicki, M.; Ściuk, A.; Zielezinski, A.; Ruszkowski, M.; Ludwików, A.; Karlowski, W.M.; Jaskolski, M.; Loch, J.I. The Effects of Nature-Inspired Amino Acid Substitutions on Structural and Biochemical Properties of the E. coli L-Asparaginase EcAIII. Protein Sci. 2023, 32, e4647. [Google Scholar] [CrossRef] [PubMed]
- Van Trimpont, M.; Schalk, A.M.; De Visser, Y.; Nguyen, H.A.; Reunes, L.; Vandemeulebroecke, K.; Peeters, E.; Su, Y.; Lee, H.; Lorenzi, P.L.; et al. In Vivo Stabilization of a Less Toxic Asparaginase Variant Leads to a Durable Antitumor Response in Acute Leukemia. Haematologica 2023, 108, 409. [Google Scholar] [CrossRef]
- Horvath, T.D.; Chan, W.K.; Pontikos, M.A.; Martin, L.A.; Du, D.; Tan, L.; Konopleva, M.; Weinstein, J.N.; Lorenzi, P.L. Assessment of L-Asparaginase Pharmacodynamics in Mouse Models of Cancer. Metabolites 2019, 9, 10. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Y.; Zhang, L.; Zhang, F.; Gao, W. Thermoresponsive Polypeptide Fused L-Asparaginase with Mitigated Immunogenicity and Enhanced Efficacy in Treating Hematologic Malignancies. Adv. Sci. 2023, 10, 2300469. [Google Scholar] [CrossRef] [PubMed]
- Cantor, J.R.; Stone, E.M.; Chantranupong, L.; Georgiou, G. The Human Asparaginase-like Protein 1 HASRGL1 Is an Ntn Hydrolase with β-Aspartyl Peptidase Activity. Biochemistry 2009, 48, 11026–11031. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Km [mM] | kcat [s−1] | kcat/Km [mM−1s−1] |
---|---|---|---|
EcAII | 0.012 ± 0.002 | 39 ± 1 | 3301 ± 561 |
EcAIII | 17.66 ± 1.87 | 5.77 ± 0.19 | 0.33 ± 0.10 |
KpAIII | 42.95 ± 7.77 | 10.44 ± 0.96 | 0.24 ± 0.12 |
ReAIV | 7.16 ± 2.03 | 9.98 ± 0.61 | 1.39 ± 0.48 |
ReAV | 24.81 ± 3.22 | 28.53 ± 1.60 | 1.15 ± 0.21 |
Enzyme | Km [mM] | kcat [s−1] | kcat/Km [mM−1s−1] |
---|---|---|---|
EcAIII | 3.57 ± 0.58 | 0.112 ± 0.007 | 0.031 ± 0.007 |
KpAIII | 2.44 ± 0.47 | 0.017 ± 0.003 | 0.007 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ściuk, A.; Wątor, K.; Staroń, I.; Worsztynowicz, P.; Pokrywka, K.; Sliwiak, J.; Kilichowska, M.; Pietruszewska, K.; Mazurek, Z.; Skalniak, A.; et al. Substrate Affinity Is Not Crucial for Therapeutic L-Asparaginases: Antileukemic Activity of Novel Bacterial Enzymes. Molecules 2024, 29, 2272. https://doi.org/10.3390/molecules29102272
Ściuk A, Wątor K, Staroń I, Worsztynowicz P, Pokrywka K, Sliwiak J, Kilichowska M, Pietruszewska K, Mazurek Z, Skalniak A, et al. Substrate Affinity Is Not Crucial for Therapeutic L-Asparaginases: Antileukemic Activity of Novel Bacterial Enzymes. Molecules. 2024; 29(10):2272. https://doi.org/10.3390/molecules29102272
Chicago/Turabian StyleŚciuk, Anna, Kinga Wątor, Izabela Staroń, Paulina Worsztynowicz, Kinga Pokrywka, Joanna Sliwiak, Marta Kilichowska, Kamila Pietruszewska, Zofia Mazurek, Anna Skalniak, and et al. 2024. "Substrate Affinity Is Not Crucial for Therapeutic L-Asparaginases: Antileukemic Activity of Novel Bacterial Enzymes" Molecules 29, no. 10: 2272. https://doi.org/10.3390/molecules29102272
APA StyleŚciuk, A., Wątor, K., Staroń, I., Worsztynowicz, P., Pokrywka, K., Sliwiak, J., Kilichowska, M., Pietruszewska, K., Mazurek, Z., Skalniak, A., Lewandowski, K., Jaskolski, M., Loch, J. I., & Surmiak, M. (2024). Substrate Affinity Is Not Crucial for Therapeutic L-Asparaginases: Antileukemic Activity of Novel Bacterial Enzymes. Molecules, 29(10), 2272. https://doi.org/10.3390/molecules29102272