Chemical Investigation on the Volatile Part of the CO2 Supercritical Fluid Extract of Infected Aquilaria sinensis (Chinese Agarwood)
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedures
3.2. Plant Material and Extraction Procedure
3.3. GC-MS Analyses
3.4. GC-FID Analyses
3.5. SFE Extract Fractionation
3.6. Syntheses of Alcohol 10 and 7-epi-Neopetasane 8
3.7. Reduction of 7-epi-Neopetasane 8
3.8. Oxidation of Alcohol 4
3.9. Reduction of Neopetasane 6
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Yu, Z.; Wang, C.; Wu, C.; Guo, P.; Wei, J. Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules 2018, 23, 342. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Y.Z.H.-Y.; Kerr, P.G.; Abbas, P.; Mohd Salleh, H. Aquilaria Spp. (Agarwood) as Source of Health Beneficial Compounds: A Review of Traditional Use, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef] [PubMed]
- Näf, R. The Volatile and Semi-Volatile Constituents of Agarwood, the Infected Heartwood of Aquilaria Species: A Review. Flavour. Fragr. J. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.-Q.; Wang, H.; Mei, W.-L.; Dai, H.-F. Natural Products in Agarwood and Aquilaria Plants: Chemistry, Biological Activities and Biosynthesis. Nat. Prod. Rep. 2021, 38, 528–565. [Google Scholar] [CrossRef] [PubMed]
- Gunmu, W. Chapter 1. South to Nan Yüeh 221-111 B.C. In The Nanhai Trade. Early Chinese Trade in the South China Sea; Times Media Private Ltd., under the imprint of Eastern University Press: Singapore, 2003; p. 8. [Google Scholar]
- Tian, J.; Wang, Z. Medical Culture about Lignum Aquilariae Resinatum and Its Maritime Silk Road. Chin. Med. Cult. 2020, 3, 220–224. [Google Scholar] [CrossRef]
- Antonopolou, M.; Compton, J.; Al-Mubarak, R. TRAFFIC Report. The Trade and Use of Agarwood (Oudh) in the United Arab Emirates; TRAFFIC Southeast Asia: Petaling Jaya, Malaysia, 2010. [Google Scholar]
- Obringer, F. Parfums de Chine, La Culture de L’encens au Temps des Empereurs; Paris Musées; Flammarion: Paris, France, 2018; ISBN 978-2-7596-0381-7. [Google Scholar]
- Wetwitayaklung, P.; Thavanapong, N.; Charoenteeraboon, J. Chemical Constituents and Antimicrobial Activity of Essential Oil and Extracts of Heartwood of Aquilaria crassna Obtained from Water Distillation and Supercritical Fluid Carbon Dioxide Extraction. Silpakorn U Sci. Tech. J. 2009, 3, 25–33. [Google Scholar]
- Pham, T.-H.; Le Quang, D.; Le, T.T.; Vu, H.D. Supercritical CO2 Extraction and Characterization of Agarwood Extract Derived-from Vietnamese Aquilaria crassna Woodchips. Chiang Mai J. Sci. 2020, 47, 1001–1011. [Google Scholar]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID Quantification Technique without Authentic Samples Using Predicted Response Factors: Rapid GC-FID Quantification Technique. Flavour. Fragr. J. 2012, 27, 290–296. [Google Scholar] [CrossRef]
- Mei, W.-L.; Yang, D.-L.; Wang, H.; Yang, J.-L.; Zeng, Y.-B.; Guo, Z.-K.; Dong, W.-H.; Li, W.; Dai, H.-F. Characterization and Determination of 2-(2-Phenylethyl)Chromones in Agarwood by GC-MS. Molecules 2013, 18, 12324–12345. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakahara, S. Study on the Volatiles Obtained by the Pyrolysis of Agarwood. In Proceedings of the IXth International Congress of Essential Oils, Singapore, 13–17 March 1983; p. 17. [Google Scholar]
- Yang, J.S.; Chen, Y.W. Studies on the Constituents of Aquilaria sinensis (Lour.) Gilg. I. Isolation and Structure Elucidation of Two New Sesquiterpenes, Baimuxinic Acid and Baimuxinal. Acta Pharm. Sin. 1983, 18, 191–198. [Google Scholar]
- Nagashima, T.; Kawasaki, I.; Yoshida, T.; Nakanishi, T.; Yoneda, K.; Miura, I. New Sesquiterpenes from Agarwood. In Proceedings of the IXth International Congress of Essential Oils, Singapore, 13–17 March 1983; p. 12. [Google Scholar]
- Bohlmann, F.; Zdero, C.; Cuatrecasas, J.; King, R.M.; Robinson, H. Neue Sesquiterpene Und Norditerpene Aus Vertretern Der Gatturn libanothamnus. Phytochemistry 1980, 19, 1145. [Google Scholar] [CrossRef]
- Wu, B.; Lee, J.G.; Lim, C.J.; Jia, S.D.; Kwon, S.W.; Hwang, G.S.; Park, J.H. Sesquiterpenoids and 2-(2-Phenylethyl)-4H-Chromen-4-One (=2-(2-Phenylethyl)-4H-1-Benzopyran-4-One) Derivatives from Aquilaria malaccensis Agarwood. Helv. Chim. Acta 2012, 95, 636–642. [Google Scholar] [CrossRef]
- Zhao, H.; Peng, Q.; Han, Z.; Yang, L.; Wang, Z. Three New Sesquiterpenoids and One New Sesquiterpenoid Derivative from Chinese Eaglewood. Molecules 2016, 21, 281. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.J.; Becker, H.; Connolly, J.D.; Rycroft, D.S. (+)-(4S*,5R*,7S*,8R*)-Eremophila-9,11-Dien-8alpha-Ol from the Liverwort Marsupella emarginata. Phytochemistry 1992, 31, 4027–4028. [Google Scholar] [CrossRef]
- Nagashima, F.; Ishimaru, A.; Asakawa, Y. Sesquiterpenoids from the Liverwort Marsupella aquatzaca. Phytochemistry 1994, 37, 777–779. [Google Scholar] [CrossRef]
- Ishihara, M.; Tsuneya, T.; Uneyama, K. Fragrant Sesquiterpenes from Agarwood. Phytochemistry 1993, 33, 1147–1155. [Google Scholar] [CrossRef]
- Nagashima, T.; Yoshida, T. (+)- or (-)-6,7-Dimethyl-4-Isopropylidene-Bicyclo(4.4.0)Deca-1,9-Dien-3-One. JPS5927847A, 1984. [Google Scholar]
- Duhamel, P.; Dujardin, G.; Hennequin, L.; Poirier, J.-M. Lewis Acid Catalysed Michael-Type Addition. A New Regio- and Diastereo-Selective Annulation Method Using Methyl Vinyl Ketone. J. Chem. Soc. Perkin Trans. 1 1992, 3, 387–396. [Google Scholar] [CrossRef]
- Hagiwara, H.; Uda, H.; Kodama, T. Synthetic Study on Several Eremophilane Sesquiterpenes Using a Common Intermediate. J. Chem. Soc. Perkin Trans. 1 1980, 963–977. [Google Scholar] [CrossRef]
- Schenato, R.A.; dos Santos, É.M.; Tenius, B.S.M.; Costa, P.R.R.; Caracelli, I.; Zukerman-Schpector, J. A Practical and Efficient Preparation of (−)-(4aS,5R)-4,4a,5,6,7,8-Hexahydro-4a,5-Dimethyl-2(3H)-Naphthalenone: A Key Intermediate in the Synthesis of (−)-Dehydrofukinone. Tetrahedron Asymmetry 2001, 12, 579–584. [Google Scholar] [CrossRef]
- Torii, S.; Inokuchi, T.; Yamafuji, T. Functionalization of Trans-Decalin. III. A Stereospecific Preparation of Vicinal Cis Two Methyl Groups of Eremophillane Skeleton, Leading to Dl-Dehydrofukinone. Bull. Chem. Soc. Jpn. 1979, 52, 2640–2645. [Google Scholar] [CrossRef]
- Reich, H.J.; Eisenhart, E.K.; Olson, R.E.; Kelly, M.J. Silyl Ketone Chemistry. Preparation and Reactions of Silyl Allenol Ethers. Diels-Alder Reactions of Siloxy Vinylallenes Leading to Sesquiterpenes. J. Am. Chem. Soc. 1986, 108, 7791–7800. [Google Scholar] [CrossRef] [PubMed]
- Inori, Y.; Takikawa, H.; Ogura, Y. New Synthesis of (±)-Karanone, an Important Aroma Compound in Agarwood. Biosci. Biotechnol. Biochem. 2023, 87, 371–377. [Google Scholar] [CrossRef]
- Paquette, L.A.; Wang, T.-Z.; Philippo, C.M.G.; Wang, S. Total Synthesis of the Cembranoid Diterpene Lactone (+)-Cleomeolide. Some Remarkable Conformational Features of Nine-Membered Belts Linked in 2,6-Fashion to a Methylenecyclohexane Core. J. Am. Chem. Soc. 1994, 116, 3367–3374. [Google Scholar] [CrossRef]
- Neuenschwander, M.; Neuenschwander, A.; Steinegger, E. Struktur der Sesquiterpene von Petasites hybridus (L.) G. M. et SCH.: Neopetasol—Abkömmlinge. Helv. Chim. Acta 1979, 62, 627–634. [Google Scholar] [CrossRef]
- Capuzzo, A.; Maffei, M.; Occhipinti, A. Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules 2013, 18, 7194–7238. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.; Yang, R.; Zhao, Y.; Cheng, Y.; Zhang, Z.; He, L. Petasins from the Rhizomes of Ligularia fischeri and Its Derivatives. Rec. Nat. Prod. 2014, 8, 156–164. [Google Scholar]
- Saito, Y.; Ichihara, M.; Okamoto, Y.; Gong, X.; Kuroda, C.; Tori, M. Four New Eremophilane-Type Alcohols from Cremanthodium Helianthus Collected in China. Nat. Prod. Commun. 2012, 7, 831–833. [Google Scholar] [CrossRef]
RI a | RILitt b | Compound | % c | Identification d |
---|---|---|---|---|
929 | 926 | benzaldehyde | 0.12 | RI, MS |
1012 | 1013 | salicylaldehyde | 0.03 | RI, MS |
1205 | 1199 | 4-phenyl-butan-2-one | 0.20 | RI, MS |
1347 | 1347 | vanillin | 0.02 | RI, MS |
1457 | 1474 | 4,5-diepi-aristolochene | 0.09 | RI, MS |
1595 | 1607 | 10-epi-γ-eudesmol | 0.14 | RI, MS |
1608 | 1611 | γ-eudesmol | 0.11 | RI, MS |
1612 | 1628 | agarospirol | 0.43 | RI, MS |
1615 | 1631 | hinesol | 0.27 | RI, MS |
1620 | jinkoh eremol | 0.34 | RI, MS | |
1624 | 1628 | β-eudesmol | 0.98 | RI, MS |
1628 | 1636 | kusunol (valerianol) | 1.24 | RI, MS |
1640 | 14β,15β-dimethyl-7αH-eremophila-9,11-dien-8β-ol 4 | 0.67 | RI, MS, NMR | |
1655 | isobaimuxinal | 0.55 | RI, MS | |
1711 | neopetasane 6 | 0.72 | RI, MS, NMR | |
1716 | baimuxinol | 0.02 | RI, MS | |
1738 | 1738 | cryptomeridiol | 1.20 | RI, MS |
1763 | dihydrokaranone 7 | 0.80 | RI, MS, NMR | |
1791 | 1786 | oxo-agarospirol (baimuxinal) 1 | 1.90 | RI, MS |
1835 | dihydrocolumellarin | 0.90 | RI, MS | |
1896 | 12,15-dioxo-α-selinene 3 | 1.58 | RI, MS, NMR | |
1924 | 12,15-dioxo-selinan-4,11-diene 2 | 2.27 | RI, MS, NMR | |
1964 | 1,5-diphenyl-3-pentanone | 0.08 | RI, MS | |
2106 | 1,5-diphenyl-1(E)-penten-3-one | 0.35 | RI, MS | |
2266 | 2296 | 2-(2-phenylethyl)chromone | 11.01 | RI, MS |
2464 | 5,8-dihydroxy-2-(2-phenylethyl)chromone e | 0.08 | MS | |
2493 | 2-(methoxyphenylethyl)chromone f | 0.15 | MS | |
2524 | methoxy-2-(2-phenylethyl)chromone f | 4.02 | MS | |
2533 | 2-(methoxyphenylethyl)chromone f | 3.62 | MS | |
2562 | methoxy-2-(2-phenylethyl)chromone f | 0.10 | MS | |
2772 | 6-methoxy-2-(4-methoxyphenethyl)chromone e | 0.13 | MS | |
2782 | 6,7-dimethoxy-2-(2-phenylethyl)chromone e | 1.69 | MS | |
2808 | squalene | 0.12 | MS | |
3018 | dimethoxy-2-(methoxyphenethyl)chromone f | 0.11 | MS |
No a | NMR Data | |||
---|---|---|---|---|
13C | 1H | COSY | HMBC | |
1a | 32.23 | 2.01–1.95 (multiplet, 1H) | H-2 | C-2, C-3, C-9, C-10 |
1b | 2.30–2.21 (multiplet, 1H) | H-2 | ||
2a | 29.31 | 1.36–1.24 (multiplet, 1H) | H-1 | C-1, C-10 |
2b | 1.87–1.80 (multiplet, 1H) | H-1 | ||
3a | 31.07 | 1.60–1.46 (overlapping peaks, 2H) | / b | / b |
3b | 1.73–1.66 (overlapping peaks, 2H) | |||
4 | 37.61 | 1.64–1.58 (multiplet, 1H) | H-15 | C-5, C-15 |
5 | 39.66 | / | / | / |
6a | 31.27 | 1.60–1.46 (overlapping peaks, 2H) | / b | / b |
6b | 1.73–1.66 (overlapping peaks, 2H) | |||
7 | 41.95 | 2.21–2.11 (multiplet, 1H) | H-8 | C-9, C-10 |
8 | 64.20 | 4.00 (ddd, J = 5.9, 3.1, 1.3 Hz, 1H) | H-7, H-9 | |
9 | 119.09 | 5.54 (dd, J = 6.0, 1.3 Hz, 1H) | H-8 | C-1, C-5, C-7, C-8 |
10 | 152.34 | / | / | / |
11 | 146.45 | / | / | / |
12a | 111.60 | 4.94–4.91 (multiplet, 1H) | H-13 | C-7, C-13 |
12b | 4.78–4.76 (multiplet, 1H) | H-13 | ||
13 | 22.78 | 1.76 (broad s, 3H) | H-12 | C-7, C-11, C-12 |
14 | 20.82 | 0.92 (s, 3H) | / | C-4–C-6 |
15 | 15.98 | 0.76 (d, J = 6.7 Hz, 3H) | H-4 | C-3–C-5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenović, M.Z.; Huang, O.; Wang, B.; Ginestet, A.; Desbiaux, D.; Baldovini, N. Chemical Investigation on the Volatile Part of the CO2 Supercritical Fluid Extract of Infected Aquilaria sinensis (Chinese Agarwood). Molecules 2024, 29, 2297. https://doi.org/10.3390/molecules29102297
Mladenović MZ, Huang O, Wang B, Ginestet A, Desbiaux D, Baldovini N. Chemical Investigation on the Volatile Part of the CO2 Supercritical Fluid Extract of Infected Aquilaria sinensis (Chinese Agarwood). Molecules. 2024; 29(10):2297. https://doi.org/10.3390/molecules29102297
Chicago/Turabian StyleMladenović, Marko Z., Ou Huang, Bo Wang, Alexandre Ginestet, Didier Desbiaux, and Nicolas Baldovini. 2024. "Chemical Investigation on the Volatile Part of the CO2 Supercritical Fluid Extract of Infected Aquilaria sinensis (Chinese Agarwood)" Molecules 29, no. 10: 2297. https://doi.org/10.3390/molecules29102297
APA StyleMladenović, M. Z., Huang, O., Wang, B., Ginestet, A., Desbiaux, D., & Baldovini, N. (2024). Chemical Investigation on the Volatile Part of the CO2 Supercritical Fluid Extract of Infected Aquilaria sinensis (Chinese Agarwood). Molecules, 29(10), 2297. https://doi.org/10.3390/molecules29102297