Narrowband Organic/Inorganic Hybrid Afterglow Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cor-MeOBP Material Fabrication and Photophysical Measurements
2.2. Cor-MeOBP-QDs Material Fabrication
2.3. Photophysical Property of Cor-MeOBP-QDs Materials
2.4. Photophysical Mechanism in Cor-MeOBP-QDs Narrowband Afterglow System
2.5. TBA-DA-QDs Material Fabrication and Photophysical Measurements
2.6. Material Functions
3. Materials and Methods
3.1. Materials
3.2. Physical Measurements and Instrumentation
3.3. Preparation of the Two-Component Afterglow System
3.4. Preparation of Three-Component Afterglow Materials by Doping QDs into Afterglow System
3.5. Preparation of Cor-PMMA-QDs Organic Afterglow Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yam, V.W.-W.; Au, V.K.-M.; Leung, S.Y.-L. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem. Rev. 2015, 115, 7589–7728. [Google Scholar] [CrossRef]
- Zhang, G.; Palmer, G.M.; Dewhirst, M.W.; Fraser, C.L. A Dual-Emissive-Materials Design Concept Enables Tumour Hypoxia Imaging. Nat. Mater. 2009, 8, 747–751. [Google Scholar] [CrossRef]
- Zhen, X.; Tao, Y.; An, Z.; Chen, P.; Xu, C.; Chen, R.; Huang, W.; Pu, K. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Adv. Mater. 2017, 29, 1606665. [Google Scholar] [CrossRef]
- An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; et al. Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence. Nat. Mater. 2015, 14, 685–690. [Google Scholar] [CrossRef]
- Gan, N.; Shi, H.; An, Z.; Huang, W. Recent Advances in Polymer-Based Metal-Free Room-Temperature Phosphorescent Materials. Adv. Funct. Mater. 2018, 28, 1802657. [Google Scholar] [CrossRef]
- Hirata, S. Recent Advances in Materials with Room-Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization. Adv. Opt. Mater. 2017, 5, 1700116. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Tian, H. Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence. Acc. Chem. Res. 2019, 52, 738–748. [Google Scholar] [CrossRef]
- Wang, X.-F.; Xiao, H.; Chen, P.-Z.; Yang, Q.-Z.; Chen, B.; Tung, C.-H.; Chen, Y.-Z.; Wu, L.-Z. Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. J. Am. Chem. Soc. 2019, 141, 5045–5050. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Yang, J.; Fang, M.; Ding, D.; Tang, B.Z.; Li, Z. High Performance of Simple Organic Phosphorescence Host–Guest Materials and Their Application in Time-Resolved Bioimaging. Adv. Mater. 2021, 33, 2007811. [Google Scholar] [CrossRef]
- Yu, Y.; Kwon, M.S.; Jung, J.; Zeng, Y.; Kim, M.; Chung, K.; Gierschner, J.; Youk, J.H.; Borisov, S.M.; Kim, J. Room-Temperature-Phosphorescence-Based Dissolved Oxygen Detection by Core-Shell Polymer Nanoparticles Containing Metal-Free Organic Phosphors. Angew. Chem. Int. Ed. 2017, 56, 16207–16211. [Google Scholar] [CrossRef]
- Zhao, W.; He, Z.; Tang, B.Z. Room-Temperature Phosphorescence from Organic Aggregates. Nat. Rev. Mater. 2020, 5, 869–885. [Google Scholar] [CrossRef]
- Han, J.; Xia, A.; Huang, Y.; Ni, L.; Chen, W.; Jin, Z.; Yang, S.; Jin, F. Simultaneous Visualization of Multiple Gene Expression in Single Cells Using an Engineered Multicolor Reporter Toolbox and Approach of Spectral Crosstalk Correction. ACS Synth. Biol. 2019, 8, 2536–2546. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Y.; Xu, W.; Ye, R.; Hua, Y.; Deng, D.; Chen, L.; Prasad, P.N.; Xu, S. Manipulation of Time-Dependent Multicolour Evolution of X-Ray Excited Afterglow in Lanthanide-Doped Fluoride Nanoparticles. Nat. Commun. 2022, 13, 5739. [Google Scholar] [CrossRef]
- Lei, Y.; Dai, W.; Guan, J.; Guo, S.; Ren, F.; Zhou, Y.; Shi, J.; Tong, B.; Cai, Z.; Zheng, J.; et al. Wide-Range Color-Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angew. Chem. Int. Ed. 2020, 59, 16054–16060. [Google Scholar] [CrossRef]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef]
- Chan, C.-Y.; Tanaka, M.; Lee, Y.-T.; Wong, Y.-W.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Stable Pure-Blue Hyperfluorescence Organic Light-Emitting Diodes with High-Efficiency and Narrow Emission. Nat. Photonics 2021, 15, 203–207. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, M.; Zhang, Y.; Zhang, C.; Gao, Z.; He, F.; Xue, X.; Li, H.; Li, P.; Xie, G.; et al. Multicolor Hyperafterglow from Isolated Fluorescence Chromophores. Nat. Commun. 2023, 14, 475. [Google Scholar] [CrossRef]
- Zou, X.; Gan, N.; Dong, M.; Huo, W.; Lv, A.; Yao, X.; Yin, C.; Wang, Z.; Zhang, Y.; Chen, H.; et al. Narrowband Organic Afterglow via Phosphorescence Förster Resonance Energy Transfer for Multifunctional Applications. Adv. Mater. 2023, 35, 2210489. [Google Scholar] [CrossRef]
- Wang, G.; Ding, S.; Li, J.; Ye, Z.; Xia, W.; Chen, X.; Zhang, K. A Narrow-Band Deep-Blue MRTADF-Type Organic Afterglow Emitter. Chem. Commun. 2023, 59, 12302–12305. [Google Scholar] [CrossRef]
- Bolton, O.; Lee, K.; Kim, H.-J.; Lin, K.Y.; Kim, J. Activating Efficient Phosphorescence from Purely Organic Materials by Crystal Design. Nat. Chem. 2011, 3, 205–210. [Google Scholar] [CrossRef]
- Ceroni, P. Design of Phosphorescent Organic Molecules: Old Concepts under a New Light. Chem 2016, 1, 524–526. [Google Scholar] [CrossRef]
- Ma, H.; Peng, Q.; An, Z.; Huang, W.; Shuai, Z. Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. J. Am. Chem. Soc. 2019, 141, 1010–1015. [Google Scholar] [CrossRef]
- Wang, J.; Gu, X.; Ma, H.; Peng, Q.; Huang, X.; Zheng, X.; Sung, S.H.P.; Shan, G.; Lam, J.W.Y.; Shuai, Z.; et al. A Facile Strategy for Realizing Room Temperature Phosphorescence and Single Molecule White Light Emission. Nat. Commun. 2018, 9, 2963. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, C.; Li, W.; Mao, Z.; Ge, X.; Huang, Q.; Deng, H.; Zhao, J.; Gu, F.L.; Zhang, Y.; et al. Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52% via Intramolecular Halogen Bonding. Angew. Chem. Int. Ed. 2020, 59, 17451–17455. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Gao, H.; Ma, X. Recent Progress on Pure Organic Room Temperature Phosphorescent Polymers. Aggregate 2021, 2, e38. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z. Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. Acc. Chem. Res. 2020, 53, 962–973. [Google Scholar] [CrossRef]
- Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous Pure Organic Polymers for Heavy-Atom-Free Efficient Room-Temperature Phosphorescence Emission. Angew. Chem. Int. Ed. 2018, 57, 10854–10858. [Google Scholar] [CrossRef]
- Bian, L.; Shi, H.; Wang, X.; Ling, K.; Ma, H.; Li, M.; Cheng, Z.; Ma, C.; Cai, S.; Wu, Q.; et al. Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. J. Am. Chem. Soc. 2018, 140, 10734–10739. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, Y.; Yin, L.; Hang, C.; Li, X.; Ågren, H.; Yi, T.; Zhang, Q.; Zhu, L. Helical Self-Assembly-Induced Singlet–Triplet Emissive Switching in a Mechanically Sensitive System. J. Am. Chem. Soc. 2017, 139, 785–791. [Google Scholar] [CrossRef]
- Nie, H.; Wei, Z.; Ni, X.-L.; Liu, Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem. Rev. 2022, 122, 9032–9077. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.Z.; Shen, X.Y.; Zhao, H.; Lam, J.W.Y.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; et al. Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. J. Phys. Chem. C 2010, 114, 6090–6099. [Google Scholar] [CrossRef]
- Hirata, S.; Totani, K.; Zhang, J.; Yamashita, T.; Kaji, H.; Marder, S.R.; Watanabe, T.; Adachi, C. Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under Ambient Conditions. Adv. Funct. Mater. 2013, 23, 3386–3397. [Google Scholar] [CrossRef]
- Forni, A.; Lucenti, E.; Botta, C.; Cariati, E. Metal Free Room Temperature Phosphorescence from Molecular Self-Interactions in the Solid State. J. Mater. Chem. C 2018, 6, 4603–4626. [Google Scholar] [CrossRef]
- Kenry; Chen, C.; Liu, B. Enhancing the Performance of Pure Organic Room-Temperature Phosphorescent Luminophores. Nat. Commun. 2019, 10, 2111. [Google Scholar] [CrossRef] [PubMed]
- Kabe, R.; Adachi, C. Organic Long Persistent Luminescence. Nature 2017, 550, 384–387. [Google Scholar] [CrossRef]
- Lei, Y.; Dai, W.; Tian, Y.; Yang, J.; Li, P.; Shi, J.; Tong, B.; Cai, Z.; Dong, Y. Revealing Insight into Long-Lived Room-Temperature Phosphorescence of Host–Guest Systems. J. Phys. Chem. Lett. 2019, 10, 6019–6025. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, Y.; Wang, G.; Li, J.; Li, X.; Zhang, K. TADF-Type Organic Afterglow. Angew. Chem. Int. Ed. 2021, 60, 17138–17147. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Li, J.; Wang, G.; Zhang, K. Sonication-Responsive Organic Afterglow Emulsions. Adv. Funct. Mater. 2023, 33, 2214960. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Li, X.; Wang, X.; Sun, Y.; Liu, J.; Zhang, K. Two-Component Design Strategy: TADF-Type Organic Afterglow for Time-Gated Chemodosimeters. Chem. Eng. J. 2022, 431, 134197. [Google Scholar] [CrossRef]
- Huang, J.; Deng, X.; Li, J.; Wang, G.; Li, X.; Yao, H.; Lei, C.; Zhang, K. Developing Robust Organic Afterglow Emulsion for Dissolved Oxygen Sensing. Chem. Eng. J. 2023, 474, 145809. [Google Scholar] [CrossRef]
- Zhi, J.; Zhou, Q.; Shi, H.; An, Z.; Huang, W. Organic Room Temperature Phosphorescence Materials for Biomedical Applications. Chem. Asian J. 2020, 15, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Yang, M.; Dai, W.; Shi, J.; Tong, B.; Cai, Z.; Wang, Z.; Dong, Y.; Yu, X. Organic Room-Temperature Phosphorescence Materials for Bioimaging. Chem. Commun. 2023, 59, 5329–5342. [Google Scholar] [CrossRef]
- Wu, Z.; Bergmann, K.; Hudson, Z.M. Dopants Induce Persistent Room Temperature Phosphorescence in Triarylamine Boronate Esters. Angew. Chem. Int. Ed. 2024, 63, e202319089. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Goushi, K.; Mamada, M.; Adachi, C. Organic Binary and Ternary Cocrystal Engineering Based on Halogen Bonding Aimed at Room-Temperature Phosphorescence. Adv. Mater. 2023, 2211160. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, W.; Li, H.; Zhang, J.; Chen, R.; Wang, S.; Zheng, C.; Xing, G.; Song, C.; Huang, W. Design of Highly Efficient Deep-Blue Organic Afterglow through Guest Sensitization and Matrices Rigidification. Nat. Commun. 2020, 11, 4802. [Google Scholar] [CrossRef]
- Ye, X.; Xu, L.; Qiu, F.; Ma, Z.; Wang, B.; Zhou, J.; Xiong, S.; Ma, Y.; Hu, D.; Tian, G. Narrow-Band Orange–Red Emission Organic Luminophore with Dominant Low-Frequency Vibronic Coupling. Energy Fuels 2021, 35, 19139–19145. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, Y.; Zhang, J.; Wang, X.; Gao, S.; Wang, Z.; Qiao, W.; Wang, Z.Y. Tuning of Molecular Aggregation and Photoresponse of Narrow-Band Organic Photodetectors. ACS Appl. Electron. Mater. 2023, 5, 2375–2385. [Google Scholar] [CrossRef]
- Ramasamy, P.; Kim, N.; Kang, Y.-S.; Ramirez, O.; Lee, J.-S. Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots. Chem. Mater. 2017, 29, 6893–6899. [Google Scholar] [CrossRef]
- Gu, J.; Shi, W.; Zheng, H.; Chen, G.; Wei, B.; Wong, W.-Y. The Novel Organic Emitters for High-Performance Narrow-Band Deep Blue OLEDs. Top. Curr. Chem. 2023, 381, 26. [Google Scholar] [CrossRef]
- Asano, H.; Tsukuda, S.; Kita, M.; Fujimoto, S.; Omata, T. Colloidal Zn(Te,Se)/ZnS Core/Shell Quantum Dots Exhibiting Narrow-Band and Green Photoluminescence. ACS Omega 2018, 3, 6703–6709. [Google Scholar] [CrossRef]
- Mieno, H.; Kabe, R.; Notsuka, N.; Allendorf, M.D.; Adachi, C. Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8. Adv. Opt. Mater. 2016, 4, 1015–1021. [Google Scholar] [CrossRef]
- Mieno, H.; Kabe, R.; Adachi, C. Reversible Control of Triplet Dynamics in Metal-Organic Framework-Entrapped Organic Emitters via External Gases. Commun. Chem. 2018, 1, 27. [Google Scholar] [CrossRef]
- Wu, M.; Wang, X.; Pan, Y.; Li, J.; Li, X.; Sun, Y.; Zou, Y.; Zhang, H.; Zhang, K. Two-Component Design Strategy: Achieving Intense Organic Afterglow and Diverse Functions in Coronene-Matrix Systems. J. Phys. Chem. C 2021, 125, 26986–26998. [Google Scholar] [CrossRef]
- Wu, M.; Li, J.; Huang, J.; Wang, X.; Wang, G.; Chen, X.; Li, X.; Chen, X.; Ding, S.; Zhang, H.; et al. The Unexpected Mechanism of Transformation from Conventional Room-Temperature Phosphorescence to TADF-Type Organic Afterglow Triggered by Simple Chemical Modification. J. Mater. Chem. C 2023, 11, 2291–2301. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, H.; Liang, P.; Xu, X.; Zhang, X.; Li, H.; Zhang, C.; Hu, C.; Zhang, X.; Lei, B.; et al. Near-Infrared-Excited Multicolor Afterglow in Carbon Dots-Based Room-Temperature Afterglow Materials. Angew. Chem. Int. Ed. 2021, 60, 22253–22259. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wang, H.; Cao, Y.; Yu, R.; Liang, G.; Huang, H.; Mu, Y.; Yang, Z.; Chi, Z. Stepwise Energy Transfer: Near-Infrared Persistent Luminescence from Doped Polymeric Systems. Adv. Mater. 2022, 34, 2108333. [Google Scholar] [CrossRef] [PubMed]
- Jinnai, K.; Kabe, R.; Adachi, C. Wide-Range Tuning and Enhancement of Organic Long-Persistent Luminescence Using Emitter Dopants. Adv. Mater. 2018, 30, 1800365. [Google Scholar] [CrossRef] [PubMed]
- Gui, H.; Huang, Z.; Yuan, Z.; Ma, X. Ambient White-Light Afterglow Emission Based on Triplet-to-Singlet Förster Resonance Energy Transfer. CCS Chem. 2022, 4, 173–181. [Google Scholar] [CrossRef]
- Dang, Q.; Jiang, Y.; Wang, J.; Wang, J.; Zhang, Q.; Zhang, M.; Luo, S.; Xie, Y.; Pu, K.; Li, Q.; et al. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents. Adv. Mater. 2020, 32, 2006752. [Google Scholar] [CrossRef]
- Kuila, S.; George, S.J. Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Water-Processable and Purely Organic Dyes via Delayed Sensitization. Angew. Chem. Int. Ed. 2020, 59, 9393–9397. [Google Scholar] [CrossRef] [PubMed]
- Jasieniak, J.; Califano, M.; Watkins, S.E. Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals. ACS Nano 2011, 5, 5888–5902. [Google Scholar] [CrossRef] [PubMed]
QDs Wavelength/nm | Cor/Con-centration | QDs/Con-centration | λ/nm a | FWHM/nm | τ/s b |
---|---|---|---|---|---|
590 | 0.01% | 10% | 606 | 37 | τ1 = 0.8 (11.7%) τ2 = 3.0 (89.3%) |
3% | 15% | 605 | 34 | τ1 = 0.4 (4.6%) τ2 = 2.4 (95.4%) | |
620 | 0.01% | 10% | 636 | 33 | τ1 = 0.6 (8.3%) τ2 = 2.6 (91.7%) |
0.1% | 10% | 633 | 36 | τ1 = 0.9 (23.9%) τ2 = 3.3 (76.1%) | |
1% | 10% | 636 | 31 | τ1 = 1.1 (23.1%) τ2 = 3.4 (76.9%) | |
3% | 15% | 638 | 37 | τ1 = 0.8 (23.7%) τ2 = 2.7 (76.3%) | |
660 | 0.01% | 10% | 667 | 48 | τ1 = 0.6 (15.3%) τ2 = 2.4 (84.7%) |
0.1% | 10% | 670 | 42 | τ1 = 0.5 (5.1%) τ2 = 3.0 (94.9%) | |
3% | 15% | 675 | 44 | τ1 = 0.7 (20.4%) τ2 = 2.6 (79.6%) |
QDs Wavelength/nm | Cor/Concentration | Cor-MeOBP’s τ/s a | QDs/Concentration | Cor-MeOBP-QDs’ τ/s a | ΦET | |
---|---|---|---|---|---|---|
at 569 nm | at 569 nm | at λQDs | ||||
590 | 0.01% | 4.0 | 10% | 3.0 | 2.8 | 25% |
3% | 3.9 | 15% | 2.6 | 2.3 | 33.3% | |
620 | 0.01% | 4.0 | 10% | 2.7 | 2.4 | 32.5% |
0.1% | 3.9 | 10% | 3.2 | 2.7 | 17.9% | |
1% | 4.1 | 10% | 3.5 | 2.9 | 14.6% | |
3% | 3.9 | 15% | 2.5 | 2.2 | 35.9% | |
660 | 0.01% | 4.0 | 10% | 2.3 | 2.1 | 42.5% |
0.1% | 3.9 | 10% | 2.9 | 2.7 | 25.6% | |
3% | 3.9 | 15% | 2.2 | 2.5 | 43.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, W.; Li, X.; Li, J.; Yan, Q.; Wang, G.; Piao, X.; Zhang, K. Narrowband Organic/Inorganic Hybrid Afterglow Materials. Molecules 2024, 29, 2343. https://doi.org/10.3390/molecules29102343
Xia W, Li X, Li J, Yan Q, Wang G, Piao X, Zhang K. Narrowband Organic/Inorganic Hybrid Afterglow Materials. Molecules. 2024; 29(10):2343. https://doi.org/10.3390/molecules29102343
Chicago/Turabian StyleXia, Wen, Xun Li, Junbo Li, Qianqian Yan, Guangming Wang, Xixi Piao, and Kaka Zhang. 2024. "Narrowband Organic/Inorganic Hybrid Afterglow Materials" Molecules 29, no. 10: 2343. https://doi.org/10.3390/molecules29102343
APA StyleXia, W., Li, X., Li, J., Yan, Q., Wang, G., Piao, X., & Zhang, K. (2024). Narrowband Organic/Inorganic Hybrid Afterglow Materials. Molecules, 29(10), 2343. https://doi.org/10.3390/molecules29102343