Hydrophobization of Cold Plasma Activated Glass Surfaces by Hexamethyldisilazane Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Wetting Behaviour
2.2. Surface Morphology
2.3. FT-IR/ATR Spectra
2.4. X-ray Photoelectron Spectroscopy
3. Materials and Methods
3.1. Plasma Pre-Treatment
3.2. Surface Modification
3.3. Contact Angle Measurements
3.4. Surface Free Energy Determination
3.5. Optical Profilometry
3.6. Scanning Electron Microscopy (SEM)
3.7. Fourier-Transform Infrared Spectroscopy
3.8. X-ray Photoelectron Spectroscopy (XPS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, K.; Yang, Y.; Zuo, H.; Zhong, D. A Review on Ice Detection Technology and Ice Elimination Technology for Wind Turbine. Wind Energy 2020, 23, 433–457. [Google Scholar] [CrossRef]
- Dai, M.; Zhai, Y.; Zhang, Y. A Green Approach to Preparing Hydrophobic, Electrically Conductive Textiles Based on Waterborne Polyurethane for Electromagnetic Interference Shielding with Low Reflectivity. Chem. Eng. J. 2021, 421, 127749. [Google Scholar] [CrossRef]
- Cherupurakal, N.; Mozumder, M.S.; Mourad, A.-H.I.; Lalwani, S. Recent Advances in Superhydrophobic Polymers for Antireflective Self-Cleaning Solar Panels. Renew. Sustain. Energy Rev. 2021, 151, 111538. [Google Scholar] [CrossRef]
- Somvanshi, S.; Kharat, P.B.; Khedkar, M.; Jadhav, K.M. Hydrophobic to Hydrophilic Surface Transformation of Nano-Scale Zinc Ferrite via Oleic Acid Coating: Magnetic Hyperthermia Study towards Biomedical Applications. Ceram. Int. 2019, 46, 7642–7653. [Google Scholar] [CrossRef]
- Rahmawan, Y.; Moon, M.-W.; Kim, K.-S.; Lee, K.-R.; Suh, K.-Y. Wrinkled, Dual-Scale Structures of Diamond-like Carbon (DLC) for Superhydrophobicity. Langmuir 2010, 26, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Gao, W. Surface Wettability of Nanostructured Zinc Oxide Films. J. Electron. Mater. 2009, 38, 601–608. [Google Scholar] [CrossRef]
- Cho, Y.; Park, C.H. Objective Quantification of Surface Roughness Parameters Affecting Superhydrophobicity. RSC Adv. 2020, 10, 31251–31260. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, J.; Wang, Z.; Yan, Q.; Zhang, J. Humidity Sensing Behavior of Silicon Nanowires with Hexamethyldisilazane Modification. Sens. Actuators B Chem. 2011, 156, 631–636. [Google Scholar] [CrossRef]
- Wan, L.; Gong, W.; Jiang, K.; Li, H.; Tao, B.; Zhang, J. Preparation and Surface Modification of Silicon Nanowires under Normal Conditions. Appl. Surf. Sci. 2008, 254, 4899–4907. [Google Scholar] [CrossRef]
- Terpilowski, K.; Chodkowski, M.; Pérez-Huertas, S.; Wiechetek, Ł. Influence of Air Cold Plasma Modification on the Surface Properties of Paper Used for Packaging Production. Appl. Sci. 2022, 12, 3242. [Google Scholar] [CrossRef]
- Verding, P.; Mary Joy, R.; Reenaers, D.; Kumar, R.S.N.; Rouzbahani, R.; Jeunen, E.; Thomas, S.; Desta, D.; Boyen, H.-G.; Pobedinskas, P.; et al. The Influence of UV-Ozone, O2 Plasma, and CF4 Plasma Treatment on the Droplet-Based Deposition of Diamond Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarshirazi, S.; Ghobeira, R.; Egghe, T.; De Geyter, N.; Declercq, H.; Morent, R. New Plasma-Assisted Polymerization/Activation Route Leading to a High Density Primary Amine Silanization of PCL/PLGA Nanofibers for Biomedical Applications. Appl. Surf. Sci. 2023, 640, 158380. [Google Scholar] [CrossRef]
- Pérez-Huertas, S.; Terpiłowski, K.; Tomczyńska-Mleko, M.; Mleko, S. Surface Modification of Albumin/Gelatin Films Gelled on Low-Temperature Plasma-Treated Polyethylene Terephthalate Plates. Plasma Process. Polym. 2020, 17, 1900171. [Google Scholar] [CrossRef]
- Huertas, S.P.; Terpiłowski, K.; Tomczyńska-Mleko, M.; Mleko, S.; Szajnecki, Ł. Time-Based Changes in Surface Properties of Poly(Ethylene Terephthalate) Activated with Air and Argon-Plasma Treatments. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 322–329. [Google Scholar] [CrossRef]
- Kuzina, E.A.; Omran, F.S.; Emelyanenko, A.M.; Boinovich, L.B. On the Significance of Selecting Hydrophobization Conditions for Obtaining Stable Superhydrophobic Coatings. Colloid J. 2023, 85, 59–65. [Google Scholar] [CrossRef]
- Saito, T.; Mitsuya, R.; Ito, Y.; Higuchi, T.; Aita, T. Microstructured SiOx Thin Films Deposited from Hexamethyldisilazane and Hexamethyldisiloxane Using Atmospheric Pressure Thermal Microplasma Jet. Thin Solid Film. 2019, 669, 321–328. [Google Scholar] [CrossRef]
- Yamamoto, T.; Okubo, M.; Imai, N.; Mori, Y. Improvement on Hydrophilic and Hydrophobic Properties of Glass Surface Treated by Nonthermal Plasma Induced by Silent Corona Discharge. Plasma Chem. Plasma Process. 2004, 24, 1–12. [Google Scholar] [CrossRef]
- Ting, W.-T.; Yang, T.-H.; Cheng, Y.; Chen, K.-S.; Chou, S.-H.; Yang, M.-R.; Wang, M.-J. Calcium Phosphate Composites to Synergistically Promote Osteoconduction and Corrosion Resistance on Bone Materials via Plasma Polymerized Hexamethyldisilazane Coatings. Surf. Coat. Technol. 2021, 428, 127834. [Google Scholar] [CrossRef]
- Terpiłowski, K.; Rymuszka, D.; Goncharuk, O.V.; Sulym, I.Y.; Gun’ko, V.M. Wettability of Modified Silica Layers Deposited on Glass Support Activated by Plasma. Appl. Surf. Sci. 2015, 353, 843–850. [Google Scholar] [CrossRef]
- Terpilowski, K.; Rymuszka, D. Surface Properties of Glass Plates Activated by Air, Oxygen, Nitrogen and Argon Plasma. Glass Phys. Chem. 2016, 42, 535–541. [Google Scholar] [CrossRef]
- Ting, W.-T.; Chen, K.-S.; Wang, M.-J. Dense and Anti-Corrosion Thin Films Prepared by Plasma Polymerization of Hexamethyldisilazane for Applications in Metallic Implants. Surf. Coat. Technol. 2021, 410, 126932. [Google Scholar] [CrossRef]
- Fiorillo, M.R.; Liguori, R.; Diletto, C.; Bezzeccheri, E.; Tassini, P.; Maglione, M.G.; Maddalena, P.; Minarini, C.; Rubino, A. Analysis of HMDS Self-Assembled Monolayer Effect on Trap Density in PC70BM n-Type Thin Film Transistors through Admittance Studies. Mater. Today Proc. 2017, 4, 5053–5059. [Google Scholar] [CrossRef]
- Chibowski, E.; Terpilowski, K. Comparison of Apparent Surface Free Energy of Some Solids Determined by Different Approaches. In Contact Angle, Wettability and Adhesion; CRC Press: Boca Raton, FL, USA, 2009; Volume 6, ISBN 978-0-429-08838-4. [Google Scholar]
- Rosales, A.; Gutiérrez, V.; Ocampo-Hernández, J.; Jiménez-González, M.L.; Medina-Ramírez, I.E.; Ortiz-Frade, L.; Esquivel, K. Hydrophobic Agents and pH Modification as Comparative Chemical Effect on the Hydrophobic and Photocatalytic Properties in SiO2-TiO2 Coating. Appl. Surf. Sci. 2022, 593, 153375. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Mozetič, M.; Primc, G. Surface Modification of PS Polymer by Oxygen-Atom Treatment from Remote Plasma: Initial Kinetics of Functional Groups Formation. Appl. Surf. Sci. 2021, 561, 150058. [Google Scholar] [CrossRef]
- Golda-Cepa, M.; Kumar, D.; Bialoruski, M.; Lasota, S.; Madeja, Z.; Piskorz, W.; Kotarba, A. Functionalization of Graphenic Surfaces by Oxygen Plasma toward Enhanced Wettability and Cell Adhesion: Experiments Corroborated by Molecular Modelling. J. Mater. Chem. B 2023, 11, 4946–4957. [Google Scholar] [CrossRef]
- Kodaira, F.V.P.; Ricci Castro, A.H.; Prysiazhnyi, V.; Mota, R.P.; Quade, A.; Kostov, K.G. Characterization of Plasma Polymerized HMDSN Films Deposited by Atmospheric Plasma Jet. Surf. Coat. Technol. 2017, 312, 117–122. [Google Scholar] [CrossRef]
- Yang, M.-R.; Wu, S.K. DC Plasma-Polymerized Hexamethyldisilazane Coatings of an Equiatomic TiNi Shape Memory Alloy. Surf. Coat. Technol. 2000, 127, 273–280. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Bancroft, G.M.; Henderson, G.S.; Ho, R.; Dalby, K.N.; Huang, Y.; Yan, Z. Bridging, Non-Bridging and Free (O2−) Oxygen in Na2O-SiO2 Glasses: An X-Ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) Study. J. Non-Cryst. Solids 2011, 357, 170–180. [Google Scholar] [CrossRef]
- Pintori, G.; Cattaruzza, E. XPS/ESCA on Glass Surfaces: A Useful Tool for Ancient and Modern Materials. Opt. Mater. X 2022, 13, 100108. [Google Scholar] [CrossRef]
- Dietrich, P.M.; Glamsch, S.; Ehlert, C.; Lippitz, A.; Kulak, N.; Unger, W.E.S. Synchrotron-Radiation XPS Analysis of Ultra-Thin Silane Films: Specifying the Organic Silicon. Appl. Surf. Sci. 2016, 363, 406–411. [Google Scholar] [CrossRef]
- Chibowski, E. Surface Free Energy of a Solid from Contact Angle Hysteresis. Adv. Colloid Interface Sci. 2003, 103, 149–172. [Google Scholar] [CrossRef] [PubMed]
Sample | Non-Activated | 1800 s O2 Plasma Treatment | 1800 s Ar Plasma Treatment |
---|---|---|---|
Ra [nm] | 3.3 ± 0.7 | 4.4 ± 0.7 | 5.7 ± 0.9 |
Rq [nm] | 4.3 ± 0.8 | 5.5 ± 0.8 | 7.0 ± 1.2 |
Pre-Treatment Time [s] | 0 | 30 | 60 | 600 | 1200 | 1800 |
---|---|---|---|---|---|---|
Ra [nm] | 2.0 ± 1.0 | 2.4 ± 1.0 | 3.2 ± 0.3 | 4.1 ± 0.7 | 5.5 ± 0.5 | 4.0 ± 0.9 |
Rq [nm] | 2.5 ± 1.2 | 3.0 ± 1.3 | 4.3 ± 0.5 | 5.1 ± 0.8 | 6.9 ± 0.7 | 7.1 ± 3.7 |
Pre-Treatment Time [s] | 0 | 30 | 60 | 600 | 1200 | 1800 |
---|---|---|---|---|---|---|
Ra [nm] | 2.7 ± 0.7 | 2.5 ± 0.8 | 2.6 ± 0.6 | 4.0 ± 0.2 | 4.3 ± 0.7 | 5.3 ± 1.3 |
Rq [nm] | 3.2 ± 0.8 | 3.3 ± 1.0 | 3.4 ± 0.7 | 5.2 ± 0.3 | 5.9 ± 1.6 | 6.5 ± 1.7 |
[% at.] | Non-Treated Glass | 1800 s O2 Plasma | 1800 s O2 Plasma + HMDS | 1800 s Ar Plasma | 1800 s Ar Plasma + HMDS |
---|---|---|---|---|---|
C 1s | 19.4 ± 0.86 | 24.1 ± 1.30 | 13.3 ± 1.02 | 16.1 ± 1.24 | 10.5 ± 1.18 |
N 1s | 0.2 ± 0.52 | 1.2 ± 1.06 | - | 2.1 ± 1.24 | - |
O 1s | 45.5 ± 0.90 | 42.9 ± 1.18 | 48.9 ± 0.90 | 47.8 ± 1.34 | 51.4 ± 0.98 |
Na 1s | 4.0 ± 1.23 | 2.3 ± 0.46 | 3.1 ± 0.24 | 1.0 ± 0.26 | 2.4 ± 1.24 |
Mg 2p | 2.1 ± 0.88 | 2.4 ± 1.04 | 2.5 ± 0.72 | 2.0 ± 1.06 | 1.3 ± 0.70 |
Si 2p | 27.1 ± 0.78 | 22.4 ± 0.94 | 29.6 ± 0.78 | 26.0 ± 1.05 | 32.9 ± 0.80 |
Ca 2p | 1.3 ± 0.48 | 1.9 ± 0.34 | 1.5 ± 0.20 | 2.2 ± 0.38 | 1.3 ± 0.38 |
others | ≈0.40 | ≈2.80 | ≈1.10 | ≈2.8 | ≈0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terpiłowski, K.; Chodkowski, M.; Pakhlov, E.; Pasieczna-Patkowska, S.; Kuśmierz, M.; Azat, S.; Pérez-Huertas, S. Hydrophobization of Cold Plasma Activated Glass Surfaces by Hexamethyldisilazane Treatment. Molecules 2024, 29, 2645. https://doi.org/10.3390/molecules29112645
Terpiłowski K, Chodkowski M, Pakhlov E, Pasieczna-Patkowska S, Kuśmierz M, Azat S, Pérez-Huertas S. Hydrophobization of Cold Plasma Activated Glass Surfaces by Hexamethyldisilazane Treatment. Molecules. 2024; 29(11):2645. https://doi.org/10.3390/molecules29112645
Chicago/Turabian StyleTerpiłowski, Konrad, Michał Chodkowski, Evgeniy Pakhlov, Sylwia Pasieczna-Patkowska, Marcin Kuśmierz, Seitkhan Azat, and Salvador Pérez-Huertas. 2024. "Hydrophobization of Cold Plasma Activated Glass Surfaces by Hexamethyldisilazane Treatment" Molecules 29, no. 11: 2645. https://doi.org/10.3390/molecules29112645
APA StyleTerpiłowski, K., Chodkowski, M., Pakhlov, E., Pasieczna-Patkowska, S., Kuśmierz, M., Azat, S., & Pérez-Huertas, S. (2024). Hydrophobization of Cold Plasma Activated Glass Surfaces by Hexamethyldisilazane Treatment. Molecules, 29(11), 2645. https://doi.org/10.3390/molecules29112645