UPLC-ESI-MS/MS Profiling of Secondary Metabolites from Methanol Extracts of In Vivo and In Vitro Tissues of Daucus capillifolius Gilli (A Comparative Study)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Phenolic Compounds of Methanol Extracts of In Vivo and In Vitro Tissues of D. capillifoliusby UPLC–ESI-MS/MS
2.1.1. Identification of Phenolic Acids and Acid Derivatives in Methanol Extracts of In Vivo and In Vitro Tissues of D. capillifolius Gilli
No. | Rt (min) | Name | Parent Ion (m/z) | MS2 Fragments (m/z) | I | II | III | IV | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 0.87 | Malic acid | 133 | − | − | 4.92 | − | [20] | |
2 | 1.92 | Benzoic acid derivative | 279 | 121.0 (100%) | − | + | − | − | [21] |
3 | 1.96 | Syringic acid pentoside | 329 | 131.1 (100%) | + | − | + | + | [22] |
4 | 2.88 | Coumaric acid | 327/165 | 163.7 (100%) | + | − | − | − | [23,24] |
5 | 2.95 | Hydroxy benzoic acid isomer-1 | 137 | 121.0, 92.9 (100%) | − | + | − | − | [25,26] |
6 | 3.59 | gallic acid derivative | 293 | 171.0 (100%) | − | + | − | − | [21] |
7 | 4.91 | Hydroxy benzoic acid isomer-2 | 137 | 94 [M+H−44], 77 [M+H−44-OH] | − | 2.41 | 4.01 | 6.13 | [25,26] |
8 | 5.21 | Caffeic acid | 179 | 135.2 (100%) [M-H-COOH] | + | − | − | + | [24,25] |
9 | 5.41 | Gallic acid derivative | 259 | 169.0 | − | + | − | − | [21] |
10 | 5.82 | Vanillic acid derivative | 279 | 167.4 (100%) | + | − | − | − | [22] |
11 | 6.15 | Chlorogenic acid isomer-1 | 353/355 | 191.3 (100%),137.3 | + | − | − | + | [25,26] |
12 | 6.43 | Cinnamic acid derivative | 329 | 146.6 (100%) [M−182]− | + | − | − | − | [22] |
13 | 6.80 | Caffeic acid derivative | 371 | 178.9 (100%) | + | − | − | − | [24] |
14 | 7.59 | Quinic acid derivative | 271 | 191.0 100%) | − | + | − | − | [22] |
15 | 7.69 | Ferulic acid derivative | 273 | 192.7 (100%), 148.7 99 | + | − | − | − | [24] |
16 | 7.88 | Hydroxyl gallic acid | 185 | 1.99 | − | − | − | [27] | |
17 | 8.50 | Chlorogenic acid isomer 2 | 355 | − | 9.29 | − | − | [25,26] | |
18 | 8.22 | Caffeic acid derivative (malonyl rhamnoside) | 367 | 135.0 (100%) [M-H−232]− | + | − | − | + | [24] |
19 | 9.56 | Ellagic acid | 303 | 257.0, 229, 201.2, 164.9, 153.1, (100%)137.0, 123.0, 108.4 | + | − | − | − | [28] |
20 | 9.81 | Quinic acid | 193 | 119.0, 105.1, 91.0, 79 | + | − | − | − | [28,29] |
21 | 9.97 | Sinapic acid isomer 1 | 225 | 6.35 | − | − | − | [30] | |
22 | 10.13 | Sinapicacid isomer-2 | 225 | 2.21 | − | − | − | [30] | |
23 | 10.93 | Methyl gallate isomer 1 | 185 | 171, 125 | − | − | 1.81 | − | [20] |
24 | 10.91 | Methyl gallate isomer 2 | 185 | 171, 125 | − | − | − | 0.67 | [20] |
25 | 12.86 | Coumaric acid derivative | 279 | 162.6, 121.6 (100%) | − | + | − | − | [21] |
26 | 13.95 | Coumaric acid | 163 | − | − | 2.95 | − | [21] | |
27 | 15.29 | Hydroxy ferulic acid | 209 | 11.4 | − | − | − | [31] | |
28 | 15.92 | Benzoic acid derivative | 307 | 120.8 (100%) | + | − | − | + | [21] |
29 | 16.21 | Chlorogenic acid isomer-3 | 353 | − | − | 9.69 | − | [25,26] | |
30 | 16.55 | Benzoic acid methyl ester | 137 | 4.14 | − | − | − | [21] | |
31 | 21.44 | Quinic acid derivative | 371 | 191.0 (100%) | − | + | − | − | [21] |
32 | 22.31 | Coumaric acid glucuronide | 339 | 163.0 | − | 0.18 | − | − | [21] |
No. | Rt (min) | Name | Parent Ion (m/z) | MS2 Fragments (m/z) | I | II | III | IV | Reference |
---|---|---|---|---|---|---|---|---|---|
Flavonoid aglycones | |||||||||
33 | 13.56 | Diosmetin | 299/301 | -ve/284.9 (100%) [M-CH3], 255.6 [M−15-CO]; or +ve/286.1, 258.0 (100%), 168.4, 146.9, 135, 130.0 | + | − | − | − | [32] |
34 | 11.77 | Dimethoxyflavone | 281 | 149.3 (100%) [ring A], 132.0 [ring B] 149(A)/132(B) | + | − | − | − | [33] |
35 | 12.07 | Luteolin | 285 | 175.1, 132.8 (100%) | + | + | − | + | [34,35] |
36 | 13.21 | Apigenin | 269 | 148.9, 119.2, 117.2 (100%) | + | − | − | − | [34] |
37 | 16.20 | Galangin | 269/271 | 119.9 (100%), 152.9 (100%), 118.9 | + | + | − | − | [25,36] |
38 | 16.20 | 5,4′-dihydroxy-3,7-dimethoxyflavone | 313 | 283.0 [M-H−30], 254.8 (100%) [M-H−30−28] | + | + | − | − | [33] |
39 | 16.42 | Methyl apigenin (Acacetin) | 283 | 268.0 (100%) [M-H-CH3] | + | + | − | − | [33,37] |
40 | 16.51 | 5-hydroxy-3′,4′,7-trimethoxy-flavanone | 329 | 314, 299 | − | 2.51 | − | 3.11 | [37] |
41 | 17.32 | Isorhamnetin | 317 | 1.25 | − | − | − | [20] | |
42 | 22.92 | Dihydroxyflavone(chrysin) | 255 | 135.0, 119.0(100%) | − | + | − | − | [33] |
Flavonoid-O-glycosides | |||||||||
43 | 1.76 | Diosmetin-7-O-glucuronopyranosyl-O-rhamnoside | 621 | 445.0 (100%) [M-H−176] | + | + | − | − | [38] |
44 | 6.75 | Myricetin-3-O-glucoside | 479 | 317.0, 183.7, 161.1, 159.0 | + | + | − | − | [39] |
45 | 6.80 | Myricetin-3-O- acetyl glucoside | 491 | 317.1 (100%) | − | + | + | [40] | |
46 | 8.15 | Quercetin-3-O-acetyl glucoside pentoside | 639 | 303.0 (100%) | + | − | − | − | [41] |
47 | 8.50 | Quercetin diglucoside | 625 | 301 | 1.08 | − | − | − | [20] |
48 | 8.75 | Quercetin glucoside | 463 | 301 | 1.83 | − | − | − | [20] |
49 | 9.14 | Luteolin-7-O-rutinoside | 593 | 285.2, 284.2 (100%) | + | − | − | − | [26,42] |
50 | 9.25 | Quercetin-O-rhamnoside | 447 | 301 | 0.89 | − | − | − | [20] |
51 | 9.43 | Apigenin-7-O-caffoeylhexoside | 593 | 269.4 (100%) | + | − | − | − | [43] |
52 | 9.43 | Diosmetin-O-coumaroyhexoside | 607 | 299.0 (100%), 163, 131.1 | + | − | − | + | [44] |
53 | 9.58 | Quercetin-3-O-galactoside | 463 | 300.6 (100%), 178.9 | 3.03 | − | − | − | [24] |
54 | 10.04 | Apigenin-7-O-glucoside | 431/433 | 268.0, 269.0 (100%), 108.0 | + | + | − | + | [45] |
55 | 10.14 | Luteolin-7-O-glucoside | 447 | 285.0 (100%) | + | + | − | − | [26,42] |
56 | 10.32 | Luteolin-7-O-glucuronoside | 461 | 284.5, 283.3 (100%) | + | + | − | + | [26,32] |
57 | 10.26 | Apigenin-7-O-glucoside | 431 | 270 | 0.77 | − | − | − | [45] |
58 | 10.40 | Quercetin-O- rhamnoside | 447 | 299.0 | 2.02 | − | − | [20] | |
59 | 12.85 | Diosmetin-O-rutinoside | 609 | 2.22 | − | − | − | [46] | |
60 | 13.27 | Diosmetin-7-O-hexoside | 461 | 299.3 (100%), 284.5 | + | − | − | + | [47] |
61 | 13.38 | Luteolin derivative | 567 | 285 (100%) | + | − | − | − | [34,35] |
62 | 15.36 | Luteolin acetyl glucoside | 489 | 285 | − | 1.12 | − | − | [34,35] |
63 | 19.44 | Diosmetin-7-O-rutinoside | 609 | 300.9, 206.3 (100%), 157.4 | − | − | − | − | [46] |
64 | 21.91 | Myricetin-3-O-rhamnoside | 463 | 316.6 (100%) | + | + | + | + | [20] |
Flavonoid-C-glycosides | |||||||||
65 | 13.27 | Diosmetin-8-C-rhamnoside | 445 | 341 [M−104]− | + | − | − | + | [35,46] |
66 | 23.27 | Apigenin-8-C-hexoside | 433 | 313.1 [M+H−120] 150.6, 130.7 (100%) | − | + | + | + | [48] |
67 | 23.39 | Diosmetin-8-C-glucoside | 461 | 341.0 (M-H−120) (100%) | + | + | − | + | [46] |
68 | 24.49 | Diosmetin-8-C-glucoside-O-rhamnoside | 609 | 489.2 [M+H−120], 462.5 [M+H−146], 341.9 [aglycone+H+41] | − | + | + | − | [48] |
No. | Rt (min) | Name | Parent Ion (m/z) | MS2 Fragments (m/z) | I | II | III | IV | Reference |
---|---|---|---|---|---|---|---|---|---|
Anthocyanins | |||||||||
69 | 6.36 | Pelargonidin-3-O-glucuronosyl-O-glucoside | 610 | 271.3 | + | − | − | − | [49,50] |
70 | 10.51 | Cyanidin-3-O-glucoside | 449 | 287.0 | 0.80 | + | + | + | [51,52] |
71 | 10.60 | Cyanidin-3-O-glucoside | 449 | 287.0 | 5.78 | − | − | − | [51,52] |
72 | 12.90 | Cyanidin derivative | 620 | 287(100%) | + | − | + | + | [49] |
73 | 13.21 | Cyanidin-O-glucuronosyl-O-glucoside Or feruloyl-O-glucoside | 625 | 287.0 (100%) | + | − | − | + | [49,52] |
74 | 16.95 | Cyanidin derivative | 721 | 287.4 (100%) | + | + | + | + | [49,52,53] |
75 | 28.31 | Malvidin-3-O-glucoside-malonyl-glucoside | 741 | 331.4 [M−410] | + | + | − | + | [54] |
Tannins | |||||||||
76 | 7.17 | Gallocatechin | 305 | 261, 119, 97.0 (100%) | 2.55 | − | − | − | [55] |
77 | 7.59 | Epigallocatechin | 305/307 | 261, 119, 97.0 (100%) | 5.31 | − | − | − | [55] |
78 | 7.68 | Epigallocotechin derivatives | 721 | 304.7 (100%) | + | − | − | − | [55] |
79 | 11.25 | Catechin-3-O-hexoside-pentoside | 585 | 294 [M−291] | − | − | + | − | [55] |
80 | 14.54 | Catechin-O-acetyl glucoside pentoside | 625 | 288.5 (100%) | + | − | − | − | [50] |
81 | 16.07 | Catechin | 291 | 174.9, 147.3, 137.3, 121, 106.9 | − | − | − | − | [50] |
Acetylenic compounds | |||||||||
82 | 20.85 | 9-[Heptadeca-1-en-4,6,9-triyne-3,8-diol] | 281 | 57.3, 56.7, 43.2, 54.9, 66.7, 79.0, 81.1, 95.0, 109.2, 83.1, 122.8, 71.0(100%) | + | + | + | − | [12,56,57] |
83 | 23.45 | 11-[8-hydroxytetradeca-1-en-4,6,9-triyn-3-yl acetate] | 281 | 97.0, 56.9, 80.9, 69.2, 95.4 106.6, 107.2 146.8 55.0 (100%) | + | + | + | − | [12,56,57] |
84 | 28.27 | Falcaridiol-8-O-methyl ether | 297 | 167.3, 149.4, 134.9, 121.1, 106.8, 105, 97.0, 83.1 ,81.0, 69.1, 55.0 (100%), 42.8 | + | + | + | − | [12,56,57] |
Nitrogenous compounds | |||||||||
85 | 1.35 | 3-Methyl-Indole | 132 | 76.0 | − | +11 | 18.55 | 17.6 | [58] |
86 | 1.77 | 4-(aminoethyl) benzoic acid | /166 or 120 | 119.9, 103.0 (100%), 93.0, 91.0, 76.9 | − | +12 | 22.67 | + | [59] |
87 | 2.23 | 4-(aminoethyl) benzoic acid isomer | 164/166 | 119.9, 103.0 (100%), 93.0, 91.0, 76.9 | − | +20.9 | 1.82 | 21.57 | [59] |
2.1.2. Identification of Flavonoids
Flavonoids Aglycones
Identification of Flavonoid Glycosides
- Identification of O-glycosides
2.1.3. Identification of Anthocyanins
2.1.4. Identification of Tannins
2.1.5. Identification of Acetylenic Compounds
2.1.6. Identification of Nitrogenous Compounds
3. Materials and Methods
3.1. Plant Materials
3.1.1. Induction of Calli from In Vitro Germinated Seedlings
3.1.2. Extract Preparation
3.2. UPLC-ESI-MS/MS Analysis and Separation Method of D. capillifolius Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammami, S.; Elshamy, A.I.; Mokni, R.E.; Snene, A.; Iseki, K.; Dhaouadi, H.; Okamoto, Y.; Suenaga, M.; Noji, M.; Umeyama, A. Chemical constituents of the aerial parts of Daucus carota subsp. hispidus growing in Tunisia. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef]
- Wang, X.J.; Luo, Q.; Li, T.; Meng, P.H.; Pu, Y.T.; Liu, J.X.; Zhang, J.; Liu, H.; Tan, G.F.; Xiong, A.S. Origin, evolution, breeding, and omics of Apiaceae: A family of vegetables and medicinal plants. Hortic. Res. 2022, 9, uhac076. [Google Scholar] [CrossRef] [PubMed]
- Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an important source of antioxidants and their applications. Cosmetics 2021, 8, 111. [Google Scholar] [CrossRef]
- Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry 2021, 187, 112714. [Google Scholar] [CrossRef] [PubMed]
- Thiviya, P.; Gunawardena, N.; Gamage, A.; Madhujith, T.; Merah, O. Apiaceae Family as a Valuable Source of Biocidal Components and their Potential Uses in Agriculture. Horticulturae 2022, 8, 614. [Google Scholar] [CrossRef]
- Ferrie, A.; Bethune, T.; Arganosa, G.; Waterer, D. Field evaluation of doubled haploid plants in the Apiaceae: Dill (Anethum graveolens L.), caraway (Carum carvi L.), and fennel (Foeniculum vulgare Mill.). Plant Cell Tissue Organ Cult. 2011, 104, 407–413. [Google Scholar] [CrossRef]
- Geoffriau, E.; Simon, P.W. Carrots and Related Apiaceae Crops; CABI: Wallingford, UK, 2020; Volume 33. [Google Scholar]
- Tamokou, J.; Mbaveng, A.; Kuete, V. Antimicrobial activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–237. [Google Scholar]
- Kamte, S.L.N.; Ranjbarian, F.; Cianfaglione, K.; Sut, S.; Dall’Acqua, S.; Bruno, M.; Afshar, F.H.; Iannarelli, R.; Benelli, G.; Cappellacci, L. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotoxicol. Environ. Saf. 2018, 156, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Önder, A.; Cinar, A.S.; Sarialtin, S.Y.; Izgi, M.N.; Çoban, T. Evaluation of the antioxidant potency of Seseli L. species (Apiaceae). Turk. J. Pharm. Sci. 2020, 17, 197. [Google Scholar] [CrossRef]
- Saleem, F.; Eid, A.H.; Shetty, K. Potato–Herb Synergies as Food Designs for Hyperglycemia and Hypertension Management. In Functional Foods, Nutraceuticals, and Degenerative Disease Prevention; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 325–340. [Google Scholar]
- Christensen, L.P.; Kreutzmann, S. Determination of polyacetylenes in carrot roots (Daucus carota L.) by high-performance liquid chromatography coupled with diode array detection. J. Sep. Sci. 2007, 30, 483–490. [Google Scholar] [CrossRef]
- Plazonić, A.; Bucar, F.; Maleš, Ž.; Mornar, A.; Nigović, B.; Kujundžić, N. Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules 2009, 14, 2466–2490. [Google Scholar] [CrossRef]
- Saeed, N.M.; Ramadan, L.A.; El-Sabbagh, W.A.; Said, M.A.; Abdel-Rahman, H.M.; Mekky, R.H. Exploring the anti-osteoporosis potential of Petroselinum crispum (Mill.) Fuss extract employing experimentally ovariectomized rat model and network pharmacology approach. Fitoterapia 2024, 175, 105971. [Google Scholar] [CrossRef]
- Mazza, G. Anthocyanins and heart health. Ann. Ist. Super. Sanità 2007, 43, 369. [Google Scholar]
- Abd Alla, F.M.; Abdelshafeek, K.A.; El-soll, A.M.; ELsayed, W.M. Volatile oils, lipid constitutes and the antimicrobial activity of Daucus syrticus growing in Libya. J. Arab Soc. Med. Res. 2013, 8, 96–103. [Google Scholar]
- Jafri, S.; El-Gadi, A. Flora of Libya; Al Faatheh University, Faculty of Science Publication: Tripoli, Libya, 1985; Volume 118, p. 30. [Google Scholar]
- Jafri, S.M.; El-Gadi, A. Flora of Libya; Botany Department, Faculty of Science, Al Fatteh University: Tripoli, Libya, 1977. [Google Scholar]
- Hassan, W.; Abdelkader, M.; Senosy, E.; Eldahmy, S. In vitro Propagation and Essential Oils Composition with Cytotoxicity of Daucus capillifolius Gilli (Apiaceae). Int. J. Chemtech. Res. 2018, 11, 171–182. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L.(Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef]
- Tan, L.; Jin, Z.; Ge, Y.; Nadeem, H.; Cheng, Z.; Azeem, F.; Zhan, R. Comprehensive ESI-Q TRAP-MS/MS based characterization of metabolome of two mango (Mangifera indica L) cultivars from China. Sci. Rep. 2020, 10, 20017. [Google Scholar] [CrossRef]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; Contreras, M.d.M. Phenolic compounds from sesame cake and antioxidant activity: A new insight for agri-food residues’ significance for sustainable development. Foods 2019, 8, 432. [Google Scholar] [CrossRef]
- Bystrom, L.M.; Lewis, B.A.; Brown, D.L.; Rodriguez, E.; Obendorf, R.L. Characterisation of phenolics by LC–UV/Vis, LC–MS/MS and sugars by GC in Melicoccus bijugatus Jacq. ‘Montgomery’ fruits. Food Chem. 2008, 111, 1017–1024. [Google Scholar] [CrossRef]
- Kammerer, D.; Carle, R.; Schieber, A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. Eur. Food Res. Technol. 2004, 219, 479–486. [Google Scholar]
- Lin, Y.; Xu, W.; Huang, M.; Xu, W.; Li, H.; Ye, M.; Zhang, X.; Chu, K. Qualitative and quantitative analysis of phenolic acids, flavonoids and iridoid glycosides in Yinhua Kanggan tablet by UPLC-QqQ-MS/MS. Molecules 2015, 20, 12209–12228. [Google Scholar] [CrossRef] [PubMed]
- Noui, A.; Boudiar, T.; Bakhouche, A.; del Mar Contreras, M.; Lozano-Sánchez, J.; Segura-Carretero, A.; Laouer, H.; Akkal, S. Chemical characterization of polyphenols from Daucus muricatus growing in Algeria by RP-UHPLC-ESI-QTOF-MS/MS. Nat. Prod. Res. 2018, 32, 982–986. [Google Scholar] [CrossRef]
- Sayed, S.; Alseekh, S.; Siems, K.; Fernie, A.R.; Luyten, W.; Schmitz-Linneweber, C.; Saul, N. Identification of a hydroxygallic acid derivative, zingibroside R1 and a sterol lipid as potential active ingredients of Cuscuta chinensis extract that has neuroprotective and antioxidant effects in aged Caenorhabditis Elegans. Nutrients 2022, 14, 4199. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.; Carle, R.; Schieber, A. Characterization of phenolic acids in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1331–1340. [Google Scholar] [PubMed]
- Thiyam, U.; Claudia, P.; Jan, U.; Alfred, B. De-oiled rapeseed and a protein isolate: Characterization of sinapic acid derivatives by HPLC–DAD and LC–MS. Eur. Food Res. Technol. 2009, 229, 825–831. [Google Scholar] [CrossRef]
- Misawa, N.; Hosoya, T.; Yoshida, S.; Sugimoto, O.; Yamada-Kato, T.; Kumazawa, S. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation. Phytother. Res. 2018, 32, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Lech, K.; Witkoś, K.; Jarosz, M. HPLC–UV–ESI MS/MS identification of the color constituents of sawwort (Serratula tinctoria L.). Anal. Bioanal. Chem. 2014, 406, 3703–3708. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; He, Y.Q.; Wang, C.H.; Welbeck, E.W.; Bligh, S.A.; Wang, Z.T. Characterization of fifty-one flavonoids in a Chinese herbal prescription Longdan Xiegan Decoction by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and photodiode array detection. Rapid Commun. Mass Spectrom. 2008, 22, 1767–1778. [Google Scholar] [CrossRef]
- Mena, P.; Sánchez-Salcedo, E.M.; Tassotti, M.; Martínez, J.J.; Hernández, F.; Del Rio, D. Phytochemical evaluation of eight white (Morus alba L.) and black (Morus nigra L.) mulberry clones grown in Spain based on UHPLC-ESI-MSn metabolomic profiles. Food Res. Int. 2016, 89, 1116–1122. [Google Scholar] [CrossRef]
- Shafik, N.; Shafek, R.; Michael, H. Antimicrobial activity of different extracts of Daucus carota canopy. Int. J. Pharm. 2015, 5, 352–356. [Google Scholar]
- Liu, R.; Li, H.; Wei, N.; Tan, Y. Simultaneous determination of two galangin metabolites from Alpinia Officinarum Hance in rat plasma by UF LC-MS/MS and its application in pharmacokinetics study. PeerJ 2021, 9, e11041. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Benites, J.; Areche, C.; Sepúlveda, B. Antioxidant capacities and analysis of phenolic compounds in three endemic Nolana species by HPLC-PDA-ESI-MS. Molecules 2015, 20, 11490–11507. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, L.-Y.; Wang, S.-L.; Niu, X.-Y. Analysis of anthocyanins and flavonols in petals of 10 Rhododendron species from the Sygera Mountains in Southeast Tibet. Plant Physiol. Biochem. 2016, 104, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Wilson, T.; Luthria, D.; Freeman, M.R.; Scott, R.M.; Bilenker, D.; Shah, S.; Somasundaram, S.; Vorsa, N. LC-MS–MS characterisation of curry leaf flavonols and antioxidant activity. Food Chem. 2011, 127, 80–85. [Google Scholar] [CrossRef]
- Slimestad, R.; Francis, G.W.; Andersen, Ø.M. Directed search for plant constituents: A case study concerning flavonoids in Norway spruce. Euphytica 1999, 105, 119–123. [Google Scholar] [CrossRef]
- Desta, K.T.; Lee, W.S.; Lee, S.J.; Kim, Y.H.; Kim, G.S.; Lee, S.J.; Kim, S.T.; Abd El-Aty, A.; Warda, M.; Shin, H.C. Antioxidant activities and liquid chromatography with electrospray ionization tandem mass spectrometry characterization and quantification of the polyphenolic contents of Rumex nervosus Vahl leaves and stems. J. Sep. Sci. 2016, 39, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Inbaraj, B.S.; Chen, B.-H. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. Int. J. Mol. Sci. 2011, 13, 260–285. [Google Scholar] [CrossRef]
- Švehlíková, V.; Bennett, R.N.; Mellon, F.A.; Needs, P.W.; Piacente, S.; Kroon, P.A.; Bao, Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochem 2004, 65, 2323–2332. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Hassan, W.H.; Abdelaziz, S.; Amina, M.; Adel, R.; El-Sayed, M.A. UPLC-ESI-MS/MS profile and antioxidant, cytotoxic, antidiabetic, and antiobesity activities of the aqueous extracts of three different Hibiscus Species. J. Chem. 2020, 2020, 6749176. [Google Scholar] [CrossRef]
- Abdelhady, N.M.; Abdallah, G.M. HPLC/MS/MS study of phenolic compounds of Leucaena leucocephala legumes monitored with their in vitro antihyperglycemic activity. Eur. J. Med. Plants 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three Citrus species consumed in Northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef]
- Benayad, Z.; Gómez-Cordovés, C.; Es-Safi, N.E. Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC–DAD–ESI/MS analysis. Int. J. Mol. Sci. 2014, 15, 20668–20685. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.; Carle, R.; Schieber, A. Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2407–2412. [Google Scholar] [PubMed]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic profiles of leaves, grapes and wine of grapevine variety vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Kajdžanoska, M.; Gjamovski, V.; Stefova, M. HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced. J. Chem. Chem. Eng. 2010, 29, 181–194. [Google Scholar] [CrossRef]
- Schwarz, M.; Wray, V.; Winterhalter, P. Isolation and identification of novel pyranoanthocyanins from black carrot (Daucus carota L.) juice. J. Agric. Food Chem. 2004, 52, 5095–5101. [Google Scholar] [CrossRef] [PubMed]
- Montilla, E.C.; Arzaba, M.R.; Hillebrand, S.; Winterhalter, P. Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. J. Agric. Food Chem. 2011, 59, 3385–3390. [Google Scholar] [PubMed]
- Smeriglio, A.; Denaro, M.; Barreca, D.; D’Angelo, V.; Germanò, M.; Trombetta, D. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia 2018, 124, 49–57. [Google Scholar] [PubMed]
- Gates, P.J.; Lopes, N.P. Characterisation of flavonoid aglycones by negative ion chip-based nanospray tandem mass spectrometry. Int. J. Anal. Chem. 2012, 2012, 259217. [Google Scholar] [CrossRef]
- Kramer, M.; Mühleis, A.; Conrad, J.; Leitenberger, M.; Beifuss, U.; Carle, R.; Kammerer, D.R. Quantification of Polyacetylenes in Apiaceous Plants by High-Performance Liquid Chromatography Coupled with Diode Array Detection. Z. Naturforsch. C 2011, 66, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.K.; Brunton, N.P.; Koidis, A.; Rawson, A.; McLoughlin, P.; Griffiths, W.J. Characterisation of polyacetylenes isolated from carrot (Daucus carota) extracts by negative ion tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Zamaratskaia, G.; Jastrebova, J. Application of LC–MS for determination of indole and 3-methylindole in porcine adipose tissue. Chromatographia 2006, 64, 435–439. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information PubChem Compound Summary for CID 506066, 4-(2-Aminoethyl) benzoic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4-_2-Aminoethyl_benzoic-acid (accessed on 18 February 2024).
- Xu, Q.; Li, S.; Tang, W.; Yan, J.; Wei, X.; Zhou, M.; Diao, H. The Effect of Ellagic Acid on Hepatic Lipid Metabolism and Antioxidant Activity in Mice. Front. Physiol. 2021, 12, 751501. [Google Scholar] [CrossRef] [PubMed]
- Abdelshafeek, K.; ElMissiry, M.M.; Hussiny, H.A.; Elnasr, M. The flavonoids and anticomplement activity of two cruciferous plants growing in Egypt. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 223–227. [Google Scholar]
- Hassan, W.H.B.; Abdelaziz, S.; Al Yousef, H.M. Chemical Composition and Biological Activities of the Aqueous Fraction of Parkinsonea aculeata L. Growing in Saudi Arabia. Arab. J. Chem. 2019, 12, 377–387. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, R.H.; Hassan, W.H.B.; Al-Massarani, S.M.; Abdel-Mageed, W.M.; Eldahmy, S.I.; Basudan, O.A.; Parveen, M.; El Senosy, E.; Abdelaziz, S. UPLC-ESI-MS/MS Profiling of Secondary Metabolites from Methanol Extracts of In Vivo and In Vitro Tissues of Daucus capillifolius Gilli (A Comparative Study). Molecules 2024, 29, 2694. https://doi.org/10.3390/molecules29112694
Abdallah RH, Hassan WHB, Al-Massarani SM, Abdel-Mageed WM, Eldahmy SI, Basudan OA, Parveen M, El Senosy E, Abdelaziz S. UPLC-ESI-MS/MS Profiling of Secondary Metabolites from Methanol Extracts of In Vivo and In Vitro Tissues of Daucus capillifolius Gilli (A Comparative Study). Molecules. 2024; 29(11):2694. https://doi.org/10.3390/molecules29112694
Chicago/Turabian StyleAbdallah, Rehab H., Wafaa H. B. Hassan, Shaza M. Al-Massarani, Wael M. Abdel-Mageed, Samih I. Eldahmy, Omer A. Basudan, Mehtab Parveen, Entesar El Senosy, and Sahar Abdelaziz. 2024. "UPLC-ESI-MS/MS Profiling of Secondary Metabolites from Methanol Extracts of In Vivo and In Vitro Tissues of Daucus capillifolius Gilli (A Comparative Study)" Molecules 29, no. 11: 2694. https://doi.org/10.3390/molecules29112694
APA StyleAbdallah, R. H., Hassan, W. H. B., Al-Massarani, S. M., Abdel-Mageed, W. M., Eldahmy, S. I., Basudan, O. A., Parveen, M., El Senosy, E., & Abdelaziz, S. (2024). UPLC-ESI-MS/MS Profiling of Secondary Metabolites from Methanol Extracts of In Vivo and In Vitro Tissues of Daucus capillifolius Gilli (A Comparative Study). Molecules, 29(11), 2694. https://doi.org/10.3390/molecules29112694