Interlayer Interactions and Macroscopic Property Calculations of Squaric-Acid-Linked Zwitterionic Covalent Organic Frameworks: Structures, Photocatalytic Carrier Transport, and a DFT Study
Abstract
:1. Introduction
2. Results and Discussions
2.1. Slippage
2.2. Planarity and IGMH Analysis
2.3. Macroscopic Performance about Photocatalysis
3. Calculation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Zhang, J.; Xu, Q.; Yang, Y.; Zhang, L. Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Phys. -Chim. Sin. 2024, 40, 2312014. [Google Scholar] [CrossRef]
- Xia, W.; Ji, C.; Wang, R.; Qiu, S.; Fang, Q. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction. Acta Phys. -Chim. Sin. 2023, 39, 2212057. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Zhang, Y.; Yang, N.; Gui, B.; Sun, J.; Wang, C. Gas-Triggered Gate-Opening in a Flexible Three-Dimensional Covalent Organic Framework. J. Am. Chem. Soc. 2024, 146, 11411–11417. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, W.; Zhang, Z.; Li, J.; Gui, B.; Sun, J.; Yuan, D.; Wang, C. Fine-tuning the pore environment of ultramicroporous three-dimensional covalent organic frameworks for efficient one-step ethylene purification. Nat. Commun. 2024, 15, 3008. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hou, J.; Yan, M.; Zhang, J.; Alemayehu, H.G.; Zheng, W.; Liu, P.; Tang, Z.; Li, L. Regulating the Layered Stacking of a Covalent Triazine Framework Membrane for Aromatic/Aliphatic Separation. Angew. Chem. Int. Ed. 2024, 63, e202320137. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Lee, J.; Lee, J.; Park, J.H.; Shin, J.; Ju, J.; Lee, H.; Lee, S.K.; Kim, J. An Ion-Channel-Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for All-Solid-State Lithium-Metal Batteries. Adv. Mater. 2023, 35, 2301308. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wu, Y.; Chen, S.; Zhang, W.; Zhang, Y.; Yan, T.; Yang, B.; Ma, H. Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS Nano 2021, 15, 19743–19755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, Y. Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. J. Am. Chem. Soc. 2023, 145, 25222–25232. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, T.; Ma, S.; Zhang, Z.; Wu, G.; Wang, J.; Li, Q.; Xia, H.; Yang, S.; Liu, X. Three-Component Donor−π–Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2023, 145, 8364–8374. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Hao, M.; Xie, Y.; Liu, X.; Yang, H.; Waterhouse, G.I.N.; Wang, X.; Ma, S. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 2023, 14, 1106. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, H.; Jiao, Y.; Qiao, S. Activity and Selectivity Roadmap for C–N Electro-Coupling on MXenes. J. Am. Chem. Soc. 2023, 145, 15572–15580. [Google Scholar] [CrossRef] [PubMed]
- Heriberto, C.; Brenda, G.; Fernando, M.; Amado, G.; Hugo, R.; Elvia, P.S. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials. Molecules 2024, 29, 436. [Google Scholar]
- Zavatski, S.; Neilande, E.; Bandarenka, H.; Popov, A.; Piskunov, S.; Bocharov, D. Density functional theory for doped TiO2: Current research strategies and advancements. Nanotechnology 2024, 35, 192001. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, Z.; Fu, J.; Dong, W.; Zou, N.; Gong, X.; Duan, W.; Xu, Y. Deep-Learning Density Functional Perturbation Theory. Phys. Rev. Lett. 2024, 132, 096401. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Rudorff, G.; Lilienfeld, O. The central role of density functional theory in the AI age. Science 2023, 381, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Gou, H.; Zheng, Y.; Zhang, L.; Liu, Y.; Rao, H.; Zhao, G. A New Squaraine-Linked Triazinyl-Based Covalent Organic Frameworks: Preparation, Characterization and Application for Sensitive and Selective Determination of Fe3+ Cations. ChemistrySelect 2020, 5, 10632–10636. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Wang, J.; Zhang, Y.; Luo, D.; Zhao, Y.; Li, Y.; Yu, A.; Wang, Y.; Cheng, Z. Design Zwitterionic Amorphous Conjugated Micro-/Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithium-Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2101926. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, L.; Huang, X.; Unruangsri, J.; Zhang, H.; Wang, R.; Song, Q.; Yang, Q.; Li, W.; Wang, C.; et al. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3934. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. Simple, reliable, and universal metrics of molecular planarity. J. Mol. Model. 2021, 27, 263. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 2022, 43, 539. [Google Scholar] [CrossRef]
- Grimme, S. Do Special Noncovalent π–π Stacking Interactions Really Exist. Angew. Chem. Int. Ed. 2008, 47, 3430. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
Structures | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Space Group |
---|---|---|---|---|---|---|---|
SQA-COF-5 | 31.742 | 32.205 | 3.869 | 90.760 | 90.920 | 122.398 | P1 |
SQA-COF-5-PEG | 31.673 | 32.138 | 4.064 | 90.753 | 90.931 | 122.477 | P1 |
SQA-COF-1 | 16.094 | 16.094 | 3.428 | 90.000 | 90.000 | 120.000 | P6/m |
MLA-COF | 20.488 | 20.488 | 3.427 | 90.000 | 90.000 | 120.000 | P6/m |
Structures | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) |
---|---|---|---|---|---|---|
SQA-COF-5 | 63.484 | 64.410 | 7.737 | 90.760 | 90.920 | 122.398 |
SQA-COF-5-PEG | 63.345 | 64.277 | 8.129 | 90.753 | 90.931 | 122.477 |
SQA-COF-1 | 32.188 | 32.188 | 6.857 | 90.000 | 90.000 | 120.000 |
MLA-COF | 40.976 | 40.976 | 6.855 | 90.000 | 90.000 | 120.000 |
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | L1 (Å) | L2 (Å) | |
---|---|---|---|---|---|---|---|---|
SQA-COF-5 | 63.680 | 64.175 | 10.988 | 90.982 | 89.597 | 122.400 | 16.000 | 15.812 |
SQA-COF-5-PEG | / | / | / | / | / | / | / | / |
SQA-COF-1 | 31.601 | 31.661 | 7.504 | 87.948 | 89.495 | 120.543 | 8.000 | 1.357 |
MLA-COF | 40.846 | 40.367 | 7.432 | 92.438 | 92.292 | 119.474 | 10.000 | 1.222 |
Structures | E (N/C) |
---|---|
SQA-COF-5 | 1.43 × 1022 |
SQA-COF-5-PEG | 2.13 × 1022 |
SQA-COF-1 | 5.17 × 1023 |
MLA-COF | 9.14 × 1023 |
Structures | Eg (eV) | εr (F/m) | (m0) | Eb (meV) | |
---|---|---|---|---|---|
SQA-COF-5 | 2.34 | 4.12 | −10.64 | 7.93 | 24.89 |
SQA-COF-5-PEG | 2.48 | 5.21 | −15.63 | 22.02 | 26.96 |
SQA-COF-1 | 1.52 | 2.98 | −20.65 | 1.26 | 2.07 |
MLA-COF | 1.05 | 2.71 | −32.81 | 0.51 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, G.; Zhang, X. Interlayer Interactions and Macroscopic Property Calculations of Squaric-Acid-Linked Zwitterionic Covalent Organic Frameworks: Structures, Photocatalytic Carrier Transport, and a DFT Study. Molecules 2024, 29, 2739. https://doi.org/10.3390/molecules29122739
Yan G, Zhang X. Interlayer Interactions and Macroscopic Property Calculations of Squaric-Acid-Linked Zwitterionic Covalent Organic Frameworks: Structures, Photocatalytic Carrier Transport, and a DFT Study. Molecules. 2024; 29(12):2739. https://doi.org/10.3390/molecules29122739
Chicago/Turabian StyleYan, Gaojie, and Xiaojie Zhang. 2024. "Interlayer Interactions and Macroscopic Property Calculations of Squaric-Acid-Linked Zwitterionic Covalent Organic Frameworks: Structures, Photocatalytic Carrier Transport, and a DFT Study" Molecules 29, no. 12: 2739. https://doi.org/10.3390/molecules29122739
APA StyleYan, G., & Zhang, X. (2024). Interlayer Interactions and Macroscopic Property Calculations of Squaric-Acid-Linked Zwitterionic Covalent Organic Frameworks: Structures, Photocatalytic Carrier Transport, and a DFT Study. Molecules, 29(12), 2739. https://doi.org/10.3390/molecules29122739