Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Preparation
2.3. Sample Preparation and Instrumental Method
Data Processing and Statistical Analysis
3. Results
3.1. Stability and Repeatability of Instrument
3.2. Unsupervised Classification by Principal Component Analysis (PCA)
3.3. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA)
3.4. Variable Information Processing Analysis (VIP), Volcano Plot (VP), and Heat Map
3.5. Structural Identification of Characteristic Compounds
3.5.1. The Caffeic Acid of Compounds
3.5.2. The Flavonoid of Compounds
3.6. The Simultaneous Biomarkers Distinguished in Honghe Dengzhanhua from Other Areas in Yunnan Province, Guizhou Province
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, C.; Pu, Y.Z.; Gao, Y.; Wang, G.Y.; Xu, L. Development Status and Counterplans of Erigeron breviscapus Industry in Yunnan Province. J. Chin. Med. Mater. 2023, 46, 1067–1072. [Google Scholar]
- GB/T 23404-2009; Product of Geographical Indication of Honghe Dengzhanhua. Standardization Administration of China: Beijing, China, 2009.
- Li, J.F.; Liao, L.M. Study on the relationship between structure and retention time of volatile component from Erigeron breviscapus. Nat. Prod. Res. 2021, 33, 236–245. [Google Scholar]
- Francesca, S.; Claude, G.; Fabiano, R.; Luciano, B.; Maria, C.; Michael, W.; Sundaram, l.; Károly, H.; Frank, V. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios. Rapid Commun. Mass. Spectr. 2005, 19, 2111–2115. [Google Scholar]
- Li, C.L.; Nie, J.; Zhang, Y.Z.; Shao, S.Z.; Liu, Z.; Karyne, R.; Zhang, W.X.; Yuan, Y.W. Geographical origin modeling of Chinese rice using stable isotopes and trace elements. Food Control. 2022, 138, 108997. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhao, Q.Y.; Guo, X.Q.; Tang, C.H.; Yu, X.N.; Zhan, T.F.; Qin, Y.C.; Zhang, J.M. Application of isotopic and elemental fingerprints in identifying the geographical origin of goat milk in China. Food Chem. 2019, 277, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Zhang, L.; Yang, R.; Wang, X.; Yu, L.; Yue, X.; Ma, F.; Mao, J.; Wang, X.; Zhang, W. Mass spectrometry in food authentication and origin traceability. Mass. Spectrom. Rev. 2022, 42, 1772–1807. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Wang, X.M.; Yang, M.; Lu, Z.Q.; Guo, D.A. Fingerprint analysis of different Panax herbal species by HPLC-UV method. J. Chin. Pharm. Sci. 2007, 16, 277–281. [Google Scholar]
- Fan, X.H.; Wang, Y.; Cheng, Y.Y. LC/MS fingerprinting of Shenmai injection: A novel approach to quality control of herbal medicines. J. Pharm. Biomed. Anal. 2006, 40, 591–597. [Google Scholar]
- Lin, T.; Chen, X.L.; Du, L.J.; Wang, J.; Hu, Z.X.; Cheng, L.; Liu, Z.H.; Liu, H.C. Traceability Research on Dendrobium devonianum Based on SWATH to MRM. Foods 2023, 12, 3608. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Yang, S.P.; Li, B.; Zhang, C.Y.; Li, Y.; Li, J.X. Exploring critical metabolites of honey peach (Prunus persica (L.) Batsch) from five main cultivation regions in the north of China by UPLC-Q-TOF/MS combined with chemometrics and modeling. Food Res. Int. 2022, 157, 111213. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhong, C.; Xie, J.; Liu, H.; Xie, Z.N.; Zhang, S.H.; Jin, J. Geographical region traceability of Poria cocos and correlation between environmental factors and biomarkers based on a metabolomic approach. Food Chem. 2023, 417, 135817. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.J.; Liang, Y.Z.; Chau, F.T.; Heyden, Y.V. Pretreatments of chromatographic fingerprints for quality control of herbal medicines. Chromatogr. A 2006, 1134, 253. [Google Scholar] [CrossRef]
- Xiao, L.J.; Liu, Y.Y.; Zhao, Y.; Li, G.D.; Qian, Z.G. Quality evaluation of Erigeron breviscapus from different origins and its related species by HPLC coupled with chemometrics. Chin. Trad. Herb. Drug 2019, 50, 3438–3442. [Google Scholar]
- Chen, Y.; Zhu, S.B.; Xie, M.Y.; Nie, S.P.; Liu, W.; Li, C.; Gong, X.F.; Wang, Y.X. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Anal. Chim. Acta 2008, 623, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Yao, J.L.; Fan, H.F. The Fingerprint of Erigeron breviscapus and QAMS Analysis. J. Chin. Med. Mat. 2019, 42, 110–116. [Google Scholar]
- Shang, J.; Wu, Z.W.; Ma, Y.G. Phenylpropanoid metabolism pathway in plants. Chin. J. Biochem. Mol. Biol. 2022, 38, 1467–1476. [Google Scholar]
- Zhou, T.; Gao, D.; Li, J.X.; Xu, M.J.; Xu, J. Identification of an α-Oxoamine Synthase and a One-Pot Two-Step Enzymatic Synthesis of α-Amino Ketones. Org. Lett. 2021, 23, 37–41. [Google Scholar] [CrossRef]
- Yamagishi, T.; Uchida, C.; Ogawa, S. Total Synthesis of Trehalase Inhibitor Salbostatin. ChemInform 1995, 1, 634–636. [Google Scholar]
- Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 2002, 6, 1948–1954. [Google Scholar] [CrossRef]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013, 7, 1157–1178. [Google Scholar] [CrossRef]
- Joo, K.M.; William, J.H.; Marcel, S.H.; Huey, W.C. Enzymes in carbohydrate synthesis: N-acetylneuraminic acid aldolase catalyzed reactions and preparation of N-acetyl-2-deoxy-D-neuraminic acid derivatives. J. Am. Chem. Soc. 2002, 110, 6481–6486. [Google Scholar]
- Julia, P.; Markus, N.; Dirk, H. Ralfuranone Is Produced by an Alternative Aryl-Substituted γ-Lactone Biosynthetic Route in Ralstonia solanacearum. J. Nat. Prod. 2014, 77, 1967–1971. [Google Scholar]
- Akhtar, S.; Mushtaq, N.; Kamil, A.; Naeem, S. Analgesic and anxiolytic evaluation of N’substituted arylsulphonyl and benzoyl derivatives of 4-pyriidine carbohydrazide. Fuuast J. Biol. 2014, 4, 123–126. [Google Scholar]
- Dai, J.Q.; Krohn, K.; Gehle, D.; Kock, I.; Floerke, U.; Aust, H.J.; Draeger, S.; Schulz, B.; Rheinheimer, J. Active Secondary Metabolites from Fungi. Part 22. New Oblongolides Isolated from the Endophytic Fungus Phomopsis sp. from Melilotus dentata from the Shores of the Baltic Sea. ChemInform 2006, 37, 4009–4016. [Google Scholar] [CrossRef]
- Yang, H.W.; Zhao, C.X.; Romo, D. Studies of the Tandem Mukaiyama Aldol-Lactonization (TMAL) Reaction: A Concise and Highly Diastereoselective Route to β-Lactones Applied to the Total Synthesis of the Potent Pancreatic Lipase Inhibitor(-)-Panclicin D. ChemInform 1998, 29, 16471–16488. [Google Scholar] [CrossRef]
- Boutet, J.; Guerreiro, C.; Mulard, A.L. Efficient Synthesis of Six Tri- to Hexasaccharide Fragments of Shigella flexneri Serotypes 3a and/or X 0-Antigen, Including aStudy on Acceptors Containing N-Trichloroacetylglucosamine versus N-Acetylglucosamine. J. Org. Chem. 2009, 74, 2651–2670. [Google Scholar] [CrossRef] [PubMed]
- Andruszkiewicz, R.; Rozkiewicz, D. An improved preparation of N~2-tert-butoxycarbonyl- and N~2-benzyloxycarbonyl-(S)-2,4-diaminobutanoic acids. Synth. Commun. 2004, 34, 1049–1056. [Google Scholar] [CrossRef]
- Joung, Y.U.; Eun-Jung, P.; Tamara, P.K.; Mayuramas, S.N.; Marisa, M.W.; Wei, Y.Z.; John, M.P.; Chee, C.L. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates. J. Nat. Prod. 2016, 79, 1508–1513. [Google Scholar]
- Jotterand, N.; Vogel, P. Regioselective Base-induced Ethereal Bridge Openings of 7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic Derivatives Synthesis of Squalestatin Core Analogues. Synlett 1999, 1999, 1883–1886. [Google Scholar] [CrossRef]
- Eidenberger, T.; Selg, M.; Krennhuber, K. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus. Fitoterapia 2013, 89, 74–79. [Google Scholar]
- Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Zubatyuk, R.I.; Mazepa, A.V.; Klotz, E.A.; Kravchenko, S.V.; Kostyanovsky, R.G. Single-stage synthesis of 3-hydroxy- and 3-alkoxy-5-arylimidazolidine-2,4-diones by reaction of arylglyoxal hydrates with N-hydroxy- and N-alkoxyureas. Chem. Heterocycl. Compd. 2015, 51, 553–559. [Google Scholar] [CrossRef]
- Shang, G.L.; Zhang, L.J.; Li, C.B.; Lan, Y.Y.; Wang, A.M.; Huang, Y.; Lin, Z.; Fu, X.Z.; Zhou, W.; Qi, X.L.; et al. Rapid screening and identification of caffeic acid and its esters in Erigeron breviscapus by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 2533–2541. [Google Scholar]
- Chen, G.; Gao, H.; Tang, J.; Huang, Y.; Chen, Y.; Wang, Y.; Zhao, H.; Lin, H.; Xie, Q.; Hong, K.; et al. Benzamides and quinazolines from a mangrove actinomycetes Streptomyces sp. (no. 061316) and their inhibiting caspase-3 catalytic activity in vitro. Chem. Pharm. Bull. 2011, 59, 447–451. [Google Scholar] [CrossRef]
- Xu, M.M.; Matthew, L.H.; Amy, L.L.; Mollie, S.T.; Bradley, S.M.; Reuben, J.P. Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola. J. Nat. Prod. 2014, 77, 2144–2147. [Google Scholar] [CrossRef]
- Yu, P.S.; Cheng, Q.; Li, L.; Liu, M.; Yang, Y.M.; Ding, F. 2-(4-Methoxyphenyl) ethyl -2-acetamido-2-deoxy-β-d-pyranoside confers neuroprotection in cell and animal models of ischemic stroke through calpain1/PKA/CREB-mediated induction of neuronal glucose transporter 3. Toxicol. Appl. Pharmacol. 2014, 277, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Ludmila, E.; Andre, S.N.; Pierre, P. ChemInform Abstract: Asymmetric Synthesis of Amino Sugars. Part 1. Stereoselective Synthesis of (2S,3S,4R,5S)-2-Amino-1,3,4,5,6-hexanepentol Derivatives and Their Conversion to L-Mannosamine Derivatives. ChemInform 2010, 30, 5187–5190. [Google Scholar]
- Ram, V.J. One-pot synthesis of mono- and dinitro-1,2,4-triazino[3,2-b]benzothiazoles. Eur. J. Org. Chem. 1988, 1998, 1089–1090. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.Y.; Caj, J.; Ouyang, Z.J.; Zhou, C.H.; Chen, G.Y.; Zhou, X.M. Study on secondary metabolites of endophytic fungus Cladosporium sp. JJM22 hosted in Ceriops tagal. Zhongguo Zhong Yao Za Zhi 2021, 46, 2079–2083. [Google Scholar]
- Hu, Z.H.; Zhang, D.H.; Wang, J.X. Direct Synthesis of Amine-functionalized Mesoporous Silica for CO2 Adsorption. Chin. J. Chem. Eng. 2011, 19, 386–390. [Google Scholar] [CrossRef]
- Brahmachari, G.; Gorai, D. Progress in the Research on Naturally Occurring Flavones and Flavonols: An Overview. Curr. Org. Chem. 2006, 10, 873–898. [Google Scholar] [CrossRef]
- Williams, D.E.; Gunasekara, N.W.; Ratnaweera, P.B.; Zheng, Z.H.; Ellis, S.; Dada, S.; Patrick, B.O. Serpulanines A to C, N-Oxidized Tyrosine Derivatives Isolated from the Sri Lankan Fungus Serpula sp.: Structure Elucidation, Synthesis, and Histone Deacetylase Inhibition. J. Nat. Prod. 2018, 81, 78–84. [Google Scholar] [CrossRef]
- Hauer, H.; Ritter, T.; Grotemeier, G. An Improved and Large Scale Synthesis of the Natural Coumarin Scopoletin. ChemInform 1996, 27, 737–738. [Google Scholar] [CrossRef]
- Tabopdaa, T.K.; Ngoupayoa, J.; Liub, J.W.; Mitaine-Offerc, A.C.; Ngadjuia, B.T.; Lacaille-Duboisc, M.A.; Luu, B. Induction of Neuronal Differentiation in Neurosphere Stem Cells by Ellagic Acid Derivatives. Nat. Prod. Commun. 2009, 4, 517–520. [Google Scholar] [CrossRef]
- Mukhtar, N.; Malik, A.; Riaz, N.; Iqbal, K.; Tareen, R.B. Pakistolides A and B Novel Enzyme Inhibitory and Antioxidant Dimeric 4-(Glucosyloxy) Benzoates from Berchemia pakistanica. Helv. Chim. Acta 2004, 87, 416–424. [Google Scholar] [CrossRef]
- Wang, L.W.; Li, H.J.; Li, P.; Wei, Y.J.; Tang, D.; Yi, L.; Qian, Z.M. Simultaneous Quantification of Two Major Classes of Constituents in Erigeron breviscapus and Its Extract Injection by RP-HPLC. Chromatographia 2007, 66, 395–401. [Google Scholar] [CrossRef]
- Turner, J.G. Tabtoxin produced by Pseudomonas tabaci decreases Nicotiana tabacum glutamine synthetase in vivo and causes accumulation of ammonia. Physiol. Plant Pathol. 1981, 19, 57–67. [Google Scholar] [CrossRef]
- Hanaya, T.; Baba, H.; Yamamoto, H. First synthesis of tepidopterin [2′-O-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-l-threo-biopterin]. Carbohydr. Res. 2007, 342, 2159–2162. [Google Scholar] [CrossRef]
- Li, E.W.; Tian, R.R.; Liu, S.C.; Chen, X.L.; Guo, L.D. Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J. Nat. Prod. 2008, 71, 664–668. [Google Scholar] [CrossRef]
- Mikio, K.; Mikio, K.; Masaaki, A.; Hiroshi, N.; Kenji, M. Valilactone an inhibitor of esterase produced by actinomycetes. J. Antibiot. 1987, 40, 1647–1650. [Google Scholar]
- Thirupathi, B.; Jena, B.K. Total Synthesis of(+)-Sacrolide A. Chem. Sel. 2019, 4, 2908–2911. [Google Scholar] [CrossRef]
- Yang, R.M.; Yang, J.; Wang, L.; Huang, J.P.; Xiong, Z.J.; Luo, J.Y.; Yu, M.M.; Yan, Y.J.; Huang, S.X. Lorneic Acid Analogues from an Endophytic Actinomycete. J. Nat. Prod. 2017, 80, 2615–2619. [Google Scholar] [CrossRef] [PubMed]
- Porntep, C.; Suthep, W.; Thammarat, A. Curvularides A-E: Antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata. Chemistry 2010, 16, 11178–11185. [Google Scholar]
- Mohammed, K.A.A.; Wasfy, A.A.F.; Bazalou, M.S. Qualitative analysis of ethanolic extract of ginger (Zingiber officinale Rosc) by gas chromatography triple quad time-flight (GC-Q-TOF) technology. Res. J. Pharm. Technol. 2021, 14, 4307–4313. [Google Scholar] [CrossRef]
- Wang, R.J.; Lau, K.M.; Hon, P.M.; Mak, T.C.; Woo, K.S.; Fung, K.P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar]
- Yang, W.; Zhang, Y.; Li, L.; Li, Y.F.; Chen, X.G. Comparative analysis of chemical constituents of injection Erigerontis with brevis capine by HPLC-DAD. Chin. Tradit. Pat. Med. 2005, 27, 202. [Google Scholar]
- Ahmad, G.; Yadav, P.P.; Maurya, R. Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 2004, 65, 921–924. [Google Scholar] [CrossRef]
- Garrison, A.; Abouelhassan, Y.; Yang, H.F.; Yousaf, H.H.; Nguyen, T.J.; Huigens, R.W. Microwave-enhanced Friedländer synthesis for the rapid assembly of halogenated quinolines with antibacterial and biofilm eradication activities against drug resistant and tolerant bacteria. Med. Chem. Comm. 2016, 8, 720–724. [Google Scholar] [CrossRef]
Classification | Name | Formula | m/z | Mass Error [ppm] | RT [min] | Adduct/Charge | Reference | Changes of Content in Honghe Dengzhanhua |
---|---|---|---|---|---|---|---|---|
amino acid | Phenylalanine | C9H11NO2 | 166.08627 | 0.1 | 4.709 | [M + M]+ | [17] | up |
Polyphenols | Ghanamycin A | C13H16O9 | 317.0866 | −0.37 | 6.479 | [M + H]+ | unknown | up |
Polyphenols | Ghanamycin B | C19H28O9 | 401.1802 | −1.13 | 9.069 | [M + H]+ | unknown | up |
amino acid | Dimethyl N-[2-hydroxy-4-methoxy-2-(2-methoxy-2-oxoethyl)-4-oxobutanoyl]glutamate | C15H23NO10 | 360.12882 | −0.16 | 5.693 | [M + H]+ | [18] | up |
Polyphenols | Ghanamycin A | C13H16O9 | 317.08663 | −0.27 | 5.54 | [M + H]+ | Unknown | up |
amino acid | (2S,3R,4S,5R,6R)-2-{[(E)-{2-[(2R,5S,6R)-5-Acetoxy-6-(acetoxymethyl)-5,6-dihydro-2H-pyran-2-yl]ethylidene}amino]oxy}-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate | C26H35NO15 | 602.20782 | −0.21 | 4.695 | [M + H]+ | Unknown | up |
Polyphenols | 3,4,5-Trimethoxyphenyl 2,4-dideoxy-6-O-[(2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydro-2-furanyl]-beta-d-threo-hexopyranoside | C20H30O11 | 447.18575 | −0.78 | 9.408 | [M + H]+ | Unknown | up |
amino acid | Salbostatin | C13H23NO8 | 322.14928 | −1.14 | 8.402 | [M + H]+ | [19] | up |
amino acid | MFCD00025555 | C9H18N2O3 | 203.13901 | −0.04 | 5.33 | [M + H]+ | Unknown | up |
amino acid | D-(+)-Tryptophan | C11H12N2O2 | 205.0971 | −0.27 | 6.322 | [M + H]+ | [20] | up |
alkaloid | 2-Methyl-8-quinolinamine | C10H10N2 | 159.09163 | −0.26 | 6.322 | [M + H]+ | [21] | up |
alkaloid | 2-Acetyl-quinoline-8-ol | C11H9NO2 | 188.07061 | 0.01 | 6.322 | [M + H]+ | [21] | up |
amino acid | Neuraminic acid | C9H17NO8 | 268.10394 | 4.69 | 2.975 | [M + H]+ | [22] | up |
Polyphenols | Ralfuranone A | C10H8O2 | 193.08593 | 0.04 | 7.001 | [M + H]+ | [23] | up |
amino acid | 4-Pyridine carbohydrazide | C5CH7N3O | 317.08664 | −1.96 | 6.481 | [M + H]+ | [24] | up |
Polyphenols | O-methyl melleine | C11H12O3 | 193.08589 | −0.45 | 10.665 | [M + H]+ | [25] | up |
alkaloid | (6R)-3,5-Dideoxy-5-{[(3-methyl-2-oxo-4a,8a-dihydro-2H-chromen-7-yl)carbonyl]amino}-6-[(1R,2R)-1,2,3-trihydroxypropyl]-alpha-l-threo-hex-2-ulopyranosonic acid | C20H25NO11 | 456.1498 | −0.52 | 2.199 | [M + H]+ | Unknown | up |
amino acid | Panclicin D | C25H45NO5 | 440.3368 | −0.58 | 4.707 | [M + H]+ | [26] | up |
alkaloid | (1R)-1,5-Anhydro-1-({(5S)-3-[(3aS,4R,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}methyl)-d-galactitol | C17H27NO10 | 406.17043 | −0.84 | 2.28 | [M + H]+ | unknown | up |
amino acid | (2R,3S)-7-Acetamido-6-acetoxy-1,2,3-octanetriyl triacetate | C18H29NO9 | 436.21755 | −0.42 | 9.312 | [M + H]+ | unknown | up |
amino acid | (S)-malyl-d-glucosaminide | C10H17NO9 | 296.09749 | −0.39 | 1.88 | [M + H]+ | [21] | up |
amino acid | 4-Hydroxy-3-methoxybenzyl 2-acetamido-2-deoxy-beta-d-glucopyranoside | C16H23NO8 | 390.17567 | −0.53 | 7.002 | [M + H]+ | Unknown | up |
amino acid | 8-Amino-7-oxononanoic acid | C9H17NO3 | 188.12806 | −0.3 | 3.03 | [M + H]+ | [18] | up |
amino acid | alpha-L-Rhap-(1->3)-beta-D-GlcpO[CH2]5NH2 | C17H33NO10 | 412.21752 | −0.5 | 8.403 | [M + H]+ | [27] | up |
amino acid | 2-{[2-{[(6-Aminohexanoyl)oxy]methyl}-2-(hydroxymethyl)butoxy]carbonyl}cyclohexanecarboxylic acid | C20H35NO7 | 402.24842 | −0.58 | 9.323 | [M + H]+ | Unknown | up |
amino acid | N-(tert-Butoxycarbonyl)-L-glutamine | C10H18N2O5 | 247.12875 | −0.36 | 4.501 | [M + H]+ | [28] | up |
Polyphenols | 1-O-[(2E,4Z,7Z)-2,4,7-Decatrienoyl]-2-O-beta-d-glucopyranosyl-beta-d-glucopyranose | C22H34O12 | 491.21206 | −0.8 | 9.167 | [M + H]+ | [29] | up |
acid | 5-(Ethoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid | C11H14O7 | 259.08103 | −0.79 | 8.402 | [M + H]+ | [30] | up |
flavonoids | Guaijaverin | C20H18O11 | 435.09183 | −0.83 | 8.498 | [M + H]+ | [31] | up |
amino acid | Dimethyl N,N-bis{[(2-methyl-2-propanyl)oxy]carbonyl}-L-glutamate | C17H29NO8 | 376.19588 | −1.9 | 8.849 | [M − H]- | unknown | up |
alkaloid | (S)-5-(4-hydroxybenzoyl)-3-isobutyrylimidazolidine-2,4-dione | C14H14N2O5 | 291.09716 | −1.35 | 9.108 | [M + H]+ | [32] | up |
alkaloid | Methyl 4-(4-methyl-1-piperazinyl)-3-nitrobenzoate | C13H17N3O4 | 280.12912 | −0.23 | 5.65 | [M + H]+ | unknown | down |
caffeoyl | 1,3,5-tri-O-caffeoylquinic acid | C34H30O15 | 679.16532 | −0.63 | 10.208 | [M + H]+ | [33] | down |
amino acid | 3-hydroxy-2-N-iso-butyryl-anthranilamide | C11H14N2O3 | 223.10758 | −0.62 | 2.436 | [M + H]+ | [34] | down |
alkaloid | MFCD00023832 | C12H18N2O4 | 237.1233 | −0.29 | 5.963 | [M + H]+ | Unknown | down |
amino acid | FW054-1 | C15H21NO6 | 312.14393 | −0.74 | 4.61 | [M + H]+ | Unknown | down |
alkaloid | 8-Hydroxyquinoline | C9H7NO | 146.05998 | −0.39 | 6.321 | [M + H]+ | [21] | down |
alkaloid | 2-Hydroxy-5-(3,5,7-trihydroxy-4-oxo-4H-chromen-2-yl) phenyl 6-aminohexanoate | C21H21NO8 | 416.13367 | −0.77 | 8.675 | [M + H]+ | unknown | down |
alkaloid | Isopimara-8,15-dien-19-ol | C20H32 O | 289.25222 | −1.21 | 11.983 | [M + H]+ | [35] | down |
amino acid | 3-(4-Hydroxy-3-methoxyphenyl)propyl 2-acetamido-2-deoxy-beta-d-glucopyranoside | C18H27NO8 | 386.18053 | −1.07 | 10.665 | [M + H]+ | [36] | down |
amino acid | (2R,3R,4R,5S,2′R,3′R,4′R,5′S)-6,6′-[(2-Phenylethyl)imino]di(1,2,3,4,5-hexanepentol) | C20H35NO10 | 450.23328 | −0.21 | 9.183 | [M + H]+ | [37] | down |
alkaloid | 6-Nitro-1,2,3-benzotriazin-4(1H)-one 2-oxide | C7H4N4O4 | 209.0305 | −0.16 | 3.202 | [M + H]+ | [38] | down |
Polyphenol | Usimine A | C24H25NO10 | 488.15493 | −0.39 | 11.568 | [M + H]+ | unknown | down |
Polyphenol | (2R,4R)-3,4-dihydro-5-methoxy-2-methyl-2H-1-benzopyran-4-ol | C11H14O3 | 195.1015 | −0.41 | 10.16 | [M + H]+ | [39] | down |
Amino acid | Stearoyl glutamic acid | C23H43NO5 | 414.32123 | −0.42 | 12.421 | [M + H]+ | [40] | down |
Flavone | Pongamoside C | C24H22O10 | 471.12845 | −0.37 | 11.568 | [M + H]+ | [41] | down |
Classification | Name | Formula | m/z | Mass Error [ppm] | RT [min] | Adduct/Charge | Reference | Changes of Content in Honghe Dengzhanhua |
---|---|---|---|---|---|---|---|---|
amino acid | Epinephrine glucuronide | C15H21NO9 | 360.12881 | −0.23 | 5.696 | [M + M]+ | [41] | up |
alkaloid | (S)-5-(4-hydroxybenzoyl)-3-isobutyrylimidazolidine-2,4-dione | C14H14N2O5 | 291.09716 | −1.35 | 9.108 | [M + H]+ | [32] | up |
amino acid | 8-Amino-7-oxononanoic acid | C9H17NO3 | 188.12806 | −0.3 | 3.03 | [M + H]+ | [18] | up |
amino acid | N-(tert-Butoxycarbonyl)-l-glutamine | C10H18N2O5 | 247.12875 | −0.36 | 4.501 | [M + H]+ | [28] | up |
amino acid | Serpulanine C | C14H18N2O3 | 263.13895 | −0.23 | 6.747 | [M + H]+ | [42] | up |
amino acid | Salbostatin | C13H23NO8 | 322.14928 | −1.14 | 8.402 | [M + H]+ | [19] | up |
alkaloid | 2-Acetyl-quinoline-8-ol | C11H9NO2 | 188.07061 | 0.01 | 6.322 | [M + H]+ | [21] | up |
alkaloid | Scopoletin | C10H8O4 | 193.04947 | −0.32 | 9.093 | [M + H]+ | [43] | up |
polyphenols | 2-hydroxy-3,8-dimethoxy -7-((3,4,5-trihydroxytetrahydro -2H-pyran-2-yl)oxy) chromeno [5,4,3-cde]chromene-5,10-dione | C21H18O12 | 463.08705 | −0.12 | 7.38 | [M + H]+ | [44] | up |
Polyphenols | Bis{2-[2-(methacryloyloxy)ethoxy]ethyl} 4-cyclohexene-1,2-dicarboxylate | C24H34O10 | 483.22221 | −0.55 | 12.224 | [M + H]+ | unknown | up |
alkaloid | (1R)-1,5-Anhydro-1-({(5S)-3-[(3aS,4R,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}methyl)-d-galactitol | C17H27NO10 | 406.17043 | −0.84 | 2.28 | [M + H]+ | unknown | up |
acid | M-hydroxyphenyl acetic acid | C7H6O3 | 139.03896 | 0.27 | 6.766 | [M + H]+ | [21] | up |
Polyphenols | 4-(beta-d-Glucosyloxy)benzoate | C13H16O8 | 323.07363 | −0.34 | 6.765 | [M + H]+ | [45] | up |
flavonoids | Apigenin | C15H10O5 | 271.05984 | −0.98 | 12.137 | [M + H]+ | [46] | up |
alkaloid | Tabtoxin | C11H19N3O6 | 290.13446 | −0.68 | 1.65 | [M + H]+ | [47] | up |
alkaloid | 4-Nitrobenzyl 2-oxo-2H-chromene-3-carboxylate | C17H11NO6 | 326.06543 | −1.5 | 9.7 | [M + H]+ | unknown | up |
Amino acid | 3,4-Dimethoxybenzyl 2-acetamido-2-deoxy-beta-d-glucopyranoside | C17H25NO8 | 372.16512 | −0.47 | 10.666 | [M + H]+ | [48] | |
Polyphenols | Pestalotheol G | C16H22O6 | 311.14853 | −1.28 | 10.976 | [M + H]+ | [49] | down |
Polyphenols | O-methyl melleine | C11H12O3 | 193.08589 | −0.45 | 10.665 | [M + H]+ | [25] | down |
Amino acid | Stearoyl glutamic acid | C23H43NO5 | 414.32123 | −0.42 | 12.421 | [M + H]+ | [40] | down |
amino acid | Valilactone | C22H39NO5 | 398.28979 | −0.81 | 11.671 | [M + H]+ | [50] | down |
Polyphenols | Gloeolactone | C18H28O3 | 293.21063 | −1.33 | 11.302 | [M + H]+ | down | |
Polyphenols | 9-epi-sacrolide A | C18H28O4 | 309.20569 | −0.98 | 11.619 | [M + H]+ | [51] | down |
Polyphenols | Ralfuranone A | C10H8O2 | 193.08587 | −0.36 | 10.665 | [M + H]+ | [23] | down |
acid | Lorneic acid B | C17H24O3 | 309.20594 | −0.8 | 11.391 | [M + H]+ | [23] | down |
amino acid | Curvularide A | C18H35NO5 | 346.25842 | −1.1 | 11.475 | [M + H]+ | [52] | down |
amino acid | Tributyl 2,2′,2″-nitrilotriacetate | C18H33NO6 | 360.23764 | −1.17 | 11.89 | [M + H]+ | unknown | down |
amino acid | 3-(4-Hydroxy-3-methoxyphenyl)propyl 2-acetamido-2-deoxy-beta-d-glucopyranoside | C18H27NO8 | 386.18053 | −1.07 | 10.665 | [M + H]+ | unknown | down |
Polyphenols | Tributyl Aconitate | C18H30O6 | 343.21083 | −1.86 | 11.896 | [M + H]+ | [53] | down |
caffeoyl | 1,3,5-tri-O-caffeoylquinic acid | C34H30O15 | 679.16575 | −1.13 | 11.02 | [M + H]+ | [33] | down |
caffeoyl | 3,4,9-tri-Caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosonic acids | C35H30O16 | 707.16028 | −0.54 | 11.156 | [M + H]+ | [33] | down |
amino acid | Dimethyl 4-acet amidodecanedioate | C14H25NO5 | 288.18028 | −0.83 | 7.673 | [M + H]+ | [54] | down |
amino acid | butoctamide | C16H29NO5 | 316.21145 | −1.27 | 9.201 | [M + H]+ | unknown | down |
caffeoyl | Neochlorogenic acid | C16H18O9 | 355.10218 | −0.86 | 6.281 | [M + H]+ | [46] | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tian, H.; Lin, T.; Huang, X.; Liu, H. Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis. Molecules 2024, 29, 2930. https://doi.org/10.3390/molecules29122930
Zhang J, Tian H, Lin T, Huang X, Liu H. Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis. Molecules. 2024; 29(12):2930. https://doi.org/10.3390/molecules29122930
Chicago/Turabian StyleZhang, Jiao, Heng Tian, Tao Lin, Xiangzhong Huang, and Hongcheng Liu. 2024. "Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis" Molecules 29, no. 12: 2930. https://doi.org/10.3390/molecules29122930
APA StyleZhang, J., Tian, H., Lin, T., Huang, X., & Liu, H. (2024). Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis. Molecules, 29(12), 2930. https://doi.org/10.3390/molecules29122930