Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meiklejohn, W.H.; Bean, C.P. New magnetic anisotropy. Phys. Rev. 1956, 102, 3866–3876. [Google Scholar] [CrossRef]
- Seo, J.W.; Fullerton, E.E.; Nolting, F.; Scholl, A.; Fompeyrine, J.; Locquet, J.P. Antiferromagnetic LaFeO3 thin films and their effect on exchange bias. J. Phys. Condens. Matter 2008, 20, 264014. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Feng, J.F.; Coey, J.M.D. Tunable linear magnetoresistance in MgO magnetic tunnel junction sensors using two pinned CoFeB electrodes. Appl. Phys. Lett. 2012, 100, 142407. [Google Scholar] [CrossRef]
- Gopalarao, T.R.; Dash, B.; Ravi, S. Magnetic and electrical transport properties of La0.7Sr0.3MnO3/LaFeO3 bilayer thin films. J. Magn. Magn. Mater. 2017, 441, 531–536. [Google Scholar] [CrossRef]
- Pal, K.; Das, I. The impact of oxygen deficiency on giant exchange bias in perovskite oxide: SrFe0.5Co0.5O3-δ (δ = 0.37). J. Alloys Compd. 2023, 960, 170794. [Google Scholar] [CrossRef]
- Maniv, E.; Murphy, R.A.; Haley, S.C.; Doyle, S.; John, C.; Maniv, A.; Ramakrishna, S.K.; Tang, Y.L.; Ercius, P.; Ramesh, R.; et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders. Nat. Phys. 2021, 17, 525–530. [Google Scholar] [CrossRef]
- Tian, F.; Zhao, Q.; Guo, G.; Kong, S.; Liu, B.; Dai, Z.; Fang, M.; Zhang, Y.; Zhou, C.; Cao, K.; et al. A giant exchange bias effect due to increased A giant exchange bias effect due to enhanced ferromagnetism using a mixed martensitic phase in Ni50Mn37Ga13 spun ribbons. Nanomaterials 2023, 13, 2827. [Google Scholar] [CrossRef]
- Averyanov, D.V.; Sokolov, I.S. Exhange bias state at the crossover to 2D ferromagnetism. ACS Nano 2022, 16, 19482–19490. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.W.; Ji, H.H.; Zhang, J.; Bai, Y.H.; Quan, Z.Y.; Xu, X.H. The antiferromagnetic state in ultrathin LaNiO3 layer supported by long-range exchange bias in LaNiO3/SrTiO3/La0.7Sr0.3MnO3 superlattices. J. Mater. Chem. C 2018, 6, 582–587. [Google Scholar] [CrossRef]
- Nogués, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suriñach, S.; Muñoz, J.S.; Baró, M.D. Exchange bias in nanostructures. Phys. Rep. 2005, 422, 65–117. [Google Scholar] [CrossRef]
- Cui, B.; Song, C.; Wang, G.Y.; Mao, H.J.; Zeng, F.; Pan, F. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci. Rep. 2013, 3, 2542. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Song, C.; Li, F.; Zhong, X.Y.; Wang, Z.C.; Werner, P.; Gu, Y.D.; Wu, H.Q.; Saleem, M.S.; Parkin, S.S.P.; et al. Electric-field control of oxygen vacancies and magnetic phase transition in a cobaltite/manganite bilayer. Phys. Rev. Appl. 2017, 8, 044007. [Google Scholar] [CrossRef]
- Zhou, G.; Yan, Z.; Bai, Y.; Zang, J.; Quan, Z.; Qi, S.; Xu, X. Exchange bias effect and orbital reconstruction in (001)-oriented LaMnO3/LaNiO3 superlattices. ACS Appl. Mater. Interfaces 2017, 9, 39855–39862. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Hu, Z.; Du, G.; Yuan, Y.; Wang, J.; Tu, H.; You, B.; Zhou, S.; Qu, J.; Liu, H.; et al. Full electric control of exchange bias at RT by resistive switching. Adv. Mater. 2018, 30, 1801885. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Yang, B.; Tsai, M.; Chen, P.; Huang, K.; Lin, H.; Lai, C. Manipulating exchange bias by spin-orbit torque. Nat. Mater. 2019, 18, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, L.; Tong, L.; Li, Z.; Peng, Z.; Lin, R.; Shi, W.; Xue, K.; Dai, H.; Cheng, H.; et al. Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications. Nat. Commun. 2023, 14, 2190. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, S.; Xu, X.; Miao, J.; Jiang, Y. Photo-control of exchange bias in a Co90Fe10/BiFeO3 heterostructure. Phys. Status Solidi A 2022, 219, 2200186. [Google Scholar] [CrossRef]
- Kang, J.; Ryu, J.; Choi, J.; Lee, T.; Park, J.; Lee, S.; Jang, H.; Jung, Y.S.; Kim, K.; Park, B. Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures. Nat. Commun. 2021, 12, 6420. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ma, C.; Du, W.; Su, H.; Zhang, H.; Liu, B.; Meng, H.; Tang, X. Deterministic magnetic moment rotation in antiferromagnetic material by piezoelectric strain modulation. NPG Asia Mater. 2022, 14, 68. [Google Scholar] [CrossRef]
- Yao, K.; Cao, K.; Dong, C.; Wang, F.; Li, J.; Shi, Q.; Tian, F.; Zhou, C.; Song, X.; Yang, S.; et al. Photocontrol of exchange bias using cobalt-iron prussian blue analogues for applications in spintronics. ACS Appl. Nano Mater. 2023, 6, 3685–3692. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Cui, Z.; Liu, P.; Xiang, B.; Li, Z.; Fu, Z.; Lu, Y. Giant and nonvolatile control of exchange bias in Fe3GeTe2/irradiated Fe3GeTe2/MgO heterostructure through ultralow voltage. Adv. Funct. Mater. 2023, 33, 2214007. [Google Scholar] [CrossRef]
- Hallsteinsen, I.; Moreau, M.; Grutter, A.; Nord, M.; Vullum, P.E.; Gilbert, D.A.; Bolstad, T.; Grepstad, J.K.; Holmestad, R.; Selbach, S.M.; et al. Concurrent magnetic and structural reconstructions at the interface of (111)-oriented La0.7Sr0.3MnO3/LaFeO3. Phys. Rev. B 2016, 94, 201115. [Google Scholar] [CrossRef]
- Hallsteinsen, I.; Grutter, A.; Moreau, M.; Slöetjes, S.D.; Kjærnes, K.; Arenholz, E.; Tybell, T. Role of antiferromagnetic spin axis on magnetic reconstructions at the (111)-oriented La0.7Sr0.3MnO3/LaFeO3 interface. Phys. Rev. Mater. 2018, 2, 084403. [Google Scholar] [CrossRef]
- Bruno, F.Y.; Grisolia, M.N.; Visani, C.; Valencia, S.; Varela, M.; Abrudan, R.; Tornos, J.; Rivera-Calzada, A.; Ünal, A.A.; Pennycook, S.J.; et al. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping. Nat. Commun. 2015, 6, 6306. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tiwari, D.; Fermin, D.J. Promoting active electronic states in LaFeO3 thin films photocathodes via alkaline-earth metal substitution. ACS Appl. Mater. Interfaces 2012, 12, 31468–31495. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Paynec, B.P.; Grosvenor, A.P.; Laua, L.W.M.; Gersonb, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Wang, G.; Guo, H.; Saghayezhian, M.; Liao, Z.; Zhu, Y.; Plummer, E.W.; Zhang, J. Surface and interface properties of La2/3Sr1/3MnO3 thin films on SrTiO3 (001). Phys. Rev. Mater. 2019, 3, 044407. [Google Scholar] [CrossRef]
- Folven, E.; Scholl, A.; Young, A.; Retterer, S.T.; Boschker, J.E.; Tybell, T.; Takamura, Y.; Grepstad, J.K. Crossover from spin-flop coupling to collinear spin alignment in antiferromagnetic/ferromagnetic nanostructures. Nano Lett. 2012, 12, 2386–2390. [Google Scholar] [CrossRef] [PubMed]
- Waman, P.T.; Bhatt, H.; Rao, R.; Tyagi, M.; Girija, K.G.; Kumar, S.; Gonal, M.R.; Padma, N. Influence of substrate-induced strain on exchange bias effect in YSMO/LSMO heterostructures. Bull. Mater. Sci. 2023, 46, 116. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, G.; Yan, Z.; Ji, H.; Li, X.; Quan, Z.; Bai, Y.; Xu, X. Interfacial ferromagnetic coupling and positive spontaneous exchange bias in SrFeO3-x/La0.7Sr0.3MnO3 bilayers. ACS Appl. Mater. Interfaces 2019, 11, 26460–26466. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, Y.; Wang, J.; Muraishi, S.; Sannomiya, T.; Nakamura, Y.; Shi, J. Magnetoelastically induced perpendicular magnetic anisotropy and perpendicular exchange bias of CoO/CoPt multilayer films. J. Magn. Magn. Mater. 2015, 394, 349–353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Su, T.; Ma, J. Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers. Molecules 2024, 29, 3244. https://doi.org/10.3390/molecules29143244
Zhang J, Su T, Ma J. Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers. Molecules. 2024; 29(14):3244. https://doi.org/10.3390/molecules29143244
Chicago/Turabian StyleZhang, Jun, Tiancong Su, and Jianchun Ma. 2024. "Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers" Molecules 29, no. 14: 3244. https://doi.org/10.3390/molecules29143244
APA StyleZhang, J., Su, T., & Ma, J. (2024). Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers. Molecules, 29(14), 3244. https://doi.org/10.3390/molecules29143244