Potential of Anti-Leukotriene Drugs as New Therapeutic Agents for Inhibiting Cholangiocarcinoma Progression
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of CysLTs and CysLTR1
2.2. CysLTR1 Expression and Synthetic Potential of CysLTs in Human CCA Cell Lines and the Human Immortalized Cholangiocyte Cell Line
2.3. LTD4 Contributed to Proliferation via CysLTR1 by Phosphorylating AKT and Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) in Human CCA Cell Lines with the Receptor
2.4. Zileuton and Montelukast Inhibited the Proliferative and Migratory Ability of CCA Cells in a Concentration-Dependent Manner
2.5. Co-Administration of Zileuton and Montelukast in Cell Culture Synergistically Enhanced the Inhibitory Effect on Cell Proliferation Which Was Mediated by Non-Apoptotic Cell Cycle Arrest
3. Discussion
4. Materials and Methods
4.1. Clinical Samples (Bile and Serum)
4.2. Clinical Samples (Pathological Specimens)
4.3. ELISA
4.4. Cell Culture
4.5. Western Blot Analysis
4.6. Cell Viability Assays
4.7. Wound-Healing Assay (Scratch Assay)
4.8. Flow Cytometry Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massarweh, N.N.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2017, 24, 1073274817729245. [Google Scholar] [CrossRef]
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Expert Consensus Document: Cholangiocarcinoma: Current Knowledge and Future Perspectives Consensus Statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef]
- Sasaki, T.; Takeda, T.; Okamoto, T.; Ozaka, M.; Sasahira, N. Chemotherapy for Biliary Tract Cancer in 2021. J. Clin. Med. Res. 2021, 10, 3108. [Google Scholar] [CrossRef]
- Becht, R.; Wasilewicz, M.P. New Options for Systemic Therapies in Intrahepatic Cholangiocarcinoma (ICCA). Medicina 2023, 59, 1174. [Google Scholar] [CrossRef]
- Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug Repositioning: A Brief Overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef]
- Masuda, T.; Tsuruda, Y.; Matsumoto, Y.; Uchida, H.; Nakayama, K.I.; Mimori, K. Drug Repositioning in Cancer: The Current Situation in Japan. Cancer Sci. 2020, 111, 1039–1046. [Google Scholar] [CrossRef]
- Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Rica Capistrano, I.; Crispino, S.; Gyawali, B.; Rooman, I.; van Nuffel, A.M.; Meheus, L.; Sukhatme, V.P.; et al. ReDO_DB: The Repurposing Drugs in Oncology Database. Ecancermedicalscience 2018, 12, 886. [Google Scholar] [CrossRef]
- Takahashi, S.; Uemura, H.; Seeni, A.; Tang, M.; Komiya, M.; Long, N.; Ishiguro, H.; Kubota, Y.; Shirai, T. Therapeutic Targeting of Angiotensin II Receptor Type 1 to Regulate Androgen Receptor in Prostate Cancer. Prostate 2012, 72, 1559–1572. [Google Scholar] [CrossRef]
- Nakai, Y.; Isayama, H.; Sasaki, T.; Takahara, N.; Saito, K.; Ishigaki, K.; Hamada, T.; Mizuno, S.; Miyabayashi, K.; Yamamoto, K.; et al. The Inhibition of Renin-Angiotensin System in Advanced Pancreatic Cancer: An Exploratory Analysis in 349 Patients. J. Cancer Res. Clin. Oncol. 2015, 141, 933–939. [Google Scholar] [CrossRef]
- Fritz, I.; Wagner, P.; Broberg, P.; Einefors, R.; Olsson, H. Desloratadine and Loratadine Stand out among Common H1-Antihistamines for Association with Improved Breast Cancer Survival. Acta Oncol. 2020, 59, 1103–1109. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Wu, P.-H.; Sheu, C.-C.; Hsu, Y.-L.; Chang, W.-A.; Hung, J.-Y.; Yang, C.-J.; Yang, Y.-H.; Kuo, P.-L.; Huang, M.-S. Cysteinyl Leukotriene Receptor Antagonists Decrease Cancer Risk in Asthma Patients. Sci. Rep. 2016, 6, 23979. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Rubio, P.; Zock, J.-P.; Rava, M.; Marquez, M.; Sharp, L.; Hidalgo, M.; Carrato, A.; Ilzarbe, L.; Michalski, C.; Molero, X.; et al. Reduced Risk of Pancreatic Cancer Associated with Asthma and Nasal Allergies. Gut 2017, 66, 314–322. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Chang, W.-A.; Chuang, C.-H.; Wu, K.-L.; Cheng, C.-H.; Sheu, C.-C.; Hsu, Y.-L.; Hung, J.-Y. Cysteinyl Leukotriene Pathway and Cancer. Int. J. Mol. Sci. 2021, 23, 120. [Google Scholar] [CrossRef] [PubMed]
- Kachi, K.; Kato, H.; Naiki-Ito, A.; Komura, M.; Nagano-Matsuo, A.; Naitoh, I.; Hayashi, K.; Kataoka, H.; Inaguma, S.; Takahashi, S. Anti-Allergic Drug Suppressed Pancreatic Carcinogenesis via Down-Regulation of Cellular Proliferation. Int. J. Mol. Sci. 2021, 22, 7444. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, C.; Mezhybovska, M.; Lörinc, E.; Fernebro, E.; Nilbert, M.; Sjölander, A. Low Expression of CysLT1R and High Expression of CysLT2R Mediate Good Prognosis in Colorectal Cancer. Eur. J. Cancer 2010, 46, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.K.; Campbell, J.I.A.; Ohd, J.F.; Mörgelin, M.; Riesbeck, K.; Landberg, G.; Sjölander, A. A Novel Localization of the G-Protein-Coupled CysLT1 Receptor in the Nucleus of Colorectal Adenocarcinoma Cells. Cancer Res. 2005, 65, 732–742. [Google Scholar] [CrossRef]
- Venerito, M.; Kuester, D.; Harms, C.; Schubert, D.; Wex, T.; Malfertheiner, P. Upregulation of Leukotriene Receptors in Gastric Cancer. Cancers 2011, 3, 3156–3168. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, C.; Liu, J.; Ehrnström, R.; Manjer, J.; Jirström, K.; Andersson, T.; Sjölander, A. Cysteinyl Leukotriene Receptor Expression Pattern Affects Migration of Breast Cancer Cells and Survival of Breast Cancer Patients. Int. J. Cancer 2011, 129, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Massoumi, R.; Sjölander, A. The Role of Leukotriene Receptor Signaling in Inflammation and Cancer. Sci. World J. 2007, 7, 1413–1421. [Google Scholar] [CrossRef]
- Wikström, K.; Ohd, J.F.; Sjölander, A. Regulation of Leukotriene-Dependent Induction of Cyclooxygenase-2 and Bcl-2. Biochem. Biophys. Res. Commun. 2003, 302, 330–335. [Google Scholar] [CrossRef]
- Dahlin, A.; Qiu, W.; Litonjua, A.A.; Lima, J.J.; Tamari, M.; Kubo, M.; Irvin, C.G.; Peters, S.P.; Wu, A.C.; Weiss, S.T.; et al. The Phosphatidylinositide 3-Kinase (PI3K) Signaling Pathway Is a Determinant of Zileuton Response in Adults with Asthma. Pharmacogenom. J. 2018, 18, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-J.; Chang, W.-A.; Tsai, P.-H.; Wu, C.-Y.; Ho, Y.-W.; Yen, M.-C.; Lin, Y.-S.; Kuo, P.-L.; Hsu, Y.-L. Montelukast Induces Apoptosis-Inducing Factor-Mediated Cell Death of Lung Cancer Cells. Int. J. Mol. Sci. 2017, 18, 1353. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, M.; Hayama, T.; Funao, K.; Kawahito, Y.; Sano, H.; Takemoto, Y.; Nakatani, T.; Yoshimura, R. Overexpression of Cysteinyl LT1 Receptor in Prostate Cancer and CysLT1R Antagonist Inhibits Prostate Cancer Cell Growth through Apoptosis. Oncol. Rep. 2007, 18, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, M.; Yoshimura, R. Cysteinyl-Leukotriene1 Receptor Is a Potent Target for the Prevention and Treatment of Human Urological Cancer. Mol. Med. Rep. 2010, 3, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Khophai, S.; Thanee, M.; Techasen, A.; Namwat, N.; Klanrit, P.; Titapun, A.; Jarearnrat, A.; Sa-Ngiamwibool, P.; Loilome, W. Zileuton Suppresses Cholangiocarcinoma Cell Proliferation and Migration through Inhibition of the Akt Signaling Pathway. Onco. Targets. Ther. 2018, 11, 7019–7029. [Google Scholar] [CrossRef] [PubMed]
- Gunning, W.T.; Kramer, P.M.; Steele, V.E.; Pereira, M.A. Chemoprevention by Lipoxygenase and Leukotriene Pathway Inhibitors of Vinyl Carbamate-Induced Lung Tumors in Mice. Cancer Res. 2002, 62, 4199–4201. [Google Scholar] [PubMed]
- Suknuntha, K.; Yubolphan, R.; Krueaprasertkul, K.; Srihirun, S.; Sibmooh, N.; Vivithanaporn, P. Leukotriene Receptor Antagonists Inhibit Mitogenic Activity in Triple Negative Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2018, 19, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjörnsson, B.; Rasmuson, A.; Baryawno, N.; Wan, M.; Pettersen, I.; Ponthan, F.; Orrego, A.; Haeggström, J.Z.; Johnsen, J.I.; Kogner, P. Expression of Enzymes and Receptors of the Leukotriene Pathway in Human Neuroblastoma Promotes Tumor Survival and Provides a Target for Therapy. FASEB J. 2008, 22, 3525–3536. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, C.; Ehrnström, R.; Olsen, J.; Sjölander, A. An Increased Expression of Cysteinyl Leukotriene 2 Receptor in Colorectal Adenocarcinomas Correlates with High Differentiation. Cancer Res. 2007, 67, 9190–9198. [Google Scholar] [CrossRef]
- Slater, K.; Heeran, A.B.; Garcia-Mulero, S.; Kalirai, H.; Sanz-Pamplona, R.; Rahman, A.; Al-Attar, N.; Helmi, M.; O’Connell, F.; Bosch, R.; et al. High Cysteinyl Leukotriene Receptor 1 Expression Correlates with Poor Survival of Uveal Melanoma Patients and Cognate Antagonist Drugs Modulate the Growth, Cancer Secretome, and Metabolism of Uveal Melanoma Cells. Cancers 2020, 12, 2950. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kito, Y.; Kachi, K.; Yoshida, M.; Hori, Y.; Kato, A.; Sahashi, H.; Toyohara, T.; Kuno, K.; Adachi, A.; Urakabe, K.; et al. Potential of Anti-Leukotriene Drugs as New Therapeutic Agents for Inhibiting Cholangiocarcinoma Progression. Molecules 2024, 29, 3379. https://doi.org/10.3390/molecules29143379
Kito Y, Kachi K, Yoshida M, Hori Y, Kato A, Sahashi H, Toyohara T, Kuno K, Adachi A, Urakabe K, et al. Potential of Anti-Leukotriene Drugs as New Therapeutic Agents for Inhibiting Cholangiocarcinoma Progression. Molecules. 2024; 29(14):3379. https://doi.org/10.3390/molecules29143379
Chicago/Turabian StyleKito, Yusuke, Kenta Kachi, Michihiro Yoshida, Yasuki Hori, Akihisa Kato, Hidenori Sahashi, Tadashi Toyohara, Kayoko Kuno, Akihisa Adachi, Kenji Urakabe, and et al. 2024. "Potential of Anti-Leukotriene Drugs as New Therapeutic Agents for Inhibiting Cholangiocarcinoma Progression" Molecules 29, no. 14: 3379. https://doi.org/10.3390/molecules29143379
APA StyleKito, Y., Kachi, K., Yoshida, M., Hori, Y., Kato, A., Sahashi, H., Toyohara, T., Kuno, K., Adachi, A., Urakabe, K., & Kataoka, H. (2024). Potential of Anti-Leukotriene Drugs as New Therapeutic Agents for Inhibiting Cholangiocarcinoma Progression. Molecules, 29(14), 3379. https://doi.org/10.3390/molecules29143379