Structural Catalytic Core of the Members of the Superfamily of Acid Proteases
Abstract
:1. Introduction
2. Characterization of the Structural Catalytic Core of the Members of the Superfamily of Acid Proteases
2.1. Creating the Dataset of the Acid Proteases Superfamily Fold Proteins
2.2. Structural Catalytic Core around the Catalytic Aspartates in Pepsin
N | PDB ID and Chain | R(Å) | Protein | EC: Number | Propept. or N-Term Pept. | DD-Link | D-Loop | G-Loop | Mediator | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Superfamily: acid proteases | ||||||||||
Family: pepsin-like | ||||||||||
1a | 3PSG_A,p | 1.65 | Propepsin | EC:3.4.23.1 | 7p VRK 9p | 11 DTEY 14 | 31 FDTGSS 36 | 121 LGLA 124 | Y125 | [27] |
1b | 3PSG_A | 1.65 | Propepsin | -׀׀- | 188 GYW 190 | 214 VDTGTS 219 | 301 LGDV 304 | |||
1c | 4PEP_A | 1.80 | Pepsin | -׀׀- | 7 ENY 9 | 12 TEY 14 | 31 FDTGSS 36 | 121 LGLA 124 | Y125 | [28] |
1d | 4PEP_A | 1.80 | Pepsin | -׀׀- | 188 GYW 190 | 214 VDTGTS 219 | 301 LGDV 304 | |||
1e | 6XCZ_A | 1.89 | Pepsin | -׀׀- | 7 ENY 9 | 12 TEY 14 | 31 FDTGSS 36 | 121 LGLA 124 | Y125 | [29] |
1f | 6XCZ_A | 1.89 | Pepsin | -׀׀- | 188 GYW 190 | 214 VDTGTS 219 | 301 LGDV 304 | |||
2a | 3VCM_A,p | 2.93 | Prorenin | EC:3.4.23.15 | 14p KRM 16p | 11 DTQY 14 | 31 FDTGSS 36 | 121 VGMG 124 | F125 | [30] |
2b | 3VCM_A | 2.93 | Prorenin | -׀׀- | 188 GVW 190 | 214 VDTGAS 219 | 301 LGAT 304 | |||
2c | 2REN_A | 2.50 | Renin | -׀׀- | 13 TNY 15 | 18 TQY 20 | 37 FDTGSS 42 | 128 VGMG 131 | F132 | [31] |
2d | 2REN_A | 2.50 | Renin | -׀׀- | 199 GVW 201 | 225 VDTGAS 230 | 315 LGAT 318 | |||
2e | 3K1W_A | 1.50 | Renin | -׀׀- | 13 TNY 15 | 18 TQY 20 | 37 FDTGSS 42 | 128 VGMG 131 | F132 | [32] |
2f | 3K1W_A | 1.50 | Renin | -׀׀- | 199 GVW 201 | 225 VDTGAS 230 | 315 LGAT 318 | |||
3a | 1PFZ_A,p | 1.85 | Proplasmepsin 2 | EC:3.4.23.39 | 85p KVE 87p | 12 QNIM 15 | 33 LDTGSA 38 | 124 LGLG 127 | W128 | [33] |
3b | 1PFZ_A | 1.85 | Proplasmepsin 2 | -׀׀- | 191 LYW 193 | 213 VDSGTS 218 | 301 LGDP 304 | |||
3c | 1LF4_A | 1.90 | Plasmepsin 2 | -׀׀- | 9 VDF 11 | 14 IMF 16 | 33 LDTGSA 38 | 124 LGLG 127 | W128 | [34] |
3d | 1LF4_A | 1.90 | Plasmepsin 2 | -׀׀- | 191 LYW 193 | 213 VDSGTS 218 | 301 LGDP 304 | |||
3e | 2BJU_A | 1.56 | Plasmepsin 2 | -׀׀- | 9 VDF 11 | 14 IMF 16 | 33 LDTGSA 38 | 124 LGLG 127 | W128 | [35] |
3f | 2BJU_A | 1.56 | Plasmepsin 2 | -׀׀- | 191 LYW 193 | 213 VDSGTS 218 | 301 LGDP 304 | |||
4a | 3QVC_A,p | 2.10 | HAP zymogen | EC:3.4.23.39 | 84p NIE 86p | 9 LANVL 13 | 31 FHTASS 36 | 121 FGLG 124 | W125 | [36] |
4b | 3QVC_A | 2.10 | HAP zymogen | -׀׀- | 188 LMW 190 | 214 LDSATS 219 | 301 LGDP 304 | |||
4e | 3QVI_A,B | 2.50 | HAP protein | -׀׀- | 7_B K | 12 VLS 14 | 31 FHTASS 36 | 121 FGLG 124 | W125 | [36] |
4f | 3QVI_A | 2.50 | HAP protein | -׀׀- | 188 LMW 190 | 214 LDSATS 219 | 301 LGDP 304 | |||
5a | 5N7N_A,p | 2.30 | Procathepsin D | N/A | 7p TRF 9p | 37 DVVY 40 | 57 FDTGSA 62 | 147 LGLA 150 | Y151 | [37] |
5b | 5N7N_A | 2.30 | Procathepsin D | -׀׀- | 217 GYW 219 | 248 ANTGTS 253 | 336 LGDV 339 | |||
5c | 5N71_A | 1.88 | Cathepsin D | -׀׀- | 33 VNL 35 | 38 VVY 40 | 57 FDTGSA 62 | 147 LGLA 150 | Y151 | [37] |
5d | 5N71_A | 1.88 | Cathepsin D | -׀׀- | 217 GYW 219 | 248 ANTGTS 253 | 336 LGDV 339 | |||
5e | 5N7Q_A | 1.45 | Cathepsin D | -׀׀- | 11 VNL 13 | 16 VVY 18 | 35 FDTGSA 40 | 125 LGLA 128 | Y129 | [37] |
5f | 5N7Q_A | 1.45 | Cathepsin D | -׀׀- | 195 GYW 197 | 226 ADTGTS 231 | 314 LGDV 317 | |||
6a | 1MIQ_A,p | 2.50 | Proplasmepsin | N/A | 84p KVE 86p | 13 NIM 15 | 33 FDTGSA 38 | 124 LGLG 127 | W128 | [38] |
6b | 1MIQ_A | 2.50 | Proplasmepsin | -׀׀- | 191 LYW 193 | 213 VDSGTT 218 | 301 LGDP 304 | |||
6e | 1QS8_A | 2.50 | Plasmepsin | -׀׀- | 9 DDV 11 | 14 IMF 16 | 33 FDTGSA 38 | 124 LGLG 127 | W128 | [38] |
6f | 1QS8_A | 2.50 | Plasmepsin | -׀׀- | 191 LYW 193 | 213 VDSGTT 218 | 301 LGDP 304 | |||
7a | 5JOD_A,p | 1.53 | Proplasmepsin 4 | EC:3.4.23.39 | 85p KID 87p | 13 NLM 15 | 33 FDTGSA 38 | 124 LGLG 127 | W128 | [39] |
7b | 5JOD_A | 1.53 | Proplasmepsin 4 | -׀׀- | 191 LYW 193 | 213 VDSGTS 218 | 301 LGDP 304 | |||
7e | 1LS5_A | 2.80 | Plasmepsin 4 | -׀׀- | 9 DDV 11 | 14 LMF 16 | 33 FDTGSA 38 | 124 LGLG 127 | W128 | [34] |
7f | 1LS5_A | 2.80 | Plasmepsin 4 | -׀׀- | 191 LYW 193 | 213 VDSGTS 218 | 301 LGDP 304 | |||
8a | 1QDM_A,p | 2.30 | Prophytepsin | EC:3.4.23.40 | 11p KKR 13p | 15 NAQY 18 | 35 FDTGSS 40 | 126 LGLG 129 | F130 | [40] |
8b | 1QDM_A | 2.30 | Prophytepsin | -׀׀- | 195 GYW 197 | 222 ADSGTS 227 | 313 LGDV 316 | |||
9a | 1HTR_B,p | 1.62 | Progastricsin | EC:3.4.23.3 | 8p KKF 10p | 11 DAAY 14 | 31 FDTGSS 36 | 121 MGLA 124 | Y125 | [41] |
9b | 1HTR_B | 1.62 | Progastricsin | -׀׀- | 189 LYW 191 | 216 VDTGTS 221 | 304 LGDV 307 | |||
10a | 1TZS_A,p | 2.35 | Procathepsin E | EC:3.4.23.34 | 9p R | 22 DMEY 25 | 42 FDTGSS 47 | 132 LGLG 135 | Y136 | [42] |
10b | 1TZS_A | 2.35 | Procathepsin E | -׀׀- | 201 AYW 203 | 227 VDTGTS 232 | 317 LGDV 320 | |||
11c | 1T6E_X | 1.70 | Xylanase inhib. | EC:3.2.1.8 | 8 TKD 10 | 14 SLY 16 | 28 LDVAGP 33 | 141 AGLA 144 | NS146 | [43] |
11d | 1T6E_X | 1.70 | Xylanase inhib. | -׀׀- | 204 PAH 206 | 234 LSTRLP 239 | 348 LGGA 351 | |||
11e | 1T6G_A | 1.80 | Xylanase inhib. | -׀׀- | 8 TKD 10 | 14 SLY 16 | 28 LDVAGP 33 | 141 AGLA 144 | NS146 | [43] |
11f | 1T6G_A | 1.80 | Xylanase inhib. | -׀׀- | 204 PAH 206 | 234 LSTRLP 239 | 348 LGGA 351 | |||
12c | 3AUP_A | 1.91 | Basic 7S globulin | N/A | 15 QND 17 | 21 GLH 23 | 40 VDLNGN 45 | 159 AGLG 162 | HA164 | [44] |
12d | 3AUP_A | 1.91 | Basic 7S globulin | -׀׀- | 228 GEY 230 | 264 ISTSTP 269 | 361 LGAR 364 | |||
13c | 3VLA_A | 0.95 | EDGP (Fragment) | N/A | 14 KKD 16 | 20 LQY 22 | 39 VDLGGR 44 | 155 AGLG 158 | RT160 | [45] |
13d | 3VLA_A | 0.95 | EDGP (Fragment) | -׀׀- | 235 VEY 237 | 270 ISTINP 275 | 374 IGGH 377 | |||
13e | 3VLB_A | 2.70 | EDGP (Fragment) | -׀׀- | 14 KKD 16 | 20 LQY 22 | 39 VDLGGR 44 | 155 AGLG 158 | RT160 | [46] |
13f | 3VLB_A | 2.70 | EDGP (Fragment) | -׀׀- | 235 VEY 237 | 270 ISTINP 275 | 374 IGGH 377 | |||
Family: retroviral protease (retropepsin) | ||||||||||
14c | 3IXO_A | 1.70 | HIV-1 protease | N/A | N/A | 8 R-P 9 | 24 LDTGAD 29 | 85 IGRN 88 | N/A | [46] |
14d | 3IXO_B | 1.70 | HIV-1 protease | -׀׀- | N/A | 8 R-P 9 | 24 LDTGAD 29 | 85 IGRN 88 | N/A | |
14e | 5YOK_A | 0.85 | HIV-1 protease | -׀׀- | N/A | 8 R-P 9 | 24 LDTGAD 29 | 85 IGRN 88 | N/A | [47] |
14f | 5YOK_B | 0.85 | HIV-1 protease | -׀׀- | N/A | 8 R-P 9 | 24 LDTGAD 29 | 85 IGRN 88 | N/A | |
15c | 3NR6_A | 1.97 | XMRV protease | EC:3.4.23.- | N/A | 15 E-P 16 | 31 VDTGAQ 36 | 93 LGRD 96 | R95 | [22] |
15d | 3NR6_B | 1.97 | XMRV protease | -׀׀- | N/A | 15 E-P 16 | 31 VDTGAQ 36 | 93 LGRD 96 | R95 | |
15e | 3SLZ_A | 1.40 | XMRV protease | N/A | N/A | 15 E-P 16 | 31 VDTGAQ 36 | 93 LGRD 96 | R95 | [48] |
15f | 3SLZ_B | 1.40 | XMRV protease | -׀׀- | N/A | 15 E-P 16 | 31 VDTGAQ 36 | 93 LGRD 96 | R95 | |
Family: dimeric aspartyl proteases | ||||||||||
16c | 4Z2Z_A | 1.80 | Ddi1 protease | EC:3.4.23.- | N/A | 201 VPML 204 | 219 VDTGAQ 224 | 289 IGLD 292 | N/A | [49] |
16d | 4Z2Z_B | 1.80 | Ddi1 protease | -׀׀- | N/A | 201 VPML 204 | 219 VDTGAQ 224 | 289 IGLD 292 | N/A | |
17c | 5C9F_A | 2.00 | ApRick protease | EC:3.-.-.- | N/A | 121 DGHF 124 | 139 VDTGAS 144 | 209 LGMS 212 | N/A | [25] |
Family: LPG0085-like | ||||||||||
18c | 2PMA_A | 1.89 | Protein Lpg0085 | N/A | N/A | 29 Y | 46 LDTGAK 51 | 145 LGRD 148 | RD148 | [26] |
18d | 2PMA_I | 1.89 | Protein Lpg0085 | -׀׀- | N/A | 29 Y | 46 LDTGAK 51 | 145 LGRD 148 | RD148 |
2.2.1. Propepsin
DD-Zone of Propepsin: A D-LoopN - DD-LinkN - D-LoopC - DD-LinkC Circular Motif
The Psi-LoopN and Psi-LoopC Motifs: Interactions between the D-Loop and G-Loop in the N- and C-Domains
Comparison of the Psi-LoopN and Psi-LoopC
2.2.2. Activation of Free Pepsin
2.2.3. Pepsin/Ligand Complex
2.3. Structural Core in Proteins of the Pepsin-like Family
2.3.1. DD-Zones
Fireman’s Grip Motif Reflects Open/Close-Conformation Structural Change
2.3.2. Psi-Loops
2.3.3. Ligand Bound Pepsin-like Proteins
2.4. SCC in Hydrolases of the Retroviral Protease (Retropepsin) Family
2.4.1. DD-Zones
2.4.2. Psi-Loops in HIV-1 and XMRV
2.4.3. Ligand-Bound Forms of Retroviral Proteases
2.5. SCCs of the Dimeric Aspartyl Proteases and Lpg0085-like Family Proteins
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denessiouk, K.; Denesyuk, A.I.; Permyakov, S.E.; Permyakov, E.A.; Johnson, M.S.; Uversky, V.N. The active site of the SGNH hydrolase-like fold proteins: Nucleophile-oxyanion (Nuc-Oxy) and Acid-Base zones. Curr. Res. Struct. Biol. 2024, 7, 100123. [Google Scholar] [CrossRef]
- Denessiouk, K.; Uversky, V.N.; Permyakov, S.E.; Permyakov, E.A.; Johnson, M.S.; Denesyuk, A.I. Papain-like cysteine proteinase zone (PCP-zone) and PCP structural catalytic core (PCP-SCC) of enzymes with cysteine proteinase fold. Int. J. Biol. Macromol. 2020, 165, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Denesyuk, A.; Dimitriou, P.S.; Johnson, M.S.; Nakayama, T.; Denessiouk, K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS ONE 2020, 15, e0229376. [Google Scholar] [CrossRef] [PubMed]
- Denesyuk, A.I.; Johnson, M.S.; Salo-Ahen, O.M.H.; Uversky, V.N.; Denessiouk, K. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Int. J. Biol. Macromol. 2020, 153, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, A.; Kulesha, E.; Gough, J.; Murzin, A.G. The SCOP database in 2020: Expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 2020, 48, D376–D382. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.R. The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 189–215. [Google Scholar] [CrossRef] [PubMed]
- Polgar, L. The mechanism of action of aspartic proteases involves ‘push-pull’ catalysis. FEBS Lett. 1987, 219, 1–4. [Google Scholar] [CrossRef] [PubMed]
- James, M.N. Catalytic pathway of aspartic peptidases. In Handbook of Proteolytic Enzymes, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 12–19. [Google Scholar]
- Sielecki, A.R.; Fujinaga, M.; Read, R.J.; James, M.N. Refined structure of porcine pepsinogen at 1.8 A resolution. J. Mol. Biol. 1991, 219, 671–692. [Google Scholar] [CrossRef] [PubMed]
- Ingr, M.; Uhlikova, T.; Strisovsky, K.; Majerova, E.; Konvalinka, J. Kinetics of the dimerization of retroviral proteases: The “fireman’s grip” and dimerization. Protein Sci. 2003, 12, 2173–2182. [Google Scholar] [CrossRef]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, V.; Sorokine, A.; Prilusky, J.; Abola, E.E.; Edelman, M. Automated analysis of interatomic contacts in proteins. Bioinformatics 1999, 15, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Holm, L.; Sander, C. Dali: A network tool for protein structure comparison. Trends Biochem. Sci. 1995, 20, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Derewenda, Z.S.; Derewenda, U.; Kobos, P.M. (His)C epsilon-H...O=C < hydrogen bond in the active sites of serine hydrolases. J. Mol. Biol. 1994, 241, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Clementel, D.; Del Conte, A.; Monzon, A.M.; Camagni, G.F.; Minervini, G.; Piovesan, D.; Tosatto, S.C.E. RING 3.0: Fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Res. 2022, 50, W651–W656. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef] [PubMed]
- Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 1991, 24, 946–950. [Google Scholar] [CrossRef]
- Hodis, E.; Prilusky, J.; Martz, E.; Silman, I.; Moult, J.; Sussman, J.L. Proteopedia—A scientific ‘wiki’ bridging the rift between three-dimensional structure and function of biomacromolecules. Genome Biol. 2008, 9, R121. [Google Scholar] [CrossRef] [PubMed]
- Prilusky, J.; Hodis, E.; Canner, D.; Decatur, W.A.; Oberholser, K.; Martz, E.; Berchanski, A.; Harel, M.; Sussman, J.L. Proteopedia: A status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J. Struct. Biol. 2011, 175, 244–252. [Google Scholar] [CrossRef]
- UniProt_Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Li, M.; Dimaio, F.; Zhou, D.; Gustchina, A.; Lubkowski, J.; Dauter, Z.; Baker, D.; Wlodawer, A. Crystal structure of XMRV protease differs from the structures of other retropepsins. Nat. Struct. Mol. Biol. 2011, 18, 227–229. [Google Scholar] [CrossRef]
- Dunn, B.M.; Goodenow, M.M.; Gustchina, A.; Wlodawer, A. Retroviral proteases. Genome Biol. 2002, 3, REVIEWS3006. [Google Scholar] [CrossRef] [PubMed]
- Sirkis, R.; Gerst, J.E.; Fass, D. Ddi1, a eukaryotic protein with the retroviral protease fold. J. Mol. Biol. 2006, 364, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gustchina, A.; Cruz, R.; Simoes, M.; Curto, P.; Martinez, J.; Faro, C.; Simoes, I.; Wlodawer, A. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 2109–2118. [Google Scholar] [CrossRef] [PubMed]
- The Crystal Structure of a Protein Lpg0085 with Unknown Function (DUF785) from Legionella Pneumophila subsp. Pneumophila str. Philadelphia 1. 2007. Available online: https://www.rcsb.org/structure/2pma (accessed on 1 March 2024).
- Hartsuck, J.A.; Koelsch, G.; Remington, S.J. The high-resolution crystal structure of porcine pepsinogen. Proteins 1992, 13, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Sielecki, A.R.; Fedorov, A.A.; Boodhoo, A.; Andreeva, N.S.; James, M.N. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J. Mol. Biol. 1990, 214, 143–170. [Google Scholar] [CrossRef] [PubMed]
- Vuksanovic, N.; Silvaggi, N.R. Porcine Pepsin in Complex with Saquinavir. 2020. Available online: https://www.wwpdb.org/pdb?id=pdb_00006xcz (accessed on 1 March 2024).
- Morales, R.; Watier, Y.; Bocskei, Z. Human prorenin structure sheds light on a novel mechanism of its autoinhibition and on its non-proteolytic activation by the (pro)renin receptor. J. Mol. Biol. 2012, 421, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Sielecki, A.R.; Hayakawa, K.; Fujinaga, M.; Murphy, M.E.; Fraser, M.; Muir, A.K.; Carilli, C.T.; Lewicki, J.A.; Baxter, J.D.; James, M.N. Structure of recombinant human renin, a target for cardiovascular-active drugs, at 2.5 A resolution. Science 1989, 243, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Remen, L.; Bezencon, O.; Richard-Bildstein, S.; Bur, D.; Prade, L.; Corminboeuf, O.; Boss, C.; Grisostomi, C.; Sifferlen, T.; Strickner, P.; et al. New classes of potent and bioavailable human renin inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 6762–6765. [Google Scholar] [CrossRef]
- Bernstein, N.K.; Cherney, M.M.; Loetscher, H.; Ridley, R.G.; James, M.N. Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from plasmodium falciparum. Nat. Struct. Biol. 1999, 6, 32–37. [Google Scholar] [CrossRef]
- Asojo, O.A.; Gulnik, S.V.; Afonina, E.; Yu, B.; Ellman, J.A.; Haque, T.S.; Silva, A.M. Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from Plasmodium falciparum. J. Mol. Biol. 2003, 327, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Prade, L.; Jones, A.F.; Boss, C.; Richard-Bildstein, S.; Meyer, S.; Binkert, C.; Bur, D. X-ray structure of plasmepsin II complexed with a potent achiral inhibitor. J. Biol. Chem. 2005, 280, 23837–23843. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, P.; Xiao, H.; Hidaka, K.; Gustchina, A.; Kiso, Y.; Yada, R.Y.; Wlodawer, A. Structural insights into the activation and inhibition of histo-aspartic protease from Plasmodium falciparum. Biochemistry 2011, 50, 8862–8879. [Google Scholar] [CrossRef]
- Hanova, I.; Brynda, J.; Houstecka, R.; Alam, N.; Sojka, D.; Kopacek, P.; Maresova, L.; Vondrasek, J.; Horn, M.; Schueler-Furman, O.; et al. Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite. Cell Chem. Biol. 2018, 25, 318–329.e314. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N.K.; Cherney, M.M.; Yowell, C.A.; Dame, J.B.; James, M.N. Structural insights into the activation of P. vivax plasmepsin. J. Mol. Biol. 2003, 329, 505–524. [Google Scholar] [CrossRef] [PubMed]
- Recacha, R.; Jaudzems, K.; Akopjana, I.; Jirgensons, A.; Tars, K. Crystal structure of Plasmodium falciparum proplasmepsin IV: The plasticity of proplasmepsins. Acta Crystallogr. F Struct. Biol. Commun. 2016, 72, 659–666. [Google Scholar] [CrossRef]
- Kervinen, J.; Tobin, G.J.; Costa, J.; Waugh, D.S.; Wlodawer, A.; Zdanov, A. Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J. 1999, 18, 3947–3955. [Google Scholar] [CrossRef]
- Moore, S.A.; Sielecki, A.R.; Chernaia, M.M.; Tarasova, N.I.; James, M.N. Crystal and molecular structures of human progastricsin at 1.62 A resolution. J. Mol. Biol. 1995, 247, 466–485. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, N.; Gerhartz, B.; Worpenberg, S.; Trappe, J.; Eder, J. Crystal structure of an activation intermediate of cathepsin E. J. Mol. Biol. 2004, 342, 889–899. [Google Scholar] [CrossRef]
- Sansen, S.; De Ranter, C.J.; Gebruers, K.; Brijs, K.; Courtin, C.M.; Delcour, J.A.; Rabijns, A. Structural basis for inhibition of Aspergillus niger xylanase by triticum aestivum xylanase inhibitor-I. J. Biol. Chem. 2004, 279, 36022–36028. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Shimizu, T.; Yamabe, M.; Taichi, M.; Nishiuchi, Y.; Shichijo, N.; Unzai, S.; Hirano, H.; Sato, M.; Hashimoto, H. Crystal structure of basic 7S globulin, a xyloglucan-specific endo-beta-1,4-glucanase inhibitor protein-like protein from soybean lacking inhibitory activity against endo-beta-glucanase. FEBS J. 2011, 278, 1944–1954. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Shimizu, T.; Hirano, H.; Sato, M.; Hashimoto, H. Structural basis for inhibition of xyloglucan-specific endo-beta-1,4-glucanase (XEG) by XEG-protein inhibitor. J. Biol. Chem. 2012, 287, 18710–18716. [Google Scholar] [CrossRef] [PubMed]
- Robbins, A.H.; Coman, R.M.; Bracho-Sanchez, E.; Fernandez, M.A.; Gilliland, C.T.; Li, M.; Agbandje-McKenna, M.; Wlodawer, A.; Dunn, B.M.; McKenna, R. Structure of the unbound form of HIV-1 subtype A protease: Comparison with unbound forms of proteases from other HIV subtypes. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, K.; Kimura, T.; Sankaranarayanan, R.; Wang, J.; McDaniel, K.F.; Kempf, D.J.; Kameoka, M.; Adachi, M.; Kuroki, R.; Nguyen, J.T.; et al. Identification of Highly Potent Human Immunodeficiency Virus Type-1 Protease Inhibitors against Lopinavir and Darunavir Resistant Viruses from Allophenylnorstatine-Based Peptidomimetics with P2 Tetrahydrofuranylglycine. J. Med. Chem. 2018, 61, 5138–5153. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gustchina, A.; Matuz, K.; Tozser, J.; Namwong, S.; Goldfarb, N.E.; Dunn, B.M.; Wlodawer, A. Structural and biochemical characterization of the inhibitor complexes of xenotropic murine leukemia virus-related virus protease. FEBS J. 2011, 278, 4413–4424. [Google Scholar] [CrossRef] [PubMed]
- Trempe, J.F.; Saskova, K.G.; Siva, M.; Ratcliffe, C.D.; Veverka, V.; Hoegl, A.; Menade, M.; Feng, X.; Shenker, S.; Svoboda, M.; et al. Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family. Sci. Rep. 2016, 6, 33671. [Google Scholar] [CrossRef] [PubMed]
- Pearl, L.H.; Taylor, W.R. A structural model for the retroviral proteases. Nature 1987, 329, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; Phylip, L.H. Bacterial aspartic proteinases. FEBS Lett. 1997, 409, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Castillo, R.M.; Mizuguchi, K.; Dhanaraj, V.; Albert, A.; Blundell, T.L.; Murzin, A.G. A six-stranded double-psi beta barrel is shared by several protein superfamilies. Structure 1999, 7, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Bateman, A. Pepsin homologues in bacteria. BMC Genom. 2009, 10, 437. [Google Scholar] [CrossRef]
- Pearl, L.; Blundell, T. The active site of aspartic proteinases. FEBS Lett. 1984, 174, 96–101. [Google Scholar] [CrossRef]
- Blundell, T.L.; Jenkins, J.A.; Sewell, B.T.; Pearl, L.H.; Cooper, J.B.; Tickle, I.J.; Veerapandian, B.; Wood, S.P. X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. J. Mol. Biol. 1990, 211, 919–941. [Google Scholar] [CrossRef]
- Wan, W.Y.; Milner-White, E.J. A natural grouping of motifs with an aspartate or asparagine residue forming two hydrogen bonds to residues ahead in sequence: Their occurrence at alpha-helical N termini and in other situations. J. Mol. Biol. 1999, 286, 1633–1649. [Google Scholar] [CrossRef] [PubMed]
- James, M.N.; Hsu, I.N.; Delbaere, L.T. Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin. Nature 1977, 267, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Blundell, T.L.; Jones, H.B.; Khan, G.; Taylor, G.; Sewell, B.T.; Pearl, L.H.; Wood, S.P. The Active Site of Acid Proteinases. In Enzyme Regulation and Mechanism of Action; Mildner, P., Ries, B., Eds.; Pergamon: Oxford, UK, 1980; pp. 281–288. [Google Scholar]
- Andreeva, N.S.; Rumsh, L.D. Analysis of crystal structures of aspartic proteinases: On the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Sci. 2001, 10, 2439–2450. [Google Scholar] [CrossRef]
- Duddy, W.J.; Nissink, J.W.; Allen, F.H.; Milner-White, E.J. Mimicry by asx- and ST-turns of the four main types of beta-turn in proteins. Protein Sci. 2004, 13, 3051–3055. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, USA, 1997; Volume 12. [Google Scholar]
- Adachi, M.; Ohhara, T.; Kurihara, K.; Tamada, T.; Honjo, E.; Okazaki, N.; Arai, S.; Shoyama, Y.; Kimura, K.; Matsumura, H.; et al. Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proc. Natl. Acad. Sci. USA 2009, 106, 4641–4646. [Google Scholar] [CrossRef]
- Weber, I.T.; Waltman, M.J.; Mustyakimov, M.; Blakeley, M.P.; Keen, D.A.; Ghosh, A.K.; Langan, P.; Kovalevsky, A.Y. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir: Insights for drug design. J. Med. Chem. 2013, 56, 5631–5635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denesyuk, A.I.; Denessiouk, K.; Johnson, M.S.; Uversky, V.N. Structural Catalytic Core of the Members of the Superfamily of Acid Proteases. Molecules 2024, 29, 3451. https://doi.org/10.3390/molecules29153451
Denesyuk AI, Denessiouk K, Johnson MS, Uversky VN. Structural Catalytic Core of the Members of the Superfamily of Acid Proteases. Molecules. 2024; 29(15):3451. https://doi.org/10.3390/molecules29153451
Chicago/Turabian StyleDenesyuk, Alexander I., Konstantin Denessiouk, Mark S. Johnson, and Vladimir N. Uversky. 2024. "Structural Catalytic Core of the Members of the Superfamily of Acid Proteases" Molecules 29, no. 15: 3451. https://doi.org/10.3390/molecules29153451
APA StyleDenesyuk, A. I., Denessiouk, K., Johnson, M. S., & Uversky, V. N. (2024). Structural Catalytic Core of the Members of the Superfamily of Acid Proteases. Molecules, 29(15), 3451. https://doi.org/10.3390/molecules29153451