Synthesis of New Isoxazolidine Derivatives Utilizing the Functionality of N-Carbonylpyrazol-Linked Isoxazolidines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 2,3-Diaryl-4-(3,5-dimethylpyrazolylcarbonyl)isoxazolidines 1–6
2.2. Study of the Reduction Reactions of (Pyrazolylcarbonyl)isoxazolidines
2.3. Study of the Nucleophilic Reactions of (Pyrazolylcarbonyl)isoxazolidines
2.3.1. Study of the Nucleophilic Substitution Reactions with Organometallic Reagents
2.3.2. Study of the Hydrazinolysis and Alcoholysis Reactions of (Pyrazolylcarbonyl)isoxazolidines
3. Experimental Design
3.1. Instrumentation and Materials
3.2. Synthesis Methods
3.2.1. Synthesis of 2,3-Diaryl-4-(3,5-dimethylpyrazolylcarbonyl)isoxazolidines (1–6)
3.2.2. Synthesis of 2-(3,5-Dimethylpyrazol-1-ylcarbonyl)-3-(arylamino)-3-arylpropan-1-ol (7–12)
3.2.3. Synthesis of 4-Hydroxymethyl-2,3-diphenylisoxazolidine (13–18)
3.2.4. Synthesis of 2-(2-(Aryl)-3-arylisoxazolidin-4-yl)propan-2-ol (19–24)
3.2.5. Synthesis of 4-Acetyl-2,3-diarylisoxazolidines (25–28)
3.2.6. Synthesis of 2,3-Diaryl-4-ylcarbonylhydrazineisoxazolidines (29–34)
3.2.7. Synthesis of Ethyl 2,3-Diarylisoxazolidin-4-ylcarboxylate (35–40)
3.3. X-ray Structural Analysis of Compound 6
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mosbah, H.; Chahdoura, H.; Mannai, A.; Snoussi, M.; Aouadi, K.; Abreu, R.M.V.; Bouslama, A.; Achour, L.; Selmi, B. Biological Activities Evaluation of Enantiopure Isoxazolidine Derivatives: In Vitro, In Vivo and In Silico Studies. Appl. Biochem. Biotechnol. 2019, 187, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
- Ghannay, S.; Bakari, S.; Msaddek, M.; Vidal, S.; Kadri, A.; Aouadi, K. Design, synthesis, molecular properties and in vitro antioxidant and antibacterial potential of novel enantiopure isoxazolidine derivatives. Arab. J. Chem. 2020, 13, 2121–2131. [Google Scholar] [CrossRef]
- Berthet, M.; Cheviet, T.; Dujardin, G.; Parrot, I.; Martinez, J. Isoxazolidine: A Privileged Scaffold for Organic and Medicinal Chemistry. Chem. Rev. 2016, 116, 15235–15283. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, D.G.; Andrei, G.; Schols, D.; Snoeck, R.; Łysakowska, M. Synthesis, anti-varicella-zoster virus and anti-cytomegalovirus activity of quinazoline-2,4-diones containing isoxazolidine and phosphonate substructures. Eur. J. Med. Chem. 2017, 126, 84–100. [Google Scholar] [CrossRef]
- Alhaffar, M.T.; Umoren, S.A.; Obot, I.B.; Ali, S.A.; Solomon, M.M. Studies of the anticorrosion property of a newly synthesized green isoxazolidine for API 5L X60 steel in acid environment. J. Mater. Res. Technol. 2019, 8, 4399–4416. [Google Scholar] [CrossRef]
- Bilodeau, D.A.; Margison, K.D.; Serhan, M.; Pezacki, J.P. Bioorthogonal Reactions Utilizing Nitrones as Versatile Dipoles in Cycloaddition Reactions. Chem. Rev. 2021, 121, 6699–6717. [Google Scholar] [CrossRef] [PubMed]
- Angyal, A.; Demjén, A.; Wölfling, J.; Puskás, L.G.; Kanizsai, I. Acid-Catalyzed 1,3-Dipolar Cycloaddition of 2H-Azirines with Nitrones: An Unexpected Access to 1,2,4,5-Tetrasubstituted Imidazoles. J. Org. Chem. 2020, 85, 3587–3595. [Google Scholar] [CrossRef]
- Li, M.; Cao, X.; You, J.; Yu, Y.; Wu, W.; Liu, B. Asymmetric 1,3-Dipolar Cycloaddition Reaction of C,N-Diarylnitrone with N-α,β-Unsaturated Acyl Compounds Catalyzed by Chiral Bisoxazoline Metal Complex. Chin, J. Org. Chem. 2019, 39, 1642–1649. [Google Scholar] [CrossRef]
- Lahiri, R.; Palanivel, A.; Kulkarni, S.A.; Vankar, Y.D. Synthesis of Isofagomine–Pyrrolidine Hybrid Sugars and Analogues of (−)-Steviamine and (+)-Hyacinthacine C5 Using 1,3-Dipolar Cycloaddition Reactions. J. Org. Chem. 2014, 79, 10786–10800. [Google Scholar] [CrossRef]
- Tran, T.Q.; Diev, V.V.; Starova, G.L.; Gurzhiy, V.V.; Molchanov, A.P. Cycloaddition of C,C-Disubstituted Ketonitrones with Acceptor Methylenecyclopropanes and Subsequent Rearrangement Cascade of 5-Spirocyclopropane-isoxazolidines. Eur. J. Org. Chem. 2012, 2012, 2054–2061. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C.G.; Studer, A. Stereospecific Formal [3+2] Dipolar Cycloaddition of Cyclopropanes with Nitrosoarenes: An Approach to Isoxazolidines. Angew. Chem. Int. Edit. 2014, 53, 5964–5968. [Google Scholar] [CrossRef] [PubMed]
- Pagar, V.V.; Liu, R.S. Gold-Catalyzed Cycloaddition Reactions of Ethyl Diazoacetate, Nitrosoarenes, and Vinyldiazo Carbonyl Compounds: Synthesis of Isoxazolidine and Benzo[b]azepine Derivatives. Angew. Chem. Int. Edit. 2015, 127, 5005–5008. [Google Scholar] [CrossRef]
- Doyle, L.; Heaney, F. NH-Isoxazolo-bicycles; new molecular scaffolds for organocatalysis. Tetrahedron 2011, 67, 2132–2138. [Google Scholar] [CrossRef]
- Miyoshi, T.; Miyakawa, T.; Ueda, M.; Miyata, O. Nucleophilic α-arylation and α-alkylation of ketones by polarity inversion of N-alkoxyenamines: Entry to the umpolung reaction at the α-carbon position of carbonyl compounds. Angew. Chem. Int. Ed. 2011, 50, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Galietti, F.; Giorgis, G.E.; Oliaro, A.; Boaro, D.; Ardizzi, A.; Barberis, S.; Massaglia, G.M. Tolerability to terizidone (TZ) in the treatment of pulmonary tuberculosis in dialyzed patients. Minerva Med. 1991, 82, 477–481. [Google Scholar] [PubMed]
- Miyachi, H. Analysis of patent applications relating to peroxisome proliferator-activated receptor (PPAR) ligands in 2004. Expert Opin. Ther. Pat. 2005, 15, 1521–1530. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Kim, Y.H.; Dudley, S.C., Jr.; Choudhary, G.; Pfahnl, A.; Oshima, Y.; Daly, J.W. The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki: A potent sodium-channel blocker. Proc. Natl. Acad. Sci. USA 2004, 101, 4346–4351. [Google Scholar] [CrossRef] [PubMed]
- Sirotkina, E.V.; Efremova, M.M.; Novikov, A.S.; Zarubaev, V.V.; Orshanskaya, I.R.; Starova, G.L.; Kostikov, R.R.; Molchanov, A.P. Regio- and diastereoselectivity of the cycloaddition of aldonitrones with benzylidenecyclopropane: An experimental and theoretical study. Tetrahedron 2017, 73, 3025–3030. [Google Scholar] [CrossRef]
- Budzińska, A.; Sas, W. Preparation of highly substituted 7-oxa-1-azabicyclo[2.2.1]heptanes from 4-nitro-1-butene derivatives. Route to polysubstituted piperidines. Tetrahedron 2001, 57, 2021–2030. [Google Scholar] [CrossRef]
- Molander, G.A.; Cavalcanti, L.N. Synthesis of Trifluoromethylated Isoxazolidines: 1,3-Dipolar Cycloaddition of Nitrosoarenes, (Trifluoromethyl)diazomethane, and Alkenes. Org. Lett. 2013, 15, 3166–3169. [Google Scholar] [CrossRef]
- Shibue, T.; Hirai, T.; Okamoto, I.; Morita, N.; Masu, H.; Azumaya, I.; Tamura, O. Stereoselective synthesis of tubuvaline methyl ester and tubuphenylalanine, components of tubulysins, tubulin polymerization inhibitors. Tetrahedron Lett. 2009, 50, 3845–3848. [Google Scholar] [CrossRef]
- Bates, R.W.; Hirao, H.; Tay, Y.S.; Sae-Lao, P. A total synthesis of (+)-negamycin through isoxazolidine allylation. Org. Biomol. Chem. 2014, 12, 4879–4884. [Google Scholar] [CrossRef] [PubMed]
- Kashima, C.; Takahashi, K.; Fukuchi, I.; Fukusaka, K. Diastereoselective 1,3-dipolar cycloaddition of 2-(α,β-unsaturated) acyl-3-phenyl-l-menthopyrazoles. Heterocycles 1997, 44, 289–304. [Google Scholar] [CrossRef]
- Rescifina, A.; Chiacchio, M.A.; Corsaro, A.; Clercq, E.D.; Iannazzo, D.; Mastino, A.; Piperno, A.; Romeo, G.; Romeo, R.; Valveri, V. Synthesis and Biological Activity of Isoxazolidinyl Polycyclic Aromatic Hydrocarbons: Potential DNA Intercalators. J. Med. Chem. 2006, 49, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Romeo, R.; Navarra, M.; Giofre, S.V.; Carnovale, C.; Cirmi, S.; Lanzam, G.; Chiacchio, M.A. Synthesis and biological activity of new arenediyne-linked isoxazolidines. Bioorgan. Med. Chem. 2014, 22, 3379–3385. [Google Scholar] [CrossRef] [PubMed]
- Acharjee, N.; Banerji, A. A molecular electron density theory study to understand the interplay of theory and experiment in nitrone-enone cycloaddition. J. Chem. Sci. 2020, 132, 65. [Google Scholar] [CrossRef]
- Oukani, H.; Pellegrini-Moïse, N.; Jackowski, O.; Chrétien, F.; Chapleur, Y. The 1,3-dipolar cycloaddition reaction of chiral carbohydrate-derived nitrone and olefin: Towards long-chain sugars. Carbohyd. Res. 2013, 381, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Floresta, G.; Talotta, C.; Gaeta, C.; Rosa, M.D.; Chiacchio, U.; Neri, P.; Rescifina, A. γ-Cyclodextrin as a Catalyst for the Synthesis of 2-Methyl-3,5-diarylisoxazolidines in Water. J. Org. Chem. 2017, 82, 4631–4639. [Google Scholar] [CrossRef] [PubMed]
- Bauer, I.; Knölker, H.J. Iron catalysis in organic synthesis. Chem. Rev. 2015, 115, 3170–3387. [Google Scholar]
- Pak, I.G.; Tyrkov, A.G. Acid and alkaline hydrolysis of substituted 5-aryl-1,2-oxazolidine-3,3-dicarbonitriles. Russ. J. Org. Chem. 2011, 47, 1908–1910. [Google Scholar] [CrossRef]
- Beltaïef, I.; Arfaoui, A.; Amri, H. An Expeditious Synthesis of [1,2]Isoxazolidin-5-ones and [1,2]Oxazin-6-ones from Functional Allyl Bromide Derivatives. Molecules 2010, 15, 4094–4101. [Google Scholar] [CrossRef] [PubMed]
- Vasu, D.; Liu, R.S. Gold-catalyzed cyclization-cycloaddition cascade reactions of allenyl acetals with nitrones. Chem. Eur. J. 2012, 18, 13638–13641. [Google Scholar] [CrossRef] [PubMed]
Entry | Substrate | Product | Yield a/% | |
---|---|---|---|---|
Ar1 | Ar2 | |||
1 | Phenyl | Phenyl | 1 | 90 |
2 | Phenyl | 4-CH3 Phenyl | 2 | 99 |
3 | Phenyl | 4-C2H5 Phenyl | 3 | 99 |
4 | Phenyl | 4-Cl Phenyl | 4 | 80 |
5 | Phenyl | 3-CN Phenyl | 5 | 85 |
6 | 9-anthryl | Phenyl | 6 | 70 |
Entry | Substrate | Time/h | Product | Yield a/% | |
---|---|---|---|---|---|
Ar1 | Ar2 | ||||
1 | Phenyl | Phenyl | 2 | 7 | 87 |
2 | Phenyl | 4-CH3 Phenyl | 1 | 8 | 95 |
3 | Phenyl | 4-C2H5 Phenyl | 1 | 9 | 95 |
4 | Phenyl | 4-Cl Phenyl | 8 | 10 | 70 |
5 | Phenyl | 3-CN Phenyl | 3 | 11 | 84 |
6 | 9-anthryl | Phenyl | 8 | 12 | 60 |
7 | Phenyl | Phenyl | 5 | 13 | 92 |
8 | Phenyl | 4-CH3 Phenyl | 5 | 14 | 94 |
9 | Phenyl | 4-C2H5 Phenyl | 5 | 15 | 93 |
10 | Phenyl | 4-Cl Phenyl | 5 | 16 | 92 |
11 | Phenyl | 3-CN Phenyl | 5 | 17 | 94 |
12 | 9-anthryl | Phenyl | 5 | 18 | 91 |
Entry | Substrate | Reagent | Equiv. Ratio | Temp./°C | Time/h | Product | Yield a/% | |
---|---|---|---|---|---|---|---|---|
Ar1 | Ar2 | |||||||
1 | Phenyl | Phenyl | CH3MgBr | 0.8 | 0 | 2 | 19 | - |
2 | Phenyl | Phenyl | CH3MgBr | 1.0 | 0 | 2 | 19 | - |
3 | Phenyl | Phenyl | CH3MgBr | 2.0 | 0 | 2 | 19 | 7 |
4 | Phenyl | Phenyl | CH3MgBr | 5.0 | 0 | 2 | 19 | 30 |
5 | Phenyl | Phenyl | CH3MgBr | 7.0 | 0 | 2 | 19 | 56 |
6 | Phenyl | Phenyl | CH3MgBr | 9.0 | 0 | 2 | 19 | 70 |
7 | Phenyl | Phenyl | CH3MgBr | 10.0 | 0 | 2 | 19 | 73 |
8 | Phenyl | Phenyl | CH3MgBr | 11.0 | 0 | 0.5 | 19 | 73 |
9 | Phenyl | Phenyl | CH3MgBr | 11.0 | r.t. | 0.5 | 19 | Trace |
10 | Phenyl | Phenyl | CH3MgBr | 11.0 | −10 | 3 | 19 | 65 |
11 | Phenyl | Phenyl | CH3MgBr | 11.0 | −20 | 3 | 19 | 52 |
12 | Phenyl | 4-CH3 Phenyl | CH3MgBr | 10.0 | 0 | 2 | 20 | 75 |
13 | Phenyl | 4-C2H5 Phenyl | CH3MgBr | 10.0 | 0 | 2 | 21 | 75 |
14 | Phenyl | 4-Cl Phenyl | CH3MgBr | 10.0 | 0 | 2 | 22 | 72 |
15 | Phenyl | 3-CN Phenyl | CH3MgBr | 10.0 | 0 | 2 | 23 | 73 |
16 | 9-anthryl | Phenyl | CH3MgBr | 10.0 | 0 | 2 | 24 | 70 |
17 | Phenyl | Phenyl | (CH3)2CuLi | 3.0 | 0 | 1 | 25 | - |
18 | Phenyl | Phenyl | (CH3)2CuLi/Fe | 3.0 | 0 | 1 | 25 | 69 |
19 | Phenyl | 4-CH3 Phenyl | (CH3)2CuLi/Fe | 3.0 | 0 | 1 | 26 | 70 |
20 | Phenyl | 4-C2H5 Phenyl | (CH3)2CuLi/Fe | 3.0 | 0 | 1 | 27 | 70 |
21 | Phenyl | 4-Cl Phenyl | (CH3)2CuLi/Fe | 3.0 | 0 | 1 | 28 | 68 |
Entry | Substrate | Temp./°C | Time/h | Product | Yield a/% | |
---|---|---|---|---|---|---|
Ar1 | Ar2 | |||||
1 | Phenyl | Phenyl | 0 | 1 | 29 | 70 |
2 | Phenyl | Phenyl | r.t. | 1 | 29 | 45 |
3 | Phenyl | Phenyl | 0 | 2 | 29 | 85 |
4 | Phenyl | Phenyl | 0 | 3 | 29 | 92 |
5 | Phenyl | Phenyl | 0 | 4 | 29 | 93 |
6 | Phenyl | 4-CH3 Phenyl | 0 | 3 | 30 | 93 |
7 | Phenyl | 4-C2H5 Phenyl | 0 | 3 | 31 | 95 |
8 | Phenyl | 4-Cl Phenyl | 0 | 3 | 32 | 92 |
9 | Phenyl | 3-CN Phenyl | 0 | 3 | 33 | 91 |
10 | 9-anthryl | Phenyl | 0 | 3 | 34 | 90 |
Entry | Substrate | Reagent | Equiv. Ratio | Temp./°C | Time/min | Product | Yield a/% | |
---|---|---|---|---|---|---|---|---|
Ar1 | Ar2 | |||||||
1 | Phenyl | Phenyl | CH3ONa | 0.8 | r.t. | 30 | - | - |
2 | Phenyl | Phenyl | CH3ONa | 0.8 | 0 | 5 | 35′ | 60 |
3 | Phenyl | Phenyl | CH3ONa | 1.1 | 0 | 5 | 35′ | 73 |
4 | Phenyl | Phenyl | EtONa | 1.1 | 0 | 5 | 35 | 93 |
5 | Phenyl | Phenyl | EtONa | 1.1 | 0 | 10 | 35 | 53 |
6 | Phenyl | Phenyl | EtONa | 1.1 | 0 | 15 | 35 | 37 |
7 | Phenyl | Phenyl | EtONa | 1.1 | 0 | 20 | 35 | 14 |
8 | Phenyl | Phenyl | EtONa | 1.1 | 0 | 25 | 35 | Trace |
9 | Phenyl | Phenyl | EtONa | 0.8 | 0 | 5 | 35 | 41 |
10 | Phenyl | Phenyl | EtONa | 0.5 | 0 | 5 | 35 | 22 |
11 | Phenyl | 4-CH3 Phenyl | EtONa | 1.1 | 0 | 5 | 36 | 93 |
12 | Phenyl | 4-C2H5 Phenyl | EtONa | 1.1 | 0 | 5 | 37 | 93 |
13 | Phenyl | 4-Cl Phenyl | EtONa | 1.1 | 0 | 5 | 38 | 92 |
14 | Phenyl | 3-CN Phenyl | EtONa | 1.1 | 0 | 5 | 39 | 94 |
15 | 9-anthryl | Phenyl | EtONa | 1.1 | 0 | 5 | 40 | 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; You, J.; Wang, Y.; Yu, Y.; Wu, W.; Liang, Y. Synthesis of New Isoxazolidine Derivatives Utilizing the Functionality of N-Carbonylpyrazol-Linked Isoxazolidines. Molecules 2024, 29, 3454. https://doi.org/10.3390/molecules29153454
Cao X, You J, Wang Y, Yu Y, Wu W, Liang Y. Synthesis of New Isoxazolidine Derivatives Utilizing the Functionality of N-Carbonylpyrazol-Linked Isoxazolidines. Molecules. 2024; 29(15):3454. https://doi.org/10.3390/molecules29153454
Chicago/Turabian StyleCao, Xixian, Jun You, Yunze Wang, Yanchao Yu, Wenju Wu, and Yifang Liang. 2024. "Synthesis of New Isoxazolidine Derivatives Utilizing the Functionality of N-Carbonylpyrazol-Linked Isoxazolidines" Molecules 29, no. 15: 3454. https://doi.org/10.3390/molecules29153454
APA StyleCao, X., You, J., Wang, Y., Yu, Y., Wu, W., & Liang, Y. (2024). Synthesis of New Isoxazolidine Derivatives Utilizing the Functionality of N-Carbonylpyrazol-Linked Isoxazolidines. Molecules, 29(15), 3454. https://doi.org/10.3390/molecules29153454