Detailed Phytochemical Composition, Cyto-/Hepatotoxicity, and Antioxidant/Anti-Inflammatory Profile of Moroccan Spices: A Study on Coriander, Caraway, and Mystical Cumin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition of Seeds
2.2. Total and Free Amino Acid Profiles
2.3. Fatty Acid Composition and Vitamin E Profile
2.4. Total Phenolics, Total Flavonoids, and Antioxidant Activity by Spectrophotometry
2.5. Phenolic Compound Quantification
2.6. Anti-Inflammatory, Cytotoxic, and Hepatotoxic Activity: Cellular Assays
3. Materials and Methods
3.1. Reagents, Standards, and Cells
3.2. Sample Preparation
3.3. Moisture Content
3.4. Ash Content
3.5. Total Fat Content
Study of the Lipid Fraction (Vitamin E and Fatty Acid Profiles)
3.6. Total (Crude) Protein Content
Study of the Protein Fraction (Real Protein Estimation and Total/Free Amino Acid Profiles)
3.7. Carbohydrates and Dietary Fiber
3.8. Energy Value
3.9. Estimation of Total Phenolics, Total Flavonoids, and Antioxidant Activity (Ferric-Reducing Antioxidant Power and DPPH● Scavenging Activity) by Spectrophotometry
3.10. Phenolic Compound Characterization by LC-DAD-ESI/MSn
3.11. Anti-Inflammatory Activity
3.12. Cytotoxicity and Hepatotoxicity
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an important source of antioxidants and their applications. Cosmetics 2021, 8, 111. [Google Scholar] [CrossRef]
- Mandal, D.; Sarkar, T.; Chakraborty, R. Critical review on nutritional, bioactive, and medicinal potential of spices and herbs and their application in food fortification and nanotechnology. Appl. Biochem. Biotechnol. 2023, 195, 1319–1513. [Google Scholar] [PubMed]
- Bhattacharya, E.; Pal, U.; Dutta, R.; Bhowmik, P.C.; Mandal Biswas, S. Antioxidant, antimicrobial and DNA damage protecting potential of hot taste spices: A comparative approach to validate their utilization as functional foods. J. Food Sci. Technol. 2022, 59, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Said, A.A.H.; Derfoufi, S.; Sbai, I.; Benmoussa, A. Ethnopharmacological survey of traditional medicinal plants used for the treatment of infantile colic in Morocco. J. Chem. Pharm. Res. 2015, 7, 664–671. [Google Scholar]
- Aćimović, M.G. Nutraceutical potential of Apiaceae. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland; New York, NY, USA, 2019; pp. 1311–1341. [Google Scholar]
- Johri, R. Cuminum cyminum and Carum carvi: An update. Pharmacogn. Rev. 2011, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Abou El-Soud, N.H.; El-Lithy, N.A.; El-Saeed, G.; Wahby, M.S.; Khalil, M.Y.; Morsy, F.; Shaffie, N. Renoprotective effects of caraway (Carum carvi L.) essential oil in streptozotocin induced diabetic rats. J. Appl. Pharm. Sci. 2014, 4, 27–33. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Okla, M.K.; Al-Amri, S.S.; Al-Hashimi, A.; Al-Qahtani, W.H.; Al-Qahtani, S.M.; Abbas, Z.K.; Al-Harbi, N.A.; Abd-Algafar, A.; Almuhayawi, M.S.; et al. Effect of elevated CO2 on biomolecules’ accumulation in caraway (Carum carvi L.) plants at different developmental stages. Plants 2021, 10, 2434. [Google Scholar] [CrossRef] [PubMed]
- Laribi, B.; Bettaieb, I.; Kouki, K.; Sahli, A.; Mougou, A.; Marzouk, B. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind. Crops Prod. 2009, 30, 372–379. [Google Scholar] [CrossRef]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Jawhari, F.Z.; Bari, A.; Cerruti, P.; Avella, M.; Grafov, A.; Bousta, D. Medicinal plants used to treat acute digestive system problems in the region of Fez-Meknes in Morocco: An ethnopharmacological survey. Ethnobot. Res. Appl. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Rajeshwari, C.U.; Andallu, B. Isolation and simultaneous detection of flavonoids in the methanolic and ethanolic extracts of Coriandrum sativum L. seeds by RP-HPLC. Pak. J. Food Sci. 2011, 21, 13–21. [Google Scholar]
- Costa, D.C.; Costa, H.; Albuquerque, T.G.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Hosseini, M.; Boskabady, M.H.; Khazdair, M.R. Neuroprotective effects of Coriandrum sativum and its constituent, linalool: A review. Avicenna J. Phytomed 2021, 11, 436. [Google Scholar]
- Scandar, S.; Zadra, C.; Marcotullio, M.C. Coriander (Coriandrum sativum) polyphenols and their nutraceutical value against obesity and metabolic syndrome. Molecules 2023, 28, 4187. [Google Scholar] [CrossRef] [PubMed]
- Farah, H.; Elbadrawy, E.; Al-Atoom, A.A. Evaluation of antioxidant and antimicrobial activities of ethanolic extracts of parsley (Petroselinum erispum) and coriander (Coriandrum sativum) plants grown in Saudi Arabia. Int. J. Adv. Res. 2015, 3, 1244–1255. [Google Scholar]
- Hajib, A.; Danton, O.; Keller, M.; Potterat, O.; Bougrin, K.; Charrouf, Z.; Hamburger, M. Polyacetylenic caffeoyl amides from Ammodaucus leucotrichus. Phytochemistry 2023, 206, 113555. [Google Scholar] [CrossRef] [PubMed]
- Abderrezag, N.; Sánchez-Martínez, J.D.; Louaer, O.; Meniai, A.H.; Mendiola, J.A. Optimization of pressurized liquid extraction and in vitro neuroprotective evaluation of Ammodaucus leucotrichus. Untargeted metabolomics analysis by UHPLC-MS/MS. Molecules 2021, 26, 6951. [Google Scholar] [CrossRef]
- Hassaine, R.; El Haci, I.A.; Bouchama, A.; Boukenna, L.; Aissaoui, M.; Djafri, A.; Haffas, M.; Benabdellah, M.; Choukchou-Braham, N.; Bachari, K.; et al. Green hemi-synthesis of novel thiazole derivatives from Ammodaucus leucotrichus Coss. & Dur. and Cuminum cyminum L. essential oils: Stereochemistry, molecular fluorescence spectroscopy, in vitro biologicial activity, and molecular docking study. J. Mol. Struct. 2022, 1265, 133376. [Google Scholar]
- Halla, N.; Heleno, S.A.; Costa, P.; Fernandes, I.P.; Calhelha, R.C.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Chemical profile and bioactive properties of the essential oil isolated from Ammodaucus leucotrichus fruits growing in Sahara and its evaluation as a cosmeceutical ingredient. Ind. Crops Prod. 2018, 119, 249–254. [Google Scholar] [CrossRef]
- Hajib, A.; Nounah, I.; Oubihi, A.; Harhar, H.; Gharby, S.; Kartah, B.; Bougrin, K.; Charrouf, Z. Chemical composition and biological activities of essential oils from the fruits of Cuminum cyminum L. and Ammodaucus leucotrichus L. (Apiaceae). J. Essent. Oil Bear. Plants 2020, 23, 474–483. [Google Scholar] [CrossRef]
- Idm’hand, E.; Msanda, F.; Cherifi, K. Medicinal uses, phytochemistry and pharmacology of Ammodaucus leucotrichus. Clin. Phytosci. 2020, 6, 6. [Google Scholar] [CrossRef]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Calarco, A.; Boukhira, S.; Noman, O.M.; Mothana, R.A.; Nasr, F.A.; Bekkari, H.; Bousta, D. Defatted hydroethanolic extract of Ammodaucus leucotrichus Cosson and Durieu seeds: Antidiabetic and anti-inflammatory activities. Appl. Sci. 2020, 10, 9147. [Google Scholar] [CrossRef]
- Sadaoui, N.; Bec, N.; Barragan-Montero, V.; Kadri, N.; Cuisinier, F.; Larroque, C.; Arab, K.; Khettal, B. The essential oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and its effect on the cholinesterase and monoamine oxidase activities. Fitoterapia 2018, 130, 1–5. [Google Scholar] [PubMed]
- Petcu, C.D.; Mihai, O.D.; Tăpăloagă, D.; Gheorghe-Irimia, R.A.; Pogurschi, E.N.; Militaru, M.; Borda, C.; Ghimpeteanu, O.M. Effects of plant-based antioxidants in animal diets and meat products: A review. Foods 2023, 12, 1334. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhang, M.; Mujumdar, A.S.; Liu, Y. Recent developments in key processing techniques for oriental spices/herbs and condiments: A review. Food Rev. Int. 2022, 38, 1791–1811. [Google Scholar] [CrossRef]
- Spence, C. Lovage: A neglected culinary herb. Int. J. Gastro Food Sci. 2023, 33, 100764. [Google Scholar] [CrossRef]
- Hamidian, M.; Salehi, A.; Naghiha, R.; Dehnavi, M.M.; Castangia, I.; Mirfathi, M.N. The comparative perspective of phytochemistry and biological properties of the Apiaceae family plants. Sci. Rep. 2023, 13, 12390. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Naveed, S.; Qaisrani, S.N.; Mahmud, A.; Hayat, Z.; Abdullah, M.; Kikusato, M.; Toyomizu, M. Characteristics of essential oils of Apiaceae family: Their chemical compositions, in vitro properties and effects on broiler production. J. Poult. Sci. 2022, 59, 16–37. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Regueiro, J.; Alvarenga, J.F.R.; Martinez-Huelamo, M.; Leal, L.N.; Lamuela-Raventos, R.M. Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: Caraway, turmeric, dill, marjoram and nutmeg. Food Sci. Technol. 2015, 35, 189–195. [Google Scholar] [CrossRef]
- El-Zaeddi, H.; Calín-Sánchez, Á.; Nowicka, P.; Martínez-Tomé, J.; Noguera-Artiaga, L.; Burló, F.; Wojdyto, A.; Carbonell-Barrachina, Á.A. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chem. 2017, 226, 79–86. [Google Scholar] [CrossRef]
- Coggins, P.C. Spices and flavorings for meat and meat products. In Meat Science and Applications; Hui, Y.H., Nio, W.-K., Rogen, R.W., Young, O.A., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 387–418. [Google Scholar]
- Mudgil, D. The interaction between insoluble and soluble fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease; Samaan, R.A., Ed.; Academic Press: London, UK, 2017; pp. 35–59. [Google Scholar]
- Li, J.; Xi, H.; Wang, A.; Nie, M.; Gong, X.; Lin, R.; Zhang, X.; Tian, Y.; Wang, F.; Tong, L.T. Effects of high-pressure microfluidization treatment on the structural, physiochemical properties of insoluble dietary fiber in highland barley bran. Int. J. Biol. Macromol. 2024, in press. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Morales, P.; Cámara, M.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Wild Fragaria vesca L. fruits: A rich source of bioactive phytochemicals. Food Funct. 2016, 7, 4523–4532. [Google Scholar] [CrossRef] [PubMed]
- El-Assri, E.; Hajib, A.; Choukri, H.; Gharby, S.; Lahkimi, A.; Eloutassi, N.; Bouia, A. Nutritional quality, lipid, and mineral profiling of seven Moroccan Apiaceae family seeds. S. Afr. J. Bot. 2023, 160, 23–35. [Google Scholar] [CrossRef]
- USDA. US Department of Agriculture ARSUN, Database for Standard Reference; USDA: Washington, DC, USA, 2004. [Google Scholar]
- Kambhampati, S.; Li, J.; Evans, B.S.; Allen, D.K. Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry. Plant Met. 2019, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Duan, W.; Huang, Y.; Xiao, J.; Zhang, Y.; Tang, Y. Determination of free amino acids, organic acids, and nucleotides in 29 elegant spices. Food Sci. Nutr. 2020, 8, 3777–3792. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M. The effect of spice powders on bioactive compounds, antioxidant activity, phenolic components, fatty acids, mineral contents and sensory properties of “keşkek”, which is a traditional food. Foods 2022, 11, 3492. [Google Scholar] [CrossRef] [PubMed]
- Marcone, M.F.; Kakuda, Y.; Yada, R.Y. Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants—I. Isolation/purification and characterization. Food Chem. 1998, 62, 27–47. [Google Scholar] [CrossRef]
- Anand, S.K.; Governale, T.A.; Zhang, X.; Razani, B.; Yurdagul Jr, A.; Pattillo, C.B.; Rom, O. Amino acid metabolism and atherosclerotic cardiovascular disease. Am. J. Pathol. 2024, in press. [Google Scholar] [CrossRef]
- McGarrah, R.W.; White, P.J. Branched-chain amino acids in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 77–89. [Google Scholar] [CrossRef]
- Hope, H.C.; Salmond, R.J. The role of non-essential amino acids in T cell function and anti-tumour immunity. Arch. Immunol. Ther. Exp. 2021, 69, 29. [Google Scholar] [CrossRef]
- Cundy, T.; Reid, I.R.; Grey, A. Metabolic bone disease. In Clinical Biochemistry: Metabolic and Clinical Aspects, 3rd ed.; Marshal, W.J., Lapsley, M., Day, A.P., Ayling, R.M., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2014; pp. 604–635. [Google Scholar]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar] [PubMed]
- Hajib, A.; El Harkaoui, S.; Choukri, H.; Khouchlaa, A.; Aourabi, S.; El Menyiy, N.; Bouyahya, A.; Matthaeus, B. Apiaceae family an important source of petroselinic fatty acid: Abundance, biosynthesis, chemistry, and biological proprieties. Biomolecules 2023, 13, 1675. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Laribi, B.; Kouki, K.; Bettaieb, T.; Mougou, A.; Marzouk, B. Essential oils and fatty acids composition of Tunisian, German and Egyptian caraway (Carum carvi L.) seed ecotypes: A comparative study. Ind. Crops Prod. 2013, 41, 312–318. [Google Scholar] [CrossRef]
- Daga, P.; Vaishnav, S.R.; Dalmia, A.; Tumaney, A.W. Extraction, fatty acid profile, phytochemical composition and antioxidant activities of fixed oils from spices belonging to Apiaceae and Lamiaceae family. J. Food Sci. Technol. 2022, 59, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Sriti, J.; Talou, T.; Msaada, K.; Marzouk, B. Comparative analysis of fatty acid, sterol and tocol composition of Tunisian and Canadian coriander (Coriandrum sativum L.) fruit. Anal. Chem. Lett. 2011, 1, 375–383. [Google Scholar] [CrossRef]
- Wei, J.N.; Liu, Z.H.; Zhao, Y.P.; Zhao, L.L.; Xue, T.K.; Lan, Q.K. Phytochemical and bioactive profile of Coriandrum sativum L. Food Chem. 2019, 286, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Ziani, B.E.C.; Rached, W.; Bachari, K.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. J. Funct. Foods 2019, 53, 237–247. [Google Scholar]
- Christova-Bagdassarian, V.L.; Bagdassarian, K.S.; Atanassova, M.S. Phenolic compounds and antioxidant capacity in Bulgarian plans (dry seeds). Int. J. Adv. Res. 2013, 1, 186–197. [Google Scholar]
- Btissam, R.; Hafssa, E.; Mohamed, N. Increased non-enzymatic glycation reported in Apiaceae family extracts. Pak. J. Bot. 2022, 54, 1549–1556. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef]
- Trifan, A.; Zengin, G.; Brebu, M.; Skalicka-Woźniak, K.; Luca, S.V. Phytochemical characterization and evaluation of the antioxidant and anti-enzymatic activity of five common spices: Focus on their essential oils and spent material extractives. Plants 2021, 10, 2692. [Google Scholar] [CrossRef]
- Pandey, M.M.; Vijayakumar, M.; Rastogi, S.; Rawat, A.K.S. Phenolic content and antioxidant properties of selected Indian spices of Apiaceae. J. Herbs Spices Med. Plants 2012, 18, 246–256. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod. 2016, 79, 188–194. [Google Scholar] [CrossRef]
- Prasain, J.K.; Reppert, A.; Jones, K.; Moore Ii, D.R.; Barnes, S.; Lila, M.A. Identification of isoflavone glycosides in Pueraria lobata cultures by tandem mass spectrometry. Phytochem. Anal. 2007, 18, 50–59. [Google Scholar] [CrossRef]
- Astrid Garzón, G.; Narvaez-Cuenca, C.E.; Vincken, J.P.; Gruppen, H. Polyphenolic composition and antioxidant activity of acai (Euterpe oleracea Mart) from Colombia. Food Chem. 2017, 217, 364–372. [Google Scholar] [CrossRef]
- Pati, S.; Crupi, P.; Benucci, I.; Antonacci, D.; Di Luccia, A.; Esti, M. HPLC-DAD–MS/MS characterization of phenolic compounds in white wine stored without added sulfite. Food Res. Int. 2014, 66, 207–215. [Google Scholar] [CrossRef]
- Kaiser, A.; Kammerer, D.R.; Carle, R. Impact of blanching on polyphenol stability and antioxidant capacity of innovative coriander (Coriandrum sativum L.) pastes. Food Chem. 2013, 140, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Rafi, M.; Karomah, A.H.; Septaningsih, D.A.; Trivadila; Rahminiwati, M.; Putri, S.P.; Iswantini, D. LC-MS/MS based metabolite profiling and lipase enzyme inhibitory activity of Kaempferia angustifolia Rosc. with different extracting solvents. Arab. J. Chem. 2022, 15, 104232. [Google Scholar] [CrossRef]
- Pace, B.; Capotorto, I.; Cefola, M.; Minasi, P.; Montemurro, N.; Carbone, V. Evaluation of quality, phenolic and carotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere. J. Food Compos. Anal. 2020, 86, 103363. [Google Scholar] [CrossRef]
- Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.R.; Guo, D.A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. Beni-Suef Univ. J. Basic. Appl. Sci. 2020, 9, 45. [Google Scholar] [CrossRef]
- Mondal, S.; Rahaman, S.T. Flavonoids: A vital resource in healthcare and medicine. Pharm. Pharmacol. Int. J. 2020, 8, 91–104. [Google Scholar]
- Upadhyay, R.; Mohan Rao, L.J. An outlook on chlorogenic acids—Occurrence, chemistry, technology, and biological activities. Crit. Rev. Food Sci. Nutr. 2013, 53, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Sun, Q.; Park, Y. The bioactive effects of chicoric acid as a functional food ingredient. J. Med. Food 2019, 22, 645–652. [Google Scholar] [CrossRef]
- Xu, P.; Xu, X.; Fotina, H.; Fotina, T. Anti-inflammatory effects of chlorogenic acid from Taraxacum officinale on LTA-stimulated bovine mammary epithelial cells via the TLR2/NF-κB pathway. PLoS ONE 2023, 18, 0282343. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Park, S.-Y.; Park, Y.L.; Myung, D.-S.; Rew, J.-S.; Joo, Y.-E. Chlorogenic acid suppresses lipopolysaccharide-induced nitric oxide and interleukin-1β expression by inhibiting JAK2/STAT3 activation in RAW264.7 cells. Mol. Med. Rep. 2017, 16, 9224–9232. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Func. Foods 2015, 18, 820–897. [Google Scholar]
- Lenzi, M.; Turrini, E.; Catanzaro, E.; Cocchi, V.; Guerrini, A.; Hrelia, P.; Gasperini, S.; Stefanelli, C.; Abdi Bellau, M.L.; Pellicioni, V.; et al. In vitro investigation of the anticancer properties of Ammodaucus Leucotrichus Coss. & Dur. Pharmaceuticals 2022, 15, 1491. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2019. [Google Scholar]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Costa, A.S.G.; Machado, S.; Alves, R.C.; Pardo, J.E.; Oliveira, M.B.P.P. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 2021, 10, 2108. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.; Casal, S.; Oliveira, M.B.P.P. Determination of vitamin E in coffee beans by HPLC using a micro-extraction method. Food Sci. Technol. Int. 2009, 15, 57–63. [Google Scholar] [CrossRef]
- ISO-12966-2:2017; Animal and Vegetable Fats and Oils: Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- Machado, S.; Costa, A.S.G.; Pimentel, F.; Oliveira, M.B.P.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino acid profile and protein quality assessment of macroalgae produced in an integrated multi-trophic aquaculture system. Foods 2020, 9, 1382. [Google Scholar] [CrossRef] [PubMed]
- Tontisirin, K.; MacLean, W.C.; Warwick, P. Methods of food analysis. In Proceedings of the Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop, Rome, Italy, 3–6 December 2002; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; pp. 7–17. [Google Scholar]
- European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Off. J. Eur. Union 2011, 304, 18–61. [Google Scholar]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Souilem, F.; Fernandes, Â.; Calhelha, R.C.; Barreira, J.C.; Barros, L.; Skhiri, F.; Martins, A.; Ferreira, I.C.F.R. Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chem. 2017, 230, 40–48. [Google Scholar] [CrossRef]
Parameter | Coriandrum sativum (Coriander) | Carum carvi (Caraway) | Ammodaucus leucotrichus (Mystical Cumin) |
---|---|---|---|
Moisture (%) | 7.40 ± 0.30 c | 8.60 ± 0.03 b | 12.20 ± 0.60 a |
Ash (%) | 6.34 ± 0.04 c | 7.70 ± 0.04 a | 7.25 ± 0.04 b |
Crude protein (%) | 9.40 ± 0.20 b | 19.30 ± 0.30 a | 8.44 ± 0.30 c |
True protein (%) | 7.77 ± 0.26 b | 18.23 ± 1.76 a | 7.84 ± 0.29 b |
Fat (%) | 13.62 ± 0.24 a | 13.88 ± 0.38 a | 13.10 ± 0.08 a |
Total carbohydrates (%) | 63.30 ± 0.20 a | 50.50 ± 0.30 c | 59.00 ± 0.90 b |
Total dietary fiber (%) | 53.21 ± 0.40 a | 40.26 ± 0.68 c | 47.55 ± 0.30 b |
Insoluble Fiber (%) | 50.81 ± 0.34 a | 33.66 ± 0.22 c | 46.41 ± 0.03 b |
Soluble Fiber (%) | 2.39 ± 0.05 b | 6.59 ± 0.46 a | 1.14 ± 0.27 c |
Remaining carbohydrates (%) | 22.80 ± 0.60 b | 25.63 ± 0.77 a | 25.97 ± 1.16 a |
Energy value (kJ/100 g) | 1476 ± 5 b | 1599 ± 10 a | 1450 ± 11 b |
Energy value (kcal/100 g) | 358 ± 1 b | 385 ± 2 a | 351 ± 2 c |
Amino Acid | Coriandrum sativum (Coriander) | Carum carvi (Caraway) | Ammodaucus leucotrichus (Mystical Cumin) |
---|---|---|---|
Essential or conditionally essential * amino acids | |||
* Arginine | 6.90 ± 0.41 b | 14.08 ± 0.56 a | 6.34 ± 0.53 b |
* Histidine | 3.60 ± 0.17 b | 6.24 ± 0.23 a | 2.52 ± 0.14 c |
Isoleucine | 4.76 ± 0.31 b | 8.55 ± 0.38 a | 3.66 ± 0.14 c |
Leucine | 6.64 ± 0.34 b | 12.49 ± 0.46 a | 5.38 ± 0.24 c |
Lysine | 7.14 ± 0.49 b | 11.29 ± 1.32 a | 6.17 ± 0.20 b |
Methionine | 0.80 ± 0.06 b | 2.24 ± 0.15 a | 0.79 ± 0.05 b |
Phenylalanine | 4.68 ± 0.29 b | 8.65 ± 0.31 a | 3.82 ± 0.30 c |
Threonine | 4.61 ± 0.33 b | 8.40 ± 0.09 a | 3.74 ± 0.16 c |
Tryptophan | 0.97 ± 0.05 b | 1.34 ± 0.06 a | 0.60 ± 0.01 c |
Valine | 5.54 ± 0.29 b | 9.62 ± 0.37 a | 4.24 ± 0.22 c |
Non-essential amino acids | |||
Alanine | 5.64 ± 0.26 b | 10.10 ± 0.32 a | 4.22 ± 0.25 c |
Aspartic acid | 12.94 ± 0.39 b | 22.08 ± 0.79 a | 9.58 ± 0.42 c |
Glutamic acid | 19.35 ± 0.79 b | 36.02 ± 1.40 a | 18.48 ± 0.98 b |
Glycine | 6.65 ± 0.29 b | 9.94 ± 0.61 a | 5.42 ± 0.31 c |
Hydroxyproline | 2.17 ± 0.17 b | 1.26 ± 0.04 c | 4.84 ± 0.28 a |
Proline | 5.55 ± 0.13 b | 9.25 ± 0.36 a | 4.37 ± 0.19 c |
Serine | 5.98 ± 0.29 b | 10.22 ± 0.36 a | 5.39 ± 0.18 b |
Tyrosine | 2.37 ± 0.10 b | 4.22 ± 0.10 a | 2.11 ± 0.13 b |
Ʃ Total amino acids | 106.29 ± 4.97 b | 186.01 ± 7.49 a | 91.64 ± 4.00 c |
Amino Acid | Coriandrum sativum (Coriander) | Carum carvi (Caraway) | Ammodaucus leucotrichus (Mystical Cumin) |
---|---|---|---|
Essential or conditionally essential * amino acids | |||
* Arginine | 0.33 ± 0.03 b | 1.66 ± 0.06 a | 0.25 ± 0.01 c |
* Histidine | 0.04 ± 0.00 b | 0.11 ± 0.00 a | 0.03 ± 0.00 b |
Isoleucine | 0.12 ± 0.01 b | 0.20 ± 0.01 a | 0.10 ± 0.00 c |
Leucine | 0.15 ± 0.02 b | 0.23 ± 0.01 a | 0.13 ± 0.01 b |
Lysine | 0.29 ± 0.02 a | 0.28 ± 0.01 a | 0.16 ± 0.00 b |
Methionine | 0.07 ± 0.01 b | 0.12 ± 0.01 a | 0.05 ± 0.00 b |
Phenylalanine | 0.09 ± 0.01 b | 0.20 ± 0.02 a | 0.08 ± 0.00 b |
Threonine | 0.12 ± 0.01 b | 0.26 ± 0.01 a | 0.11 ± 0.00 b |
Tryptophan | 0.08 ± 0.00 b | 0.11 ± 0.00 a | 0.04 ± 0.00 c |
Valine | 0.11 ± 0.01 b | 0.28 ± 0.02 a | 0.12 ± 0.00 b |
Non-essential amino acids | |||
Alanine | 0.23 ± 0.02 b | 0.66 ± 0.03 a | 0.16 ± 0.01 c |
Asparagine | 0.16 ± 0.01 c | 1.03 ± 0.04 a | 0.37 ± 0.02 b |
Aspartic acid | 0.24 ± 0.01 b | 0.76 ± 0.03 a | 0.20 ± 0.01 b |
Glutamine | 0.10 ± 0.01 b | 0.08 ± 0.01 c | 1.06 ± 0.03 a |
Glutamic acid | 0.29 ± 0.02 b | 1.28 ± 0.04 c | 0.32 ± 0.02 a |
Glycine | 0.06 ± 0.00 b | 0.11 ± 0.01 a | 0.04 ± 0.00 c |
Hydroxyproline | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Proline | 0.12 ± 0.01 b | 0.29 ± 0.00 a | 0.28 ± 0.02 a |
Serine | 0.13 ± 0.01 c | 0.35 ± 0.02 a | 0.17 ± 0.01 b |
Tyrosine | 0.09 ± 0.01 b | 0.15 ± 0.01 a | 0.09 ± 0.01 b |
Ʃ Free amino acids | 2.25 ± 0.29 c | 8.17 ± 0.29 a | 3.76 ± 0.08 b |
Fatty Acids (Relative %) | Coriandrum sativum (Coriander) | Carum carvi (Caraway) | Ammodaucus leucotrichus (Mystical Cumin) |
---|---|---|---|
C14:0 | 0.16 ± 0.01 a | n.d. | 0.08 ± 0.01 b |
C16:0 | 4.03 ± 0.03 c | 5.99 ± 0.22 a | 4.97 ± 0.38 b |
C16:1 | 0.22 ± 0.01 a | 0.12 ± 0.01 c | 0.15 ± 0.01 b |
C18:0 | 0.83 ± 0.06 c | 1.68 ± 0.04 a | 1.07 ± 0.10 b |
C18:1n9c | 81.31 ± 0.10 b | 31.99 ± 1.35 c | 84.98 ± 0.74 a |
C18:1n12 | n.d. | 25.01 ± 1.55 | n.d. |
C18:2n6c | 13.3 ± 0 0.14 b | 34.22 ± 0.45 a | 7.99 ± 0.35 c |
C18:3n3 | 0.16 ± 0.00 c | 0.41 ± 0.04 a | 0.32 ± 0.02 b |
C20:0 | n.d. | 0.26 ± 0.02 | n.d. |
C20:1n9 | n.d. | n.d. | 0.16 ± 0.01 |
C22:0 | n.d. | 0.33 ± 0.01 a | 0.29 ± 0.03 a |
Ʃ SFAs | 5.02 ± 0.09 c | 8.26 ± 0.19 a | 6.41 ± 0.44 b |
Ʃ MUFAs | 81.52 ± 0.01 b | 57.11 ± 0.25 b | 85.28 ± 0.74 a |
Ʃ PUFAs | 13.46 ± 0.00 b | 34.63 ± 0.43 a | 8.31 ± 0.37 b |
Vitamin E profile (µg/g) | |||
α-Tocopherol | 8.42 ± 0.40 c | 11.17 ± 0.53 b | 15.08 ± 1.07 a |
α-Tocotrienol | 10.52 ± 0.26 b | 16.63 ± 0.22 a | n.d. |
β-Tocopherol | n.d. | n.d. | n.d. |
β-Tocotrienol | n.d. | n.d. | n.d. |
γ-Tocopherol | 2.11 ± 0.12 a | n.d. | 2.26 ± 0.04 a |
γ-Tocotrienol | 48.81 ± 0.78 c | 187.40 ± 1.61 a | 71.76 ± 3.45 b |
δ-Tocopherol | n.d. | n.d. | n.d. |
δ-Tocotrienol | 1.77 ± 0.05 b | 3.57 ± 0.19 a | 2.17 ± 0.10 b |
Total vitamin E | 71.63 ± 0.76 c | 218.77 ± 2.23 a | 91.27 ± 4.20 b |
Coriandrum sativum (Coriander) | Carum carvi (Caraway) | Ammodaucus leucotrichus (Mystical Cumin) | ||
---|---|---|---|---|
Bioactive compounds | Total phenolics (mg GAE/100 g) | 517.8 ± 40.2 c | 925.4 ± 77.9 a | 689.0 ± 66.1 b |
Total flavonoids (mg CE/100 g) | 153.6 ± 14.7 b | 297.8 ± 32.3 a | 57.2 ± 7.9 c | |
Antioxidant activity | Ferric-reducing antioxidant power (mg FSE/100 g) (µmol FSE/100 g) | 4528 ± 449 b | 6802 ± 284 a | 6508 ± 616 a |
DPPH● inhibition (mg TE/100 g) | 189.0 ± 16.0 c | 727.6 ± 70.2 a | 379.6 ± 70.2 b |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MSn (m/z) | Tentative Identification | Coriandrum sativum (Coriander) | Carum carvi (Caraway) | Ammodaucus leucotrichus (Mystical Cumin) |
---|---|---|---|---|---|---|---|---|
1 | 6.91 | 325 | 353 | 191(100), 179(13), 173(15), 161(18), 135(8) | cis 3-O-Caffeoylquinic acid | 3.079 ± 0.010 a | 0.616 ± 0.002 b | n.d. |
2 | 7.44 | 326 | 353 | 191(100), 179(11), 173(13), 161(14), 135(5) | trans 3-O-Caffeoylquinic acid | 4.094 ± 0.005 a | 3.740 ± 0.032 b | n.d. |
3 | 9.93 | 333 | 593 | 575(8), 503(49), 473(100), 383(31), 353(40) | Apigenin-C-hexosyl-C-pentoside | 0.099 ± 0.005 a | n.d. | 0.094 ± 0.000 a |
4 | 10.48 | 323 | 179 | 161(100), 135(24) | Caffeic acid | tr | 0.233 ± 0.014 | n.d. |
5 | 13.17 | 342 | 443 | 281(25), 237(100) | Octyl gallate hexoside | n.d. | n.d. | 0.661 ± 0.000 |
6 | 13.57 | 328 | 593 | 575(5), 503(5), 473(78), 431(100), 311(87) | Apigenin C-dihexoside | 0.260 ± 0.012 | n.d. | n.d. |
7 | 13.95 | 330 | 473 | 311(100), 293(37) | Chicoric acid | n.d. | n.d. | 1.687 ± 0.080 |
8 | 13.98 | 328 | 563 | 545(10), 503(34), 473(87), 443(100), 383(35), 353(24) | Apigenin-C-hexosyl-C-pentoside | 0.130 ± 0.004 | n.d. | n.d. |
9 | 15.44 | 327 | 563 | 545(9), 503(29), 473(77), 443(100), 383(25), 353(14) | Apigenin-C-hexosyl-C-pentoside | 0.010 ± 0.000 | n.d. | n.d. |
10 | 16.87 | 328 | 431 | MS2: 341(23), 311(100); MS3: 283(100) | OH-Puerarin | 0.529 ± 0.012 | n.d. | n.d. |
11 | 17.57 | 331 | 609 | 301(100) | Quercetin-3-O-rutinoside | n.d. | 0.501 ± 0.002 | n.d. |
12 | 18.23 | 352 | 477 | 301(100) | Quercetin-O-hexurunoside | 1.112 ± 0.011 a | 0.641 ± 0.005 b | n.d. |
13 | 18.64 | 346 | 463 | 301(100) | Quercetin-O-hexoside | 1.284 ± 0.003 a | 0.494 ± 0.001 b | n.d. |
14 | 18.71 | 322 | 325 | 281(100), 193(4) | Ferulic acid conjugate | n.d. | n.d. | 2.344 ± 0.120 |
15 | 19.06 | 343 | 463 | 301(100) | Quercetin-O-hexoside | 0.620 ± 0.015 | n.d. | n.d. |
16 | 19.10 | 345 | 447 | 285(100) | Luteolin-O-hexoside | n.d. | n.d. | 1.641 ± 0.020 |
17 | 20.35 | 352 | 505 | 301(100) | Quercetin-O-acetyl-hexoside | 1.448 ± 0.021 | n.d. | n.d. |
18 | 20.51 | 326 | 527 | 365(100), 203(45), 185(1), 179(7), 135(5) | Di-caffeic acid derivative | n.d. | 4.972 ± 0.130 | n.d. |
19 | 20.77 | 339 | 505 | 301(100) | Quercetin-O-acetyl-hexoside | 1.431 ± 0.059 | n.d. | n.d. |
20 | 21.39 | 341 | 623 | 315(100) | Isorhamnetin-O-deoxyhexosyl-hexoside | 0.672 ± 0.009 | n.d. | n.d. |
21 | 21.63 | 326 | 515 | MS2: 353(100), 335(5), 229(3), 255(5), 203(6), 191(35), 179(12); MS3:173(100) | 3,4-di-O-caffeoylquinic acid | n.d. | 1.718 ± 0.082 | n.d. |
22 | 22.07 | 346 | 461 | 285(100) | Kaempherol-O-hexurunoside | 0.566 ± 0.012 | n.d. | n.d. |
23 | 22.50 | 340 | 491 | 315(100) | Isorhamnetin-O-hexurunoside | 0.881 ± 0.009 | n.d. | n.d. |
24 | 23.35 | 325 | 515 | MS2: 353(100), 335(32), 179(12); MS3: 173(100) | 1,4-di-O-caffeoylquinic acid | n.d. | 0.791 ± 0.003 | n.d. |
25 | 23.48 | 348 | 491 | 315(100) | Isorhamnetin-O-hexurunoside | 0.734 ± 0.033 | n.d. | n.d. |
26 | 23.93 | 341 | 533 | 489(54), 285(100) | Kaempherol-O-malonylhexoside | n.d. | n.d. | 0.936 ± 0.040 |
27 | 24.84 | 340 | 489 | 285(100) | Kaempherol-O-acetylhexoside | 0.890 ± 0.031 | n.d. | n.d. |
28 | 25.46 | 327 | 505 | 301(100) | Quercetin-O-acetyl-hexoside | 0.545 ± 0.005 | n.d. | n.d. |
29 | 27.47 | 326 | 541 | 379(100), 203(10), 185(34) | Feruloyl N-tryptophan hexoside | n.d. | 1.674 ± 0.034 | n.d. |
30 | 28.37 | 325 | 529 | MS2:367(100), 353(1), 335(6); MS3:193(8), 191(4), 173(100) | cis 4-Feruloyl-5-caffeoylquinic acid | n.d. | 0.310 ± 0.000 | n.d. |
31 | 28.63 | 326 | 529 | MS2: 367(100), 353(1), 335(6); MS3:193(54), 191(5), 173(100) | trans 4-Feruloyl-5-caffeoylquinic acid | n.d. | 0.657 ± 0.002 | n.d. |
32 | 29.25 | 325 | 529 | MS2: 367(75), 353(100), 335(6); MS3:193(1), 191(23), 179(82), 173(100) | 3-Feruloyl-4-caffeoylquinic acid | n.d. | 0.301 ± 0.010 | n.d. |
33 | 32.15 | 324 | 543 | MS2: 367(100), 349(6); MS3: 193(100), (34) | 4,5-Diferuloylquinic acid | n.d. | 0.259 ± 0.006 | n.d. |
Total Phenolic Acids | 7.173 ± 0.004 b | 15.270 ± 0.010 a | 4.692 ± 0.200 c | |||||
Total Flavonoids | 11.365 ± 0.230 a | 1.636 ± 0.007 c | 2.671 ± 0.070 b | |||||
Total Isoflavonoids | 0.529 ± 0.012 | n.d. | n.d. | |||||
Total Phenolic Compounds | 19.067 ± 0.250 a | 16.906 ± 0.010 b | 7.363 ± 0.270 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzaid, H.; Espírito Santo, L.; Ferreira, D.M.; Machado, S.; Costa, A.S.G.; Dias, M.I.; Calhelha, R.C.; Barros, L.; Chater, O.; Rodi, Y.K.; et al. Detailed Phytochemical Composition, Cyto-/Hepatotoxicity, and Antioxidant/Anti-Inflammatory Profile of Moroccan Spices: A Study on Coriander, Caraway, and Mystical Cumin. Molecules 2024, 29, 3485. https://doi.org/10.3390/molecules29153485
Bouzaid H, Espírito Santo L, Ferreira DM, Machado S, Costa ASG, Dias MI, Calhelha RC, Barros L, Chater O, Rodi YK, et al. Detailed Phytochemical Composition, Cyto-/Hepatotoxicity, and Antioxidant/Anti-Inflammatory Profile of Moroccan Spices: A Study on Coriander, Caraway, and Mystical Cumin. Molecules. 2024; 29(15):3485. https://doi.org/10.3390/molecules29153485
Chicago/Turabian StyleBouzaid, Hiba, Liliana Espírito Santo, Diana M. Ferreira, Susana Machado, Anabela S. G. Costa, Maria Inês Dias, Ricardo C. Calhelha, Lillian Barros, Oumaima Chater, Youssef Kandri Rodi, and et al. 2024. "Detailed Phytochemical Composition, Cyto-/Hepatotoxicity, and Antioxidant/Anti-Inflammatory Profile of Moroccan Spices: A Study on Coriander, Caraway, and Mystical Cumin" Molecules 29, no. 15: 3485. https://doi.org/10.3390/molecules29153485
APA StyleBouzaid, H., Espírito Santo, L., Ferreira, D. M., Machado, S., Costa, A. S. G., Dias, M. I., Calhelha, R. C., Barros, L., Chater, O., Rodi, Y. K., Errachidi, F., Chahdi, F. O., Oliveira, M. B. P. P., & Alves, R. C. (2024). Detailed Phytochemical Composition, Cyto-/Hepatotoxicity, and Antioxidant/Anti-Inflammatory Profile of Moroccan Spices: A Study on Coriander, Caraway, and Mystical Cumin. Molecules, 29(15), 3485. https://doi.org/10.3390/molecules29153485