Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Methane Generation Performance in the Existence of ERY
2.2. The Removal of ERY during AD
2.3. Variations in ARG Types and Relative Abundance
2.4. Variations in Microbial Community Diversity and Structure
2.4.1. Microbial Community Diversity
2.4.2. Microbial Community Structure
2.5. Assessment of the Influence of Microbial Community on ARGs
3. Materials and Methods
3.1. Experiment Setup
3.2. Microbial Analysis
3.3. ARG Analysis
3.4. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef] [PubMed]
- Ashton, D.; Hilton, M.; Thomas, K.V. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci. Total Environ. 2004, 333, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Ince, B.; Cetecioglu, Z.; Arikan, O.; Ozbayram, E.G.; Shahi, A.; Ince, O. Combined effect of erythromycin, tetracycline and sulfamethoxazole on performance of anaerobic sequencing batch reactors. Bioresour. Technol. 2015, 186, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Schafhauser, B.H.; Kristofco, L.A.; de Oliveira, C.M.R.; Brooks, B.W. Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards. Environ. Pollut. 2018, 238, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Guo, P.; Peng, X.; Wen, K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J. Hazard. Mater. 2015, 283, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganes, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernandez-Pinas, F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013, 47, 2050–2064. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Golovko, O.; Zlabek, V.; Nunes, B. Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere 2019, 216, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Antunes, S.; Correia, A.; Nunes, B. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. Sci. Total Environ. 2016, 545, 591–600. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Drinking Water Contaminant Candidate List 4; USEPA: Washington, DC, USA, 2016; Volume 2024.
- EU. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and Repealing Commission Implementing Decision (EU) 2015/495. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0840 (accessed on 20 July 2024).
- Gholamiyan, S.; Hamzehloo, M.; Farrokhnia, A. RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: Adsorption isotherm, kinetic modeling and thermodynamic studies. Sustain. Chem. Pharm. 2020, 17, 100309. [Google Scholar] [CrossRef]
- Mohammed, N.A.H.; Shamma, R.N.; Elagroudy, S.; Adewuyi, A. Copper ferrite immobilized on chitosan: A suitable photocatalyst for the removal of ciprofloxacin, ampicillin and erythromycin in aqueous solution. Catal. Commun. 2023, 182, 106745. [Google Scholar] [CrossRef]
- Chu, L.; Wang, J.; Chen, C.; He, S.; Wojnárovits, L.; Takács, E. Advanced treatment of antibiotic wastewater by ionizing radiation combined with peroxymonosulfate/H2O2 oxidation. J. Clean. Prod. 2021, 321, 128921. [Google Scholar] [CrossRef]
- Guo, Y.; Askari, N.; Smets, I.; Appels, L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. Water Res. 2024, 256, 121598. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Du, B.; Wu, G. Powdered activated carbon facilitated degradation of complex organic compounds and tetracycline in stressed anaerobic digestion systems. Bioresour. Technol. 2024, 400, 130672. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, A.; Breier, B.; Groißmeier, K.; Hamscher, G. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation. Bioresour. Technol. 2015, 193, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.C.; Liao, X.D.; Wu, Y.B.; Liang, J. Effect of antibiotics on methane arising from anaerobic digestion of pig manure. Anim. Feed Sci. Technol. 2011, 166, 457–463. [Google Scholar] [CrossRef]
- Cetecioglu, Z.; Ince, B.; Orhon, D.; Ince, O. Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity. Bioresour. Technol. 2012, 114, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Cetecioglu, Z.; Ince, B.; Ince, O.; Orhon, D. Acute effect of erythromycin on metabolic transformations of volatile fatty acid mixture under anaerobic conditions. Chemosphere 2015, 124, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Alighardashi, A.; Pandolfi, D.; Potier, O.; Pons, M.N. Acute sensitivity of activated sludge bacteria to erythromycin. J. Hazard. Mater. 2009, 172, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Sun, J.; Chen, Z.; Xu, Q.; Wei, W.; Wang, D.; Ni, B.J. The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Environ. Res. 2021, 195, 110792. [Google Scholar] [CrossRef]
- Wang, M.; Ren, P.; Wang, Y.; Cai, C.; Liu, H.; Dai, X. Erythromycin stimulates rather than inhibits methane production in anaerobic digestion of antibiotic fermentation dregs. Sci. Total Environ. 2022, 807 Pt 3, 151007. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, X.; Chen, F.; Wang, Y.; Li, X.; Wang, D.; Tao, Z.; Xu, D.; Xue, W.; Geng, M.; et al. Clarithromycin affect methane production from anaerobic digestion of waste activated sludge. J. Clean. Prod. 2020, 255, 120321. [Google Scholar] [CrossRef]
- Zhu, W.; Bu, F.; Xu, J.; Wang, Y.; Xie, L. Influence of lincomycin on anaerobic digestion: Sludge type, biogas generation, methanogenic pathway and resistance mechanism. Bioresour. Technol. 2021, 329, 124913. [Google Scholar] [CrossRef]
- Roberts, M.C. Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett. 2008, 282, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, N.A.; Hu, A.; Yu, C.P.; Sharuddin, S.S.; Ramli, N.; Shirai, Y.; Maeda, T. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge. Appl. Microbiol. Biotechnol. 2018, 102, 5323–5334. [Google Scholar] [CrossRef] [PubMed]
- Sandegren, L. Selection of antibiotic resistance at very low antibiotic concentrations. Ups. J. Med. 2014, 119, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; He, J. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O. Water Res. 2011, 45, 3098–3106. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Casas, M.E.; Ottosen, L.D.M.; Moller, H.B.; Bester, K. Removal of antibiotics during the anaerobic digestion of pig manure. Sci. Total Environ. 2017, 603–604, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, Q.; Zhao, Y.; Chen, Z.; Wang, Q.; Burgmann, H. New insight into effect of antibiotics concentration and process configuration on the removal of antibiotics and relevant antibiotic resistance genes. J. Hazard. Mater. 2019, 373, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.J.; Zeng, S.; Wei, W.; Dai, X.; Sun, J. Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes. Sci. Total Environ. 2020, 703, 134899. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.R.; Helbling, D.E.; Lee, T.K.; Park, J.; Fenner, K.; Kohler, H.P.; Ackermann, M. Association of biodiversity with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities. Appl. Environ. Microbiol. 2015, 81, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, Z.; Zou, H.; Yang, H.; Sun, T.; Li, M.; Chai, H.; Li, L.; Ai, H.; Shi, D.; et al. Digestive performance of sludge with different crop straws in mesophilic anaerobic digestion. Bioresour. Technol. 2019, 289, 121595. [Google Scholar] [CrossRef] [PubMed]
- Xiaomei, Z.; Rujing, L.; Jun, X.; Yingying, H.; Xinying, Z.; Li, X. Enhanced methane production by bimetallic metal–organic frameworks (MOFs) as cathode in an anaerobic digestion microbial electrolysis cell. Chem. Eng. J. 2022, 440, 135799. [Google Scholar] [CrossRef]
- Mai, D.T.; Stuckey, D.C.; Oh, S. Effect of ciprofloxacin on methane production and anaerobic microbial community. Bioresour. Technol. 2018, 261, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, W.; Huang, Q.-S.; Ni, B.-J. Methane production from algae in anaerobic digestion: Role of corncob ash supplementation. J. Clean. Prod. 2021, 327, 129485. [Google Scholar] [CrossRef]
- Fan, C.; Zhou, M.; Tang, X.; Zeng, G.; Xu, Q.; Song, B.; Gong, R.; Zhang, B.; Xiong, W.; Lu, Y.; et al. Triclosan enhances short-chain fatty acid production from sludge fermentation by elevating transcriptional activity of acidogenesis bacteria. Chem. Eng. J. 2020, 384, 123285. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Zhao, Y.; Xu, C.; Zhang, K.; Li, J.; Yan, L.; Gu, J.D.; Wei, D.; Wang, W. Establishing practical strategies to run high loading corn stover anaerobic digestion: Methane production performance and microbial responses. Bioresour. Technol. 2020, 310, 123364. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Lin, R.; Kang, X.; Deng, C.; Xia, A.; Dobson, A.D.W.; Murphy, J.D. Graphene Addition to Digestion of Thin Stillage Can Alleviate Acidic Shock and Improve Biomethane Production. ACS Sustain. Chem. Eng. 2020, 8, 13248–13260. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Y.; Duan, X.; Feng, L.; Yan, Y.; Wang, F.; Zhang, X.; Zhang, Z.; Zhou, Q. Activated carbon promotes short-chain fatty acids production from algae during anaerobic fermentation. Sci. Total Environ. 2019, 658, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gil, L.; Krah, D.; Ghattas, A.K.; Carballa, M.; Wick, A.; Helmholz, L.; Lema, J.M.; Ternes, T.A. Biotransformation of organic micropollutants by anaerobic sludge enzymes. Water Res. 2019, 152, 202–214. [Google Scholar] [CrossRef]
- Dyksma, S.; Jansen, L.; Gallert, C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome 2020, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, K.; Lou, Y.; Lu, B.; Liu, B.; Xie, G.; Ren, N.; Xing, D. The synergistic effect of potassium ferrate and peroxymonosulfate application on biogas production and shaping microbial community during anaerobic co-digestion of a cow manure-cotton straw mixture. Bioresour. Technol. 2021, 333, 125166. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, K.; Wang, J.; Yuan, Q.; Shi, C.; Wu, J.; Zuo, J. Performance assessment and metagenomic analysis of full-scale innovative two-stage anaerobic digestion biogas plant for food wastes treatment. J. Clean. Prod. 2020, 264, 121646. [Google Scholar] [CrossRef]
- Tong, J.; Fang, P.; Zhang, J.; Wei, Y.; Su, Y.; Zhang, Y. Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment. Bioresour. Technol. 2019, 288, 121575. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, H.; Wu, D.; Ding, J.; Niu, Y.; Jiang, T.; Yang, X.; Liu, Y. Deciphering the antibiotic resistome and microbial community in municipal wastewater treatment plants at different elevations in eastern and western China. Water Res. 2023, 229, 119461. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Fang, W.; Wang, G.; Liu, H.; Dai, X. Waste recycling of antibiotic mycelial residue: The feasible harmless treatment and source control of antibiotic resistance. J. Clean. Prod. 2023, 401, 136789. [Google Scholar] [CrossRef]
- Ma, J.; Wang, P.; Gu, W.; Su, Y.; Wei, H.; Xie, B. Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? Sci. Total Environ. 2021, 756, 143846. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wang, J.; Xia, H.; Xie, B. Comparative network analysis revealing the mechanisms of antibiotic resistance genes removal by leachate recirculation under different hydraulic loadings. Sci. Total Environ. 2019, 649, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Syafiuddin, A.; Boopathy, R. Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes—A review. Bioresour. Technol. 2021, 330, 124970. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Xie, S.; Wang, R.; Sheng, H.; Yang, H.; Yuan, Z. Synergistic treatment of sewage sludge and food waste digestate residues for efficient energy recovery and biochar preparation by hydrothermal pretreatment, anaerobic digestion, and pyrolysis. Appl. Energ. 2024, 364, 123203. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Dai, X.; Cai, C.; Wang, J.; Wang, M.; Shen, Y.; Wang, P. Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance. Sci. Total Environ. 2020, 736, 139668. [Google Scholar] [CrossRef] [PubMed]
- Federation, W.E.; Association, A. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Guo, M.T.; Yuan, Q.B.; Yang, J. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 2013, 93, 2864–2868. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ding, R.; Zhang, Y.; Gao, Y.; Tian, Z.; Zhang, T.; Yang, M. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater. Water Res. 2014, 63, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, P.; Huang, Y.; Yu, K.; Chen, H.; Cui, K.; Huang, Q.; Zhang, J.; Gin, K.Y.-H.; He, Y. Environmental media exert a bottleneck in driving the dynamics of antibiotic resistance genes in modern aquatic environment. Water Res. 2019, 162, 127–138. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, C.; Zhu, X.; Angelidaki, I. Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion. Molecules 2024, 29, 3489. https://doi.org/10.3390/molecules29153489
Zhang Y, Li C, Zhu X, Angelidaki I. Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion. Molecules. 2024; 29(15):3489. https://doi.org/10.3390/molecules29153489
Chicago/Turabian StyleZhang, Yanxiang, Chunxing Li, Xinyu Zhu, and Irini Angelidaki. 2024. "Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion" Molecules 29, no. 15: 3489. https://doi.org/10.3390/molecules29153489
APA StyleZhang, Y., Li, C., Zhu, X., & Angelidaki, I. (2024). Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion. Molecules, 29(15), 3489. https://doi.org/10.3390/molecules29153489