Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Designed and Constructed Prototype System for Raspberry Plant Fumigation
2.2. Physiological Parameters of Raspberry Plants
2.3. Gas Exchange Parameters
2.4. Qualitative Parameters of Fruits
2.4.1. Content of Bioactive Compounds
2.4.2. Profile of Polyphenolic Compounds
2.5. Microbiological Quality of Fruits
3. Materials and Methods
3.1. Research Material and Experimental Design
3.2. Measurement of Physiological Parameters of Plants
3.3. Determination of Bioactive Compounds Content in Fruits
3.4. Microbiological Analysis of Fruits
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Estrada, M.T.; Donati, I. Does Organic Farming Increase Raspberry Quality, Aroma and Beneficial Bacterial Biodiversity? Microorganisms 2021, 9, 1617. [Google Scholar] [CrossRef] [PubMed]
- Lupatini, M.; Korthals, G.W.; De Hollander, M.; Janssens, T.K.S.; Kuramae, E.E. Soil Microbiome Is More Heterogeneous in Organic Than in Conventional Farming System. Front. Microbiol. 2017, 7, 2064. [Google Scholar] [CrossRef]
- Eyinade, G.A.; Mushunje, A.; Yusuf, S.F.G. The willingness to consume organic food: A review. Food Agric. Immunol. 2021, 32, 78–104. [Google Scholar] [CrossRef]
- Bodiroga, R.; Sredojević, Z. Economic Validity of Organic Raspberry Production as a Challenge for Producers in Bosnia and Herzegovina. Econ. Insights-Trends Chall. 2017, 69, 5–15. [Google Scholar]
- MacConnell, C.B.; Menzies, G.W.; Murray, T.A. Integrated pest management for raspberries. Acta Hortic. 2002, 585, 299–302. [Google Scholar] [CrossRef]
- Xu, X.; Wedgwood, E.; Berrie, A.M.; Allen, J.; O’Neill, T.M. Management of raspberry and strawberry grey mould in open field and under protection: A review. Agron. Sustain. Dev. 2012, 32, 531–543. [Google Scholar] [CrossRef]
- Di Vittori, L.; Mazzoni, L.; Battino, M.; Mezzetti, B. Pre-harvest factors influencing the quality of berries. Sci. Hortic. 2018, 233, 310–322. [Google Scholar] [CrossRef]
- Gabioud Rebeaud, S.; Varone, V.; Vuong, L.; Cotter, P.Y.; Ançay, A.; Christen, D. Postharvest ozone treatment on raspberries. Acta Hortic. 2020, 1277, 449–454. [Google Scholar] [CrossRef]
- Khadre, M.; Yousef, A.; Kim, J. Microbiological Aspects of Ozone Applications in Food: A Review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Nikbeen, T.; Nayab, A.K. Transformation of Traditional Wastewater Treatment Methods into Advanced Oxidation Processes and the Role of Ozonation. J. Ecol. Eng. 2023, 24, 173–189. [Google Scholar] [CrossRef]
- Kazi, M.; Parlapani, F.F.; Boziaris, I.S.; Vellios, E.K.; Lykas, C. Effect of ozone on the microbiological status of five dried aromatic plants. J. Sci. Food Agric. 2018, 98, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants. Plants 2020, 9, 1637. [Google Scholar] [CrossRef] [PubMed]
- Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Matlok, N.; Piechowiak, T.; Gorzelany, J.; Zardzewiały, M.; Balawejder, M. Effect of Ozone Fumigation on Physiological Processes and Bioactive Compounds of Red-Veined Sorrel (Rumex sanguineus ssp. sanguineus). Agronomy 2020, 10, 1726. [Google Scholar] [CrossRef]
- Pinto, L.; Palma, A.; Cefola, M.; Pace, B.; D’Aquino, S.; Carboni, C.; Baruzzi, F. Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packag. Shelf Life 2020, 26, 100573. [Google Scholar] [CrossRef]
- Matłok, N.; Kapusta, I.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Characterisation of Some Phytochemicals Extracted from Black Elder (Sambucus nigra L.) Flowers Subjected to Ozone Treatment. Molecules 2021, 26, 5548. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Dong, C.; Ji, H.; Zhang, X.; Li, L.; Ban, Z.; Zhang, N.; Xue, W. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Adv. 2019, 44, 25429–25438. [Google Scholar] [CrossRef]
- Fleischer, W.E. The relation between chlorophyll content and rate of photosynthesis. J. Gen. Physiol. 1935, 18, 573–597. [Google Scholar] [CrossRef]
- Berber, İ.; Onlu, H.; Ekin, S.; Battal, P.; Erez, M.E. Investigation of some physiological and biochemical parameters in Pseudomonas syringae-infected tomato plants. Asian J. Chem. 2010, 22, 4898. [Google Scholar]
- Van Kooten, O.; Snel, J.F.H. The Use of Chlorophyll Fluorescence Nomenclature in Plant Stress Physiology. Photosynth. Res. 1990, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Rani, B.; Singh, U.; Chuhan, A.K.; Sharma, D.; Maheshwari, R. Photochemical smog pollution and its mitigation measures. J. Adv. Sci. Res. 2011, 2, 28–33. [Google Scholar]
- Baker, N.R.; Oxborough, K. Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity. In Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 65–82. [Google Scholar]
- Lattanzio, V. Bioactive polyphenols: Their role in quality and storability of fruit and vegetables. J. Appl. Bot. Food Qual. 2003, 77, 128–146. [Google Scholar]
- Hasanuzzaman, M.; Hossain, M.A.; da Silva, J.A.T.; Fujita, M. Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In Crop Stress and Its Management: Perspectives and Strategies; Springer: Dordrecht, The Netherlands, 2012; pp. 261–315. [Google Scholar]
- Rai, R.; Agrawal, M. Impact of tropospheric ozone on crop plants. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2012, 82, 241–257. [Google Scholar] [CrossRef]
- Chen, B.; Song, Q.; Pan, Q. Study on Transpiration Water Consumption and Photosynthetic Characteristics of Landscape Tree Species under Ozone Stress. Atmosphere 2022, 13, 1139. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.A.; Skalicky, M.; Alabdallah, N.M.; Waseem, M.; Jahan, M.S.; Ahammed, G.J.; El-Mogy, M.M.; El-Yazied, A.A.; Ibrahim, M.F.M.; et al. Ozone Induced Stomatal Regulations, MAPK and Phytohormone Signaling in Plants. Int. J. Mol. Sci. 2021, 22, 6304. [Google Scholar] [CrossRef] [PubMed]
- Sudheer, S.; Yeoh, W.K.; Manickam, S.; Ali, A. Effect of ozone gas as an elicitor to enhance the bioactive compounds in Ganoderma lucidum. Postharvest Biol. Technol. 2016, 117, 81–88. [Google Scholar] [CrossRef]
- Modesti, M.; Macaluso, M.; Taglieri, I.; Bellincontro, A.; Sanmartin, C. Ozone and Bioactive Compounds in Grapes and Wine. Foods 2021, 10, 2934. [Google Scholar] [CrossRef] [PubMed]
- Sandermann, H.; Ernst, D.; Heller, W.; Langebartels, C. Ozone: An abiotic elicitor of plant defence reactions. Trends Plant Sci. 1998, 3, 47–50. [Google Scholar] [CrossRef]
- Sachadyn-Król, M.; Agriopoulou, S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules 2020, 25, 2416. [Google Scholar] [CrossRef] [PubMed]
- Matłok, N.; Piechowiak, T.; Krempa, A.; Puchalski, C.; Balawejder, M. Cyclic Storage Chamber Ozonation as a Method to Inhibit Ethylene Generation during Plum Fruit Storage. Agriculture 2023, 13, 2274. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Pikuła, W.; Pawlak, R.; Drygaś, B.; Szpunar-Krok, E. Physiological Response of Miscanthus sinensis (Anderss.) to Biostimulants. Agriculture 2024, 14, 33. [Google Scholar] [CrossRef]
- Piechowiak, T.; Skóra, B.; Grzelak-Błaszczyk, K.; Sójka, M. Extraction of Antioxidant Compounds from Blueberry Fruit Waste and Evaluation of Their In Vitro Biological Activity in Human Keratinocytes (HaCaT). Food Anal. Methods 2021, 14, 2317–2327. [Google Scholar] [CrossRef]
- Balawejder, M.; Matłok, N.; Piechowiak, T.; Szostek, M.; Kapusta, I.; Niemiec, M.; Komorowska, M.; Wróbel, M.; Mudryk, K.; Szeląg-Sikora, A.; et al. The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits. Molecules 2023, 28, 118. [Google Scholar] [CrossRef]
No | Compound | RT | [M − H]+/− | Fragment Ions | Absorbance Maxima | Content [%] | |
---|---|---|---|---|---|---|---|
(min.) | (m/z) | (m/z) | (nm) | Control | Ozone | ||
1 | Caffeic acid glucoside | 2.58 | 341− | 179 | 299sh. 324 | 1.21 a ± 0.11 | 1.04 a ± 0.09 |
2 | Cyanidin 3-O-sophoroside | 2.77 | 611+ | 287 | 279. 509 | 68.87 a ± 2.48 | 68.34 a ± 4.11 |
3 | Cyanidin 3-O-glucosyl-rutinoside | 2.91 | 757+ | 611. 287 | 279. 517 | 13.88 a ± 0.41 | 13.45 a ± 2.87 |
4 | Cyanidin 3-O-glucoside | 3.04 | 449+ | 287 | 279. 515 | 4.71 a ± 0.08 | 6.21 b ± 0.10 |
5 | Cyanidin 3-O-rutinoside | 3.18 | 595+ | 287 | 278. 512 | 4.35 a ± 0.38 | 4.78 a ± 2.08 |
6 | Procyanidin dimer type B | 3.23 | 577− | 289 | 274 | 1.13 a ± 0.04 | 0.98 a ± 0.06 |
7 | (+)Catechin | 3.69 | 289− | 144 | 274 | 1.55 a ± 0.21 | 1.28 a ± 0.13 |
8 | Ellagic acid rhamnoside | 3.97 | 447− | 301 | 360 | 1.08 a ± 0.19 | 1.03 a ± 0.17 |
9 | Casuarinin | 4.11 | 935− | 633. 301 | 244 | 0.78 a ± 0.03 | 0.72 a ± 0.05 |
10 | Lambertianin C | 4.20 | 1401− | 633. 301 | 244 | 0.89 a ± 0.04 | 0.73 a ± 0.04 |
11 | Ellagic acid pentoside | 4.40 | 433− | 301 | 360 | 0.73 a ± 0.07 | 0.68 a ± 0.02 |
12 | Quercetin 3-O-rhamnoside | 5.55 | 447− | 301 | 255. 350 | 0.83 a ± 0.12 | 0.76 a ± 0.09 |
Number of Treatment | Treatment Variant | Count of Mesophilic Lactic Acid Bacteria [cfu g−1] | Presence of Anaerobic Spore Bacteria [cfu g−1] | Count of Aerobic Bacteria [cfu g−1] | Count of Yeast and Mould [cfu g−1] |
---|---|---|---|---|---|
T1 | control | <1.0 × 101 | absence | <1.0 × 101 a | 4.8 × 104 ± 2.1 × 105 b |
ozone | <1.0 × 101 | absence | <1.0 × 101 a | 5.1 × 103 ± 3.6 × 102 a | |
T2 | control | <1.0 × 101 | absence | <1.0 × 101 a | 3.9 × 105 ± 7.3 × 103 b |
ozone | <1.0 × 101 | absence | <1.0 × 101 a | 4.3 × 103 ± 3.7 × 102 a | |
T3 | control | <1.0 × 101 | absence | <1.0 × 101 a | 6.3 × 105 ± 5.8 × 104 b |
ozone | <1.0 × 101 | absence | <1.0 × 101 a | 5.9 × 103 ± 3.7 × 102 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matłok, N.; Piechowiak, T.; Szostek, M.; Kuboń, M.; Neuberger, P.; Kapusta, I.; Balawejder, M. Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants. Molecules 2024, 29, 3949. https://doi.org/10.3390/molecules29163949
Matłok N, Piechowiak T, Szostek M, Kuboń M, Neuberger P, Kapusta I, Balawejder M. Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants. Molecules. 2024; 29(16):3949. https://doi.org/10.3390/molecules29163949
Chicago/Turabian StyleMatłok, Natalia, Tomasz Piechowiak, Małgorzata Szostek, Maciej Kuboń, Pavel Neuberger, Ireneusz Kapusta, and Maciej Balawejder. 2024. "Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants" Molecules 29, no. 16: 3949. https://doi.org/10.3390/molecules29163949
APA StyleMatłok, N., Piechowiak, T., Szostek, M., Kuboń, M., Neuberger, P., Kapusta, I., & Balawejder, M. (2024). Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants. Molecules, 29(16), 3949. https://doi.org/10.3390/molecules29163949