Exploration of Compounds with 2-Phenylbenzo[d]oxazole Scaffold as Potential Skin-Lightening Agents through Inhibition of Melanin Biosynthesis and Tyrosinase Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Target Compounds, 2-Phenylbenzo[d]oxazoles 1–15
2.2. Mushroom Tyrosinase Inhibition of 2-Phenylbenzo[d]oxazole Compounds 1–15
2.3. Inhibition Mode of Action of 2-Phenylbenzoxazole Compounds
2.4. In Silico Docking Simulation of 2-Phenylbenoxazole Compounds 3, 8, and 13 and Mushroom Tyrosinase Using AutoDock Vina
2.5. Cytotoxicity in B16F10 Cells
2.6. Effect of 2-Phenylbenzoxazole Compounds 3, 8, and 13 on Melanogenesis in B16F10 Cells
2.7. Effect of 2-Phenylbenzoxazole Compounds 3, 8, and 13 on B16F10 Cellular Tyrosinase Inhibition
2.8. In Situ Tyrosinase Activity in B16F10 Cells
2.9. Cell Viability on HaCaT
2.10. In Vivo Depigmentation Effect of 2-Phenylbenzoxazole Compounds on Zebrafish Larvae
2.11. Antioxidant Ability of 2-Phenylbenzoxazole Compounds 1–15 Using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid) (ABTS) Radical Cation, and Reactive Oxygen Species (ROS)
3. Materials and Methods
3.1. Synthesis
3.1.1. General Methods
3.1.2. Preparation of 2-Phenylbenzo[d]oxazole Compounds 1–15
General Synthetic Method for the Synthesis of 1 [40], 2 [41], 4, 6, 7, 9, 11 [25,42,43,44], 12 [41], and 14
General Synthetic Method for the Synthesis of 3, 5, 8, 10, 13 [45], and 15 (Supplementary Materials)
3.2. Reagents for Biological Experiments
3.3. Tyrosinase Activity Assay Using Mushroom Tyrosinase
3.4. Kinetic Study Experiment Using Mushroom Tyrosinase
3.5. Docking Simulation Using AutoDock Vina
3.6. Cell Culture
3.7. B16F10 Cell Viability Assay
3.8. Cellular Melanin Content Level Assay in B16F10 Cells
3.9. Cellular Tyrosinase Activity Assay in B16F10 Cells
3.10. In Situ Tyrosinase Activity Assay Using B16F10 Cells and l-dopa
3.11. HaCaT Cell Viability Assay
3.12. In Vivo Depigmentation Experiment Using Zebrafish Embryos
3.13. Measurement of Melanin Content and Tyrosinase Activity in Zebrafish Larvae
3.14. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
3.15. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid) (ABTS) Radical Cation Scavenging Assay
3.16. Reactive Oxygen Species (ROS) Scavenging Assay
3.17. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, K.-Y. Bioprocess of Microbial Melanin Production and Isolation. Front. Bioeng. Biotechnol. 2021, 9, 765110. [Google Scholar] [CrossRef] [PubMed]
- Narang, U.; Kurian, N.K.; Bayram, S. Chapter 16—Enigmatic Secondary Metabolites: Microbial Melanins and Their Applications. In Fungal Secondary Metabolites; Abd-Elsalam, K.A., Mohamed, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 337–351. [Google Scholar]
- Pena, A.-M.; Ito, S.; Bornschlögl, T.; Brizion, S.; Wakamatsu, K.; Del Bino, S. Multiphoton FLIM Analyses of Native and UVA-Modified Synthetic Melanins. Int. J. Mol. Sci. 2023, 24, 4517. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.Z.; Zhou, A.E.; Hoegler, K.M.; Khachemoune, A. Oculocutaneous albinism: Epidemiology, genetics, skin manifestation, and psychosocial issues. Arch. Dermatol. Res. 2023, 315, 107–116. [Google Scholar] [CrossRef]
- Zamudio Díaz, D.F.; Busch, L.; Kröger, M.; Klein, A.L.; Lohan, S.B.; Mewes, K.R.; Vierkotten, L.; Witzel, C.; Rohn, S.; Meinke, M.C. Significance of melanin distribution in the epidermis for the protective effect against UV light. Sci. Rep. 2024, 14, 3488. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, Y.; Zhang, Y.; Huang, P.; Yan, J.; Song, Z.; Yuan, Q.; Huang, J. A Reactive Oxygen Species-Tyrosinase Cascade-Activated Prodrug for Selectively Suppressing Melanoma. CCS Chem. 2022, 4, 1654–1670. [Google Scholar] [CrossRef]
- Weerawardana, M.B.S.; Thiripuranathar, G.; Paranagama, P.A. Natural Antibrowning Agents against Polyphenol Oxidase Activity in Annona muricata and Musa acuminata. J. Chem. 2020, 2020, 1904798. [Google Scholar] [CrossRef]
- Marshall, M.R.; Kim, J.M.; Wei, C.-i. Enzymatic browning in fruits, vegetables and sea foods. Chem. Agric. Food Sci. 2000, 41, 259–312. [Google Scholar]
- Lv, J.; Jiang, S.; Yang, Y.; Zhang, X.; Gao, R.; Cao, Y.; Song, G. FGIN-1-27 Inhibits Melanogenesis by Regulating Protein Kinase A/cAMP-Responsive Element-Binding, Protein Kinase C-β, and Mitogen-Activated Protein Kinase Pathways. Front. Pharmacol. 2020, 11, 602889. [Google Scholar] [CrossRef]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef]
- Ullah, S.; Son, S.; Yun, H.Y.; Kim, D.H.; Chun, P.; Moon, H.R. Tyrosinase inhibitors: A patent review (2011-2015). Expert Opin. Ther. Pat. 2016, 26, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Mota, S.; Rosa, G.P.; Barreto, M.C.; Garrido, J.; Sousa, E.; Cruz, M.T.; Almeida, I.F.; Quintas, C. Comparative Studies on the Photoreactivity, Efficacy, and Safety of Depigmenting Agents. Pharmaceuticals 2024, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-L.; Zhang, P.-X.; Shen, R.; Xu, M.; Han, L.; Shi, X.; Zhou, Z.-R.; Yang, J.-Y.; Liu, J.-Q. Determination of arbutin in vitro and in vivo by LC-MS/MS: Pre-clinical evaluation of natural product arbutin for its early medicinal properties. J. Ethnopharmacol. 2024, 330, 118232. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, J.O.; Fabiyi, O.S.; Adelakin, L.A.; Ekwerike, M.C. Effects of Skin Lightening Cream Agents—Hydroquinone and Kojic Acid, on the Skin of Adult Female Experimental Rats. Clin. Cosmet. Investig. Dermatol. 2020, 13, 283–289. [Google Scholar] [CrossRef]
- Galache, T.R.; Galache, M.; Sena, M.M.; Pavani, C. Amber photobiomodulation versus tranexamic acid for the treatment of melasma: Protocol for a double-blind, randomised controlled trial. BMJ Open 2023, 13, e073568. [Google Scholar] [CrossRef]
- Li, J.; Duan, N.; Song, S.; Nie, D.; Yu, M.; Wang, J.; Xi, Z.; Li, J.; Sheng, Y.; Xu, C.; et al. Transfersomes improved delivery of ascorbic palmitate into the viable epidermis for enhanced treatment of melasma. Int. J. Pharm. 2021, 608, 121059. [Google Scholar] [CrossRef]
- Westerhof, W.; Kooyers, T.J. Hydroquinone and its analogues in dermatology—A potential health risk. J. Cosmet. Dermatol. 2005, 4, 55–59. [Google Scholar] [CrossRef]
- Gaskell, M.; McLuckie, K.I.; Farmer, P.B. Genotoxicity of the benzene metabolites parabenzoquinone and hydroquinone. Chem. Biol. Interact. 2005, 153, 267–270. [Google Scholar] [CrossRef]
- Ogiwara, Y.; Sugiura, M.; Watanabe, K.; Tawara, J.; Endo, E.; Maruyama, H.; Tsuji, S.; Matsue, K.; Yamada, H.; Wako, Y.; et al. Evaluation of the repeated-dose liver, bone marrow and peripheral blood micronucleus and comet assays using kojic acid. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 780, 111–116. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Namasivayam, V.; Manickam, M.; Sang-Hun Jung, S.H. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2018, 17, 7395–7418. [Google Scholar] [CrossRef]
- Ha, Y.M.; Kim, J.-A.; Park, Y.J.; Park, D.; Choi, Y.J.; Kim, J.M.; Chung, K.W.; Han, Y.K.; Park, J.Y.; Lee, J.Y.; et al. Synthesis and biological activity of hydroxybenzylidenyl pyrrolidine-2,5-dione derivatives as new potent inhibitors of tyrosinase. MedChemComm 2011, 2, 542–549. [Google Scholar] [CrossRef]
- Nitulescu, G.; Margina, D.; Zanfirescu, A.; Olaru, O.T.; Nitulescu, G.M. Targeting Bacterial Sortases in Search of Anti-virulence Therapies with Low Risk of Resistance Development. Pharmaceuticals 2021, 14, 415. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, G.S.; Bhargava, A.; Pal Singh, G.; Joshi, S.D.; Singh Chundawat, N. Synthesis, molecular simulation studies, in vitro biological assessment of 2-substituted benzoxazole derivatives as promising antimicrobial agents. Turk. J. Chem. 2023, 47, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Sirgamalla, R.; Kommakula, A.; Konduru, S.; Ponakanti, R.; Devaram, J.; Boda, S. Cupper-catalyzed an efficient synthesis, characterization of 2-substituted benzoxazoles, 2-substituted benzothiazoles derivatives and their anti-fungal activity. Chem. Data Collect. 2020, 27, 100362. [Google Scholar] [CrossRef]
- Desai, S.; Desai, V.; Shingade, S. In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem. 2020, 94, 103382. [Google Scholar] [CrossRef]
- Johnson, S.M.; Connelly, S.; Wilson, I.A.; Kelly, J.W. Biochemical and Structural Evaluation of Highly Selective 2-Arylbenzoxazole-Based Transthyretin Amyloidogenesis Inhibitors. J. Med. Chem. 2008, 51, 260–270. [Google Scholar] [CrossRef]
- Jung, H.J.; Noh, S.G.; Park, Y.; Kang, D.; Chun, P.; Chung, H.Y.; Moon, H.R. In vitro and in silico insights into tyrosinase inhibitors with (E)-benzylidene-1-indanone derivatives. Comput. Struct. Biotechnol. J. 2019, 17, 1255–1264. [Google Scholar] [CrossRef]
- Ullah, S.; Kang, D.; Lee, S.; Ikram, M.; Park, C.; Park, Y.; Yoon, S.; Chun, P.; Moon, H.R. Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells. Eur. J. Med. Chem. 2019, 161, 78–92. [Google Scholar] [CrossRef]
- Ko, J.; Lee, J.; Jung, H.J.; Ullah, S.; Jeong, Y.; Hong, S.; Kang, M.K.; Park, Y.J.; Hwang, Y.; Kang, D.; et al. Design and Synthesis of (Z)-5-(Substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one Analogues as Anti-Tyrosinase and Antioxidant Compounds: In Vitro and In Silico Insights. Antioxidants 2022, 11, 1918. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, Y.; Jin Jung, H.; Ullah, S.; Ko, J.; Young Kim, G.; Yoon, D.; Hong, S.; Kang, D.; Park, Y.; et al. Anti-tyrosinase flavone derivatives and their anti-melanogenic activities: Importance of the β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorg. Chem. 2023, 135, 106504. [Google Scholar] [CrossRef]
- Qi, S.-L.; Liu, Y.-P.; Li, Y.; Luan, Y.-X.; Ye, M. Ni-catalyzed hydroarylation of alkynes with unactivated β-C(sp2)−H bonds. Nat. Commun. 2022, 13, 2938. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.G.; Saura-Sanmartin, A.; Berna, J.; Teruel, J.A.; Muñoz, J.L.M.; López, J.N.R.; Cánovas, F.G.; García Molina, F.G. Considerations about the inhibition of monophenolase and diphenolase activities of tyrosinase. Characterization of the inhibitor concentration which generates 50% of inhibition, type and inhibition constants. A review. Int. J. Biol. Macromol. 2024, 267, 131513. [Google Scholar]
- Park, J.; Jung, H.; Jang, B.; Song, H.-K.; Han, I.-O.; Oh, E.-S. D-tyrosine adds an anti-melanogenic effect to cosmetic peptides. Sci. Rep. 2020, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Jin Jung, H.; Jin Kim, H.; Soo Park, H.; Young Kim, G.; Jung Park, Y.; Lee, J.; Kyung Kang, M.; Yoon, D.; Kang, D.; Park, Y.; et al. Highly potent anti-melanogenic effect of 2-thiobenzothiazole derivatives through nanomolar tyrosinase activity inhibition. Bioorg. Chem. 2024, 150, 107586. [Google Scholar] [CrossRef]
- Lamason, R.L.; Mohideen, M.A.; Mest, J.R.; Wong, A.C.; Norton, H.L.; Aros, M.C.; Jurynec, M.J.; Mao, X.; Humphreville, V.R.; Humbert, J.E.; et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 2005, 310, 1782–1786. [Google Scholar] [CrossRef]
- Santoriello, C.; Zon, L.I. Hooked! Modeling human disease in zebrafish. J. Clin. Investig. 2012, 122, 2337–2343. [Google Scholar] [CrossRef]
- Yoon, D.; Jung, H.J.; Lee, J.; Kim, H.J.; Park, H.S.; Park, Y.J.; Kang, M.K.; Kim, G.Y.; Kang, D.; Park, Y.; et al. In vitro and in vivo anti-pigmentation effects of 2-mercaptobenzimidazoles as nanomolar tyrosinase inhibitors on mammalian cells and zebrafish embryos: Preparation of pigment-free zebrafish embryos. Eur. J. Med. Chem. 2024, 266, 116136. [Google Scholar] [CrossRef]
- Han, H.J.; Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Heo, H.J. Anti-Melanogenic Effect of Ethanolic Extract of Sorghum bicolor on IBMX-Induced Melanogenesis in B16/F10 Melanoma Cells. Nutrients 2020, 12, 832. [Google Scholar] [CrossRef]
- Shrivastava, D. Synthesis, evaluation and antimicrobial activity of benzoxazole derivatives. World J. Pharm. Pharm. Sci. 2012, 1, 754–774. [Google Scholar]
- Temiz, Ö.; Ören, İ.; Şener, E.; Yalçin, İ.; Uçartürk, N. Synthesis and microbiological activity of some novel 5- or 6-methyl-2-(2,4-disubstituted phenyl) benzoxazole derivatives. Il Farm. 1998, 53, 337–341. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, W.; Zhang, X.; Yin, L.; Chen, B.; Song, J. Synthesis and pharmacological evaluation of piperidine (piperazine)-substituted benzoxazole derivatives as multi-target antipsychotics. Bioorg. Med. Chem. Lett. 2015, 25, 5299–5305. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.H.; Thi Hang, A.-H. Deep eutectic solvent-catalyzed arylation of benzoxazoles with aromatic aldehydes. RSC Adv. 2018, 8, 11127–11133. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Thi Hang, A.-H.; Ho Nguyen, T.-L.; Nguyen Chau, D.-K.; Tran, P.H. Phosphonium acidic ionic liquid: An efficient and recyclable homogeneous catalyst for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles. RSC Adv. 2018, 8, 11834–11842. [Google Scholar] [CrossRef] [PubMed]
- Schrader, F.C.; Glinca, S.; Sattler, J.M.; Dahse, H.-M.; Afanador, G.A.; Prigge, S.T.; Lanzer, M.; Mueller, A.-K.; Klebe, G.; Schlitzer, M. Novel Type II Fatty Acid Biosynthesis (FAS II) Inhibitors as Multistage Antimalarial Agents. ChemMedChem 2013, 8, 442–461. [Google Scholar] [CrossRef]
- Hyun, S.K.; Lee, W.-H.; Jeong, D.M.; Kim, Y.; Choi, J.S. Inhibitory Effects of Kurarinol, Kuraridinol, and Trifolirhizin from <i>Sophora flavescens</i> on Tyrosinase and Melanin Synthesis. Biol. Pharm. Bull. 2008, 31, 154–158. [Google Scholar] [CrossRef]
- Jung, H.J.; Choi, D.C.; Noh, S.G.; Choi, H.; Choi, I.; Ryu, I.Y.; Chung, H.Y.; Moon, H.R. New Benzimidazothiazolone Derivatives as Tyrosinase Inhibitors with Potential Anti-Melanogenesis and Reactive Oxygen Species Scavenging Activities. Antioxidants 2021, 10, 1078. [Google Scholar] [CrossRef]
- Lim, H.Y.; Kim, E.; Park, S.H.; Hwang, K.H.; Kim, D.; Jung, Y.J.; Kopalli, S.R.; Hong, Y.D.; Sung, G.H.; Cho, J.Y. Antimelanogenesis Effects of Theasinensin A. Int. J. Mol. Sci. 2021, 22, 7453. [Google Scholar] [CrossRef]
- Choi, T.Y.; Kim, J.H.; Ko, D.H.; Kim, C.H.; Hwang, J.S.; Ahn, S.; Kim, S.Y.; Kim, C.D.; Lee, J.H.; Yoon, T.J. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment. Cell Res. 2007, 20, 120–127. [Google Scholar] [CrossRef]
- Chen, W.C.; Tseng, T.S.; Hsiao, N.W.; Lin, Y.L.; Wen, Z.H.; Tsai, C.C.; Lee, Y.C.; Lin, H.H.; Tsai, K.C. Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci. Rep. 2015, 5, 7995. [Google Scholar] [CrossRef]
- Hwang, K.S.; Yang, J.Y.; Lee, J.; Lee, Y.R.; Kim, S.S.; Kim, G.R.; Chae, J.S.; Ahn, J.H.; Shin, D.S.; Choi, T.Y.; et al. A novel anti-melanogenic agent, KDZ-001, inhibits tyrosinase enzymatic activity. J. Dermatol. Sci. 2018, 89, 165–171. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Boyles, M.; Murphy, F.; Mueller, W.; Wohlleben, W.; Jacobsen, N.R.; Braakhuis, H.; Giusti, A.; Stone, V. Development of a standard operating procedure for the DCFH2-DA acellular assessment of reactive oxygen species poduced by nanomaterials. Toxicol. Mech. Methods 2022, 32, 439–452. [Google Scholar] [CrossRef] [PubMed]
2-Phenylbenzo[d]oxazole compounds | |||||||
---|---|---|---|---|---|---|---|
Compd | R1 | R2 | R3 | R4 | R5 | IC50 Values (µM) | |
l-Tyrosine | l-Dopa | ||||||
1 | Me | H | H | H | OH | 152.51 ± 14.33 | >200 |
2 | Me | H | OMe | H | OMe | >200 | >200 |
3 | Me | H | OH | H | OH | 0.51 ± 0.00 | 16.78 ± 0.57 |
4 | Me | H | H | OH | OMe | >200 | >200 |
5 | Me | H | H | OH | OH | 144.06 ± 3.10 | 187.13 ± 30.28 |
6 | Cl | H | H | H | OH | 57.50 ± 8.78 | >200 |
7 | Cl | H | OMe | H | OMe | >200 | >200 |
8 | Cl | H | OH | H | OH | 2.22 ± 0.16 | 20.38 ± 1.99 |
9 | Cl | H | H | OH | OMe | >200 | >200 |
10 | Cl | H | H | OH | OH | 59.02 ± 4.74 | >200 |
11 | H | Me | H | H | OH | 76.80 ± 3.84 | >200 |
12 | H | Me | OMe | H | OMe | >200 | >200 |
13 | H | Me | OH | H | OH | 3.50 ± 0.07 | 20.76 ± 1.02 |
14 | H | Me | H | OH | OMe | 146.24 ± 16.40 | >200 |
15 | H | Me | H | OH | OH | 80.29 ± 5.24 | >200 |
KA a | 14.33 ± 1.63 | 40.42 ± 3.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.J.; Park, H.S.; Park, H.S.; Kim, H.J.; Yoon, D.; Park, Y.; Chun, P.; Chung, H.Y.; Moon, H.R. Exploration of Compounds with 2-Phenylbenzo[d]oxazole Scaffold as Potential Skin-Lightening Agents through Inhibition of Melanin Biosynthesis and Tyrosinase Activity. Molecules 2024, 29, 4162. https://doi.org/10.3390/molecules29174162
Jung HJ, Park HS, Park HS, Kim HJ, Yoon D, Park Y, Chun P, Chung HY, Moon HR. Exploration of Compounds with 2-Phenylbenzo[d]oxazole Scaffold as Potential Skin-Lightening Agents through Inhibition of Melanin Biosynthesis and Tyrosinase Activity. Molecules. 2024; 29(17):4162. https://doi.org/10.3390/molecules29174162
Chicago/Turabian StyleJung, Hee Jin, Hyeon Seo Park, Hye Soo Park, Hye Jin Kim, Dahye Yoon, Yujin Park, Pusoon Chun, Hae Young Chung, and Hyung Ryong Moon. 2024. "Exploration of Compounds with 2-Phenylbenzo[d]oxazole Scaffold as Potential Skin-Lightening Agents through Inhibition of Melanin Biosynthesis and Tyrosinase Activity" Molecules 29, no. 17: 4162. https://doi.org/10.3390/molecules29174162
APA StyleJung, H. J., Park, H. S., Park, H. S., Kim, H. J., Yoon, D., Park, Y., Chun, P., Chung, H. Y., & Moon, H. R. (2024). Exploration of Compounds with 2-Phenylbenzo[d]oxazole Scaffold as Potential Skin-Lightening Agents through Inhibition of Melanin Biosynthesis and Tyrosinase Activity. Molecules, 29(17), 4162. https://doi.org/10.3390/molecules29174162