Gas-Phase Studies of NMR Shielding and Indirect Spin–Spin Coupling in 13C-Enriched Ethane and Ethylene
Abstract
:1. Introduction
2. Results
2.1. NMR Spectra of 13C-Enriched Ethane and Ethylene
2.2. Density-Dependent NMR Shielding in 13C2H6 and 13C2H4 Molecules
2.3. Isotropic Spin–Spin Coupling in 13C2H6 and 13C2H4 Molecules
3. Discussion
3.1. Nuclear Magnetic Shielding
3.2. Indirect Spin–Spin Coupling
4. Materials and Methods
4.1. Chemical Compounds and Samples Preparations
4.2. NMR Spectra
4.3. Analysis of Spectral Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salomons, T.W.G.; Fryhle, C.B.; Snyder, S.A. Salomons’ Organic Chemistry, 12th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; p. 475. ISBN -13: 978-1119248972. [Google Scholar]
- Fougret, C.M.; Atkins, M.P.; Hölderich, W.F. Influence of the Carrier on the Catalytic Performance of Impregnated Phosphoric Acid in the Hydration of Ethylene. Appl. Catal. A Gen. 1999, 181, 145–156. [Google Scholar] [CrossRef]
- Raynes, W.T.; Buckingham, A.D.; Bernstein, H.J. Medium Effects in Proton Magnetic Resonance. I. Gases. J. Chem. Phys. 1962, 36, 3481–3488. [Google Scholar] [CrossRef]
- Smith, A.; Raynes, W.T. Studies of the Density Dependence of Proton Magnetic Shielding in Gases. J. Crystallogr. Spectrosc. Res. 1983, 13, 77–87. [Google Scholar] [CrossRef]
- Jameson, C.J. Fundamental Intramolecular and Intermolecular Information from NMR in the Gas Phase. In Gas Phase NMR—New Developments in NMR; Price, W.S., Jackowski, K., Jaszuński, M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2016; Chapter 1; pp. 1–51. ISBN 978-1-78262-161-4. [Google Scholar] [CrossRef]
- Harris, R.K.; Becker, E.D.; Cabral de Menezes, S.M.; Goodfellow, R.; Granger, P. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. Magn. Reson. Chem. 2002, 40, 489–505. [Google Scholar] [CrossRef]
- Pople, J.A.; Schneider, W.G.; Bernstein, H.J. High-Resolution Nuclear Magnetic Resonance; McGraw-Hill Book Company Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1959; p. 90. ISBN -13 9780070505162. [Google Scholar]
- Kalinowski, H.O.; Berger, S.; Braun, S. Carbon-13 NMR Spectroscopy; John Wiley & Sons: Chichester, UK; New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada; Singapore, 1988; p. 101. ISBN -13 978-0471913061. [Google Scholar]
- Lynden-Bell, R.M.; Sheppard, N. High-Resolution Nuclear-Magnetic-Resonance Spectra of Hydrocarbon Grouping. VI. The Hydrogen Spectra of Carbon-13 Substituted Ethane, Ethylene and Acetylene. Proc. R. Soc. A 1962, 269, 385–403. [Google Scholar] [CrossRef]
- Graham, D.M.; Holloway, C.E. Nuclear Spin-Spin Coupling in C13-Enriched Acetylene, Ethylene, and Ethane. Can. J. Chem. 1963, 41, 2114–2118. [Google Scholar] [CrossRef]
- Kamińska-Trela, K. 13C-13C Coupling Constants in Diacetylene (1,3-Butadiyne) and its Bis(triethylsilyl) Derivative. Org. Magn. Reson. 1980, 14, 398–403. [Google Scholar] [CrossRef]
- Wehrli, F.W.; Wirthlin, T. Interpretation of Carbon-13 NMR Spectra; Heyden and Son Ltd.: London, UK; Philadelphia, PA, USA; Rheine, Germany, 1978; Carbon-13 NMR Correlation Chart; pp. 51, 57, 311. ISBN 0-85501-207-2. [Google Scholar]
- Makulski, W.; Jackowski, K. 1H, 13C and 29Si Magnetic Shielding in Gaseous and Liquid Tetramethylsilane. J. Magn. Reson. 2020, 313, 106716. [Google Scholar] [CrossRef]
- Rummens, F.H.A. Van der Waals Forces in NMR Intermolecular Shielding Effects. In NMR Basic Principles and Progress; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer: New York, NY, USA, 1975; Volume 10, pp. 1–118. ISBN -10 3642661785. [Google Scholar]
- Raynes, W.T. Electric Field Effects on Shielding Constants, Encyclopedia of NMR, 2nd ed.; Harris, R.K., Wasylishen, R.E., Eds.; John Wiley & Sons: Chichester, UK, 2012; Volume 3, pp. 1378–1388. ISBN 978-0-470-05821-3. [Google Scholar]
- Jameson, A.K.; Reger, J.P. Gas-Phase Density-Dependent Directly Bonded Coupling Constant. J. Phys. Chem. 1971, 75, 437–439. [Google Scholar] [CrossRef]
- Jackowski, K. Gas-Phase Studies of Spin-Spin Coupling Constants. Int. J. Mol. Sci. 2003, 4, 135–142. [Google Scholar] [CrossRef]
- Bennett, B.; Raynes, W.T. Temperature Dependence of the Carbon-13 Proton Spin-Spin Coupling Constant in Gaseous Methane. Mol. Phys. 1987, 61, 1423–1430. [Google Scholar] [CrossRef]
- Jackowski, K.; Kubiszewski, M.; Makulski, W. 13C and 19F Nuclear Magnetic Shielding and Spin-Spin Coupling in Gaseous Fluoromethane-d3. J. Mol. Struct. 2002, 614, 267–272. [Google Scholar] [CrossRef]
- Kubiszewski, M.; Makulski, W.; Jackowski, K. Intermolecular Effects on Spin-Spin Coupling and Magnetic Shielding Constants in Gaseous Difluoromethane. J. Mol. Struct. 2004, 704, 211–214. [Google Scholar] [CrossRef]
- Raynes, W.T.; McVay, R.; Wright, S.J. An Improved Carbon-13 Nuclear Shielding Scale. J. Chem. Soc. Faraday Trans. 1989, 2, 759–763. [Google Scholar] [CrossRef]
- Auer, A.A.; Gauss, J.; Stanton, J.F. Quantitative Prediction of Gas-Phase 13C Nuclear Magnetic Shielding Constants. J. Chem. Phys. 2003, 118, 10407–10417. [Google Scholar] [CrossRef]
- Chesnut, D.B. On the Calculation of Hydrogen NMR Chemical Shielding. Chem. Phys. 1997, 214, 73–79. [Google Scholar] [CrossRef]
- Jackowski, K.; Raynes, W.T. Density-Dependent Magnetic Shielding in Gas Phase 13C N.M.R. Mol. Phys. 1977, 34, 465–475. [Google Scholar] [CrossRef]
- Kaski, J.; Lantto, P.; Vaara, J.; Jokisaari, J. Experimental and Theoretical ab Initio Study of the 13C-13C Spin-Spin Coupling and 1H and 13C Shielding Tensors in Ethane, Ethene, and Ethyne. J. Am. Chem. Soc. 1998, 120, 3993–4005. [Google Scholar] [CrossRef]
- Bennet, B.; Raynes, W.T. Intermolecular and Intramolecular Effects on the 1H and 13C Shielding in Some Gaseous Hydrocarbons at Various Temperatures- Experimental Results. Magn. Res. Chem. 1991, 29, 946–954. [Google Scholar] [CrossRef]
- Garbacz, P.; Jackowski, K.; Makulski, W.; Wasylishen, R.E. Nuclear Magnetic Shielding for Hydrogen in Selected Isolated Molecules. J. Phys. Chem. A 2012, 116, 11896–11904. [Google Scholar] [CrossRef]
- Grayson, M.; Raynes, W.T. Electric Field Effects on the Carbon-13 Nuclear Magnetic Shielding in Several Organic Molecules. Mol. Phys. 1994, 81, 533–545. [Google Scholar] [CrossRef]
- Spiesecke, H.; Schneider, W.G.J. Effect of Electronegativity and Magnetic Anisotropy of Substituents on C13 and H1 Chemical Shifts in CH3X and CH3CH2X Compounds. J. Chem. Phys. 1961, 35, 722–731. [Google Scholar] [CrossRef]
- Grayson, M.; Raynes, W.T. Electric Field Effects on the Shielding of Protons in C- H Bonds. Mag. Reson. Chem. 1995, 33, 138–143. [Google Scholar] [CrossRef]
- Makulski, W.; Szyprowska, A.; Jackowski, K. Precise Determination of the 13C Nuclear Magnetic Moment from 13C, 3He and 1H NMR Measurements in the Gas Phase. Chem. Phys. Lett. 2011, 511, 224–228. [Google Scholar] [CrossRef]
- Kupka, T.; Stachów, M.; Nieradka, M.; Kaminsky, J.; Pluta, T. Convergence of Nuclear Magnetic Shielding in the Kohn-Sham Limit for Several Small Molecules. J. Chem. Theory Comput. 2010, 6, 1580–1589. [Google Scholar] [CrossRef]
- Jameson, A.K.; Jameson, C.J. Gas-Phase 13C Chemical Shifts in the Zero-Pressure Limit: Refinements to the Absolute Shielding Scale for 13C. Chem. Phys. Lett. 1987, 134, 461–466. [Google Scholar] [CrossRef]
- Jameson, C.J.; Mason, J. The Chemical Shift. In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, NY, USA, 1987; Chapter 3; pp. 80–82. [Google Scholar] [CrossRef]
- Woliński, K.; Hinton, J.F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Gauss, J. Calculation of NMR Chemical Shifts at Second-order Many-body Perturbation Theory Using Gauge-including Atomic Orbitals. Chem. Phys. Lett. 1992, 191, 614–620. [Google Scholar] [CrossRef]
- Watts, J.D.; Gauss, J.; Bartlett, R.J. Coupled-cluster Methods with Noniterative Triple Excitations for Restricted Open-shell Hartree–Fock and other General Single Determinant Reference Functions. Energies and Analytical Gradients. J. Chem. Phys. 1993, 98, 8718–8733. [Google Scholar] [CrossRef]
- Gauss, J.; Stanton, J.F. Coupled-cluster Calculations of Nuclear Magnetic Resonance Chemical Shifts. J. Chem. Phys. 1995, 103, 3561–3577. [Google Scholar] [CrossRef]
- Halgaker, T.; Jaszuński, M.; Ruud, K. Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin−Spin Coupling Constants. Chem. Rev. 1999, 99, 293–352. [Google Scholar] [CrossRef] [PubMed]
- Antušek, A.; Jaszuński, M. Accurate Non-Relativistic Calculations of NMR Shielding Constants. In Gas Phase, N.M.R.—New Developments in NMR; Price, W.S., Jackowski, K., Jaszuński, M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2016; Chapter 6; pp. 186–217. ISBN 978-1-78262-161-4. [Google Scholar] [CrossRef]
- Sneskov, K.; Stanton, J.F. Effects of vibrational averaging on coupled cluster calculations of spin-spin coupling constants for hydrocarbons. Mol. Phys. 2012, 110, 2321–2327. [Google Scholar] [CrossRef]
- Keal, T.W.; Helgaker, T.; Sałek, P.; Tozer, D.J. Choice of Exchange-Correlation Functional for Computing NMR Indirect Spin-Spin Coupling Constants. Chem. Phys. Lett. 2006, 425, 163–166. [Google Scholar] [CrossRef]
- Kupka, T.; Nieradka, M.; Stachów, M.; Pluta, T.; Nowak, P.; Kjær, H.; Kongsted, J.; Kaminsky, J. Basis Set Convergence of Indirect Spin−Spin Coupling Constants in the Kohn−Sham Limit for Several Small Molecules. J. Phys. Chem. 2012, 116, 3728–3738. [Google Scholar] [CrossRef] [PubMed]
- Lantto, P.; Vaara, J.; Helgaker, T. Spin-Spin Coupling Tensors by Density-Functional Linear Response Theory. J. Chem. Phys. 2002, 117, 5998–6009. [Google Scholar] [CrossRef]
- Helgaker, T.; Watson, M.; Handy, N.C. Analytical Calculation of Nuclear Magnetic Resonance Indirect Spin-Spin Coupling Constants at the Generalized Gradient Approximation and Hybrid Levels of Density-Functional Theory. J. Chem. Phys. 2000, 113, 9402–9409. [Google Scholar] [CrossRef]
- Provasi, P.F.; Aucar, G.A.; Sauer, S.P.A. The Effect of Lone Pairs and Electronegativity on the Indirect Nuclear Spin-Spin Coupling Constants in CH2X (X = CH2, NH, O, S): Ab Initio Calculations using Optimized Contracted Basis Sets. J. Chem. Phys. 2001, 115, 1324–1334. [Google Scholar] [CrossRef]
- Laatikainen, R.; Niemitz, M.; Sundelin, J.; Hassinen, T. PERCH Software©, 1993–1995, PERCH Project; Department of Chemistry, University of Kuopio: Kuopio, Finland, 1995. [Google Scholar]
- Helgaker, T.; Jaszuński, M.; Pecul, M. The Quantum Chemical Calculation of NMR Indirect Spin-Spin Coupling Constants. Prog. Nucl. Res. Magn. Reson. Spectrosc. 2008, 53, 249–268. [Google Scholar] [CrossRef]
- Krivdin, L.B. Theoretical Calculations of Carbon-Hydrogen Spin-Spin Coupling Constants. Prog. Nucl. Res. Magn. Reson. Spectrosc. 2018, 108, 17–73. [Google Scholar] [CrossRef]
- Jackowski, K.; Słowiński, M.A. Searching for the Best Values of NMR Shielding and Spin-Spin Coupling Parameters: CH4-nFn Series of Molecules as the Example. Molecules 2023, 28, 1499. [Google Scholar] [CrossRef]
- Jackowski, K.; Jaszuński, M.; Wilczek, M. Alternative Approach to the Standardization of NMR Spectra. Direct Measurement of Nuclear Magnetic Shielding in Molecules. J. Phys. Chem. A 2010, 114, 2471–2475. [Google Scholar] [CrossRef] [PubMed]
- Angus, W.R.; Favede, J.; Hoarau, J.; Pacault, A. Zahlenwerte und Funktionen; Landolt-Börnstein Series; Hellwege, K.H., Hellwege, A.M., Eds.; Springer: Berlin, Germany, 1967; Band II, Teil 10; pp. 12, 55, 68. [Google Scholar] [CrossRef]
- Laatikainen, R.; Niemitz, M.; Weber, U.; Sundelin, J.; Hassinen, T.; Vepsäläinen, J. General Strategies for Total-Lineshape-Type Spectral Analysis of NMR Spectra Using Integral-Transform Iterator. J. Magn. Reson. Ser. A 1996, 120, 1–10. [Google Scholar] [CrossRef]
- Laatikainen, R.; Niemitz, M.; Malaisse, W.J.; Biesemans, M.; Willem, R. A Computational Strategy for the Deconvolution of NMR Spectra with Multiplet Structures and Constraints: Analysis of Overlapping 13C-2H Multiplets of 13C Enriched Metabolites from Cell Suspensions Incubated in Deuterated Media. Magn. Reson. Med. 1996, 36, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Dailey, B.P. Density versus Chemical Shift in NMR Spectra. J. Chem. Phys. 1961, 34, 1084–1085. [Google Scholar] [CrossRef]
- Rummens, F.H.A. Proton Magnetic Resonance of Ethane in the Liquid and Gaseous States. Mol. Phys. 1971, 21, 535–547. [Google Scholar] [CrossRef]
- Trappeniers, N.J. Oldenziel, Physica, High-Resolution Nuclear Magnetic Resonance Spectroscopy in Liquids and Gases at Pressures up to 2500 bar: II. Density Dependence of the Proton Magnetic Shielding Constants in the Nonpolar Gases Methane and Ethylene. Physica A 1976, 82, 581–585. [Google Scholar] [CrossRef]
Measured with Gaseous Solvent (B) | |||
---|---|---|---|
Parameter of A Molecule | Pure A Gas | CO2 | Xe |
NMR shielding in 13C2H6 | |||
σ0(C) [ppm] | 180.775(2) | 180.773(2) | 180.776(3) |
σ1(A-B) (C) [ppm mL mol−1] | −193(3) * | −95(3) | −273(4) |
σ0(H) [ppm] σ1(A-B) (H) [ppm mL mol−1] | 29.889(2) −4(3) * | 29.885(2) −3(3) | 29.889(2) 3(4) |
NMR shielding in 13C2H4 | |||
σ0(C) [ppm] σ1(A-B) (C) [ppm mL mol−1] | 64.367(3) −176(3) * | 64.368(2) −108(3) | 62.364(5) −213(3) |
σ0(H) [ppm] σ1(A-B) (H) [ppm mL mol−1] | 25.462(2) −8(3) * | 25.464(2) −12(3) | 25.462(3) −1(3) |
Measured in Gaseous Solvent (B) | |||
---|---|---|---|
Parameter of A Molecule | For Pure A Gas | CO2 | Xe |
Spin–spin coupling in 13C2H6 | |||
1J0(CH) [Hz] | 124.98(3) | 124.97(3) | 124.97(3) |
1JAB(CH) [Hz mL mol−1] | 9(4) * | 4(4) | 9(4) |
1J0(CC) [Hz] | 35.00(2) | 34.99 | 35.00 |
1JAB(CC) [Hz mL mol−1] | −24(4) * | −16(4) | −20(4) |
2J0(CH) [Hz] | −4.79(2) | −4.80(2) | −4.80(2) |
2JAB(CH) [Hz mL mol−1] | 7(4) * | 5(3) | 9(3) |
3J0(HH) [Hz] | 8.08(2) | 8.09(2) | 8.09(2) |
3JAB(HH) [Hz mL mol−1] | −4(4) * | −5(3) | −6(3) |
Spin–spin coupling in 13C2H4 | |||
1J0(CH) [Hz] | 156.03(2) | 156.03(2) | 156.04(3) |
1JAB(CH) [Hz mL mol−1] | 22(9) * | 32(9) | 19(12) |
1J0(CC) [Hz] | 67.92(2) | 67.92(2) | 67.92(3) |
1JAB(CC) [Hz mL mol−1] | −17(7) * | −43(10) | 1(14) |
2J0(CH) [Hz] | −2.55 | −2.54(2) | −2.55(2) |
2JAB(CH) [Hz mL mol−1] | 11(4) * | 9(11) | 9(10) |
2J0(HH) [Hz] | 2.53(2) | 2.53(2) | 2.54(4) |
2JAB(HH) [Hz mL mol−1] | −39(8) * | −31(10) | −36(17) |
3J0(HH-cis) [Hz] | 11.81(2) | 11.81(2) | 11.81(3) |
3JAB(HH-cis) [Hz mL mol−1] | −4(7) * | 4(11) | −6(11) |
3J0(HH-trans) [Hz] | 19.18(2) | 19.19(2) | 19.18(3) |
3JAB(HH-trans) [Hz mL mol−1] | −20(8) * | −11(10) | −17(12) |
13C Shielding [ppm] | 1H Shielding [ppm] | ||
---|---|---|---|
exp. σ0(13C) | calc. σ0(13C) | exp. σ0(1H) | calc. σ0(1H) |
NMR Shielding in 13C2H6 | |||
180.775 c | 181.9 d | 29.889 c | 30.84 e |
180.55 f | 184.7 g | 29.894 h | 30.92 g |
180.5 i | 185.1 j | 29.87 k | 31.77 l |
181.04 m | 182.1 n | 29.97 m | 31.05 n |
(176.628) o | 185.5 p | (29.526) o | 30.66 p |
NMR Shielding in 13C2H4 | |||
64.367 c | 66.5 d | 25.462 c | 26.06 e |
64.24 f | 73.6 g | 25.468 h | 26.18 g |
64.1 i | 60.8 j | 25.43 k | 26.69 l |
64.55 m | 58.0 n | 25.47 m | 26.08 n |
(60.410) o | 69.4 p | (24.979) o | 25.93 p |
Indirect Spin–Spin Coupling [Hz] | ||
---|---|---|
Parameter | Experimental | Calculated |
Spin–spin coupling in 13C2H6 | ||
1J(13C,1H) | 124.98 a, 124.9 b, 125.3 c, 125.190 d, | 119.8 e, 119.97 f, 127.5 g, 130.06 h, |
1J(13C,13C) | 35.00 a, 34.6 b, 34.4 c, 34.558 d, | 38.8 e, 35.20 f, 23.6 g, 38.34 h, 32.6 i |
2J(13C,1H) | −4.79 a, −4.5 c, −4.655 d, | −5.3 e, −5.05 f, −4.3 g, −5.33 h |
3J(1H,1H) | 8.08 a, 8.0 c, 8.002 d, | 7.2 e, 4.03 and 14.88 f, 5.16 h |
Spin–spin coupling in 13C2H4 | ||
1J(13C,1H) | 156.03 a, 156.3 b, 156.4 c, 156.302 d, | 147.7 e, 150.21 f, 155.3 g, 154.2 j, 163.4 k |
1J(13C,13C) | 67.92 a, 67.6 b, 67.6 c, 67.54 d, | 70.2 e, 67.53 f, 70.6 g, 70.5 i, 70.1 j, 71.1 k |
2J(13C,1H) | −2.55 a, −2.4 b, −2.4 c, −2.408 d, | −3.3 e, −3.58 f, −1.0 g, −4.1 h, −1.3 k |
2J(1H,1H) | 2.53 a, 2.5 b, 2.5 c, 2.23 d, | 0.9 e, 0.98 f, 3.4 g, 3.2 j, 0.2 k |
3J(1H,1Hcis) | 11.81 a, 11.7 b, 11.7 c, 11.62 d, | 10.4 e, 11.79 f, 11.7 g, 11.0 j, 12.8 k |
3J(1H,1Htrans) | 19.18 a, 19.0 b, 19.1 c, 19.02 d, | 17.0 e, 18.02 f, 18.3 g, 17.7 j, 19.7 k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilczek, M.; Jackowski, K. Gas-Phase Studies of NMR Shielding and Indirect Spin–Spin Coupling in 13C-Enriched Ethane and Ethylene. Molecules 2024, 29, 4460. https://doi.org/10.3390/molecules29184460
Wilczek M, Jackowski K. Gas-Phase Studies of NMR Shielding and Indirect Spin–Spin Coupling in 13C-Enriched Ethane and Ethylene. Molecules. 2024; 29(18):4460. https://doi.org/10.3390/molecules29184460
Chicago/Turabian StyleWilczek, Marcin, and Karol Jackowski. 2024. "Gas-Phase Studies of NMR Shielding and Indirect Spin–Spin Coupling in 13C-Enriched Ethane and Ethylene" Molecules 29, no. 18: 4460. https://doi.org/10.3390/molecules29184460
APA StyleWilczek, M., & Jackowski, K. (2024). Gas-Phase Studies of NMR Shielding and Indirect Spin–Spin Coupling in 13C-Enriched Ethane and Ethylene. Molecules, 29(18), 4460. https://doi.org/10.3390/molecules29184460