Influence of Heat Treatment and Lactic Acid Fermentation on the Physical and Chemical Properties of Pumpkin Juice
Abstract
:1. Introduction
2. Results
2.1. Microbiology
2.2. Selected Properties of Pumpkin Juices
2.2.1. Dry Matter and Extract
2.2.2. pH and Total Acidity
2.2.3. Color
2.3. Sugar Content
2.4. Antioxidant Properties of Pumpkin Juices
2.5. Carotenoid Content in Pumpkin Juices
3. Materials and Methods
3.1. Material
3.2. Technological Processing
3.2.1. Juice Preparation
3.2.2. Juice Heat Treatment
3.2.3. Fermentation Process
3.3. Analytical Methods
3.3.1. Determination of the Count of Lactic Acid Bacteria
3.3.2. Determination of the Total Viable Count
3.3.3. Dry Matter
3.3.4. Solid Soluble Content
3.3.5. pH and Total Acidity
3.3.6. Color
3.3.7. HPLC Analysis of Sugars
3.3.8. Total Phenolic Content
3.3.9. Antioxidant Properties
Iron Ion Reduction Method
3.3.10. Carotenoids Content
3.4. Statistical Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimitrovski, D.; Dimitrovska-Vetadjoka, M.; Hristov, H.; Doneva-Shapceska, D. Developing probiotic pumpkin juice by fermentation with commercial probiotic strain Lactobacillus casei 431. J. Food Process. Preserv. 2021, 45, e15245. [Google Scholar] [CrossRef]
- Ji, X.; Peng, B.; Ding, H.; Cui, B.; Nie, H.; Yan, Y. Purification, structure and biological activity of pumpkin polysaccharides: A review. Food Rev. Int. 2023, 39, 307–319. [Google Scholar] [CrossRef]
- Atef, A.; Nadir, A.; Mostafa, T.R. Studies on sheets properties made from juice and puree of pumpkin and some other fruit blends. J. Appl. Sci. Res. 2012, 8, 2632–2639. [Google Scholar]
- AlJahani, A.; Cheikhousman, R. Nutritional and sensory evaluation of pumpkin-based (Cucurbita maxima) functional juice. Nutr. Food Sci. 2017, 47, 346–356. [Google Scholar] [CrossRef]
- Čakarević, J.; Torbica, A.; Belović, M.; Tomić, J.; Sedlar, T.; Popović, L. Pumpkin oil cake protein as a new carrier for encapsulation incorporated in food matrix: Effect of processing, storage and in vitro digestion on bioactivity. Int. J. Food Sci. Technol. 2021, 56, 3400–3408. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Li, F.; Jiao, X.; Ma, D.; Zhang, L.; Yang, B.; Zhao, J.; Han, J.; Li, Q. Effects of lactic acid bacteria fermentation on chemical compounds, antioxidant capacities and hypoglycemic properties of pumpkin juice. Food Biosci. 2022, 50, 102126. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, Z.; Wu, X.; Lin, W.; Qin, Y.; Chen, H.; Wan, Y.; Zhou, C.; Bu, T.; Chen, H. A review on fruit and vegetable fermented beverage-benefits of microbes and beneficial effects. Food Rev. Int. 2023, 39, 4835–4872. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Walczak, M.; Rybak, K.; Pobiega, K.; Gniewosz, M.; Woźniak, Ł.; Witrowa-Rajchert, D. Influence of Fermentation Beetroot Juice Process on the Physico-Chemical Properties of Spray Dried Powder. Molecules 2022, 27, 1008. [Google Scholar] [CrossRef]
- Garcia, C.; Remize, F. Lactic acid fermentation of fruit and vegetable juices and smoothies: Innovation and health aspects. In Lactic Acid Bacteria in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 27–46. [Google Scholar]
- Aleman, R.S.; Montero-Fernández, I.; Marcía, J.A.; Saravia Maldonado, S.A.; Martín-Vertedor, D. Application of Fermentation as a Strategy for the Transformation and Valorization of Vegetable Matrices. Fermentation 2024, 10, 124. [Google Scholar] [CrossRef]
- Shah, S.; Tang, X.; Shah, F. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem. X 2024, 21, 101209. [Google Scholar] [CrossRef]
- Koh, W.Y.; Utra, U.; Ahmad, R.; Rather, I.A.; Park, Y.-H. Evaluation of probiotic potential and anti-hyperglycemic properties of a novel Lactobacillus strain isolated from water kefir grains. Food Sci. Biotechnol. 2018, 27, 1369–1376. [Google Scholar] [CrossRef]
- Szydlowska, A.; Kolozyn-Krajewska, D. Applying potentially probiotic bacterial strains to pumpkin pulp fermentation. Zywn. Nauka Technol. Jakosc 2010, 17, 109–119. [Google Scholar]
- Zhao, J.; Zeng, X.; Xi, Y.; Li, J. Recent advances in the applications of Lactobacillus helveticus in the fermentation of plant-based beverages: A review. Trends Food Sci. Technol. 2024, 147, 104427. [Google Scholar] [CrossRef]
- Sharma, P.; Kashyap, P.; Kehinde, B.A.; Kaur, S. Sustainable utilization and optimization of spray dried fermented pumpkin juice. Res. Sq. 2022. PREPRINT (Version 1). Available online: https://doi.org/10.21203/rs.3.rs-1589838/v1 (accessed on 20 August 2024).
- Dogan, K.; Akman, P.K.; Tornuk, F. Role of non-thermal treatments and fermentation with probiotic Lactobacillus plantarum on in vitro bioaccessibility of bioactives from vegetable juice. J. Sci. Food Agric. 2021, 101, 4779–4788. [Google Scholar] [CrossRef]
- Li, Y.; Ten, M.M.Z.; Zwe, Y.H.; Li, D. Lactiplantibacillus plantarum 299v as starter culture suppresses Enterobacteriaceae more efficiently than spontaneous fermentation of carrots. Food Microbiol. 2022, 103, 103952. [Google Scholar] [CrossRef]
- Shi, Z.; Guan, N.; Sun, W.; Sun, T.; Niu, L.; Li, J.; Ge, J. Protective Effect of Levilactobacillus brevis against Yersinia enterocolitica Infection in Mouse Model via Regulating MAPK and NF-κB Pathway. Probiotics Antimicrob. Proteins 2022, 14, 9830–9844. [Google Scholar] [CrossRef]
- Jackson, R.S. Chapter 7—Fermentation. In Wine Science, 5th ed.; Jackson, R.S., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 461–572. Available online: https://www.sciencedirect.com/science/article/pii/B978012816118012001X (accessed on 20 August 2024).
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Qing, L.; Michael, G.G. Host-adapted lactobacilli in food fermentations: Impact of metabolic traits of host adapted lactobacilli on food quality and human health. Curr. Opin. Food Sci. 2020, 31, 71–80. [Google Scholar] [CrossRef]
- Mani-López, E.; Ramírez-Corona, N.; López-Malo, A. Latilactobacillus sakei as a starter culture to ferment pepper fruits. Food Humanit. 2024, 2, 100233. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Li, Y.; Li, Z.; Li, C.; Luan, C. Antioxidant Effects and Probiotic Properties of Latilactobacillus sakei MS103 Isolated from Sweet Pickled Garlic. Foods 2023, 12, 4276. [Google Scholar] [CrossRef]
- Liu, M.; Luo, H.; Xiao, Q.; Chen, C.; Xu, B.; Li, P. Effect of Latilactobacillus sakei and Staphylococcus xylosus on the textural characteristics of dry fermented sausages. Food Biosci. 2024, 59, 103972. [Google Scholar] [CrossRef]
- Diez-Echave, P.; Martín-Cabrejas, I.; Garrido-Mesa, J.; Langa, S.; Vezza, T.; Landete, J.M.; Hidalgo-García, L.; Algieri, F.; Mayer, M.J.; Narbad, A. Probiotic and functional properties of Limosilactobacillus reuteri INIA P572. Nutrients 2021, 13, 1860. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, R.; Song, J.; Sohaib, M.; Wang, S.; Mao, J.; Qi, J.; Xiong, X.; Zhou, W.; Guo, L. Limosilactobacillus reuteri consumption significantly reduces the total cholesterol concentration without affecting other cardiovascular disease risk factors in adults: A systematic review and meta-analysis. Nutr. Res. 2023, 117, 1–14. [Google Scholar] [CrossRef]
- Watthanasakphuban, N.; Srila, P.; Pinmanee, P.; Sompinit, K.; Rattanaporn, K.; Peterbauer, C. Development of high cell density Limosilactobacillus reuteri KUB-AC5 for cell factory using oxidative stress reduction approach. Microb. Cell Fact. 2023, 22, 86. [Google Scholar] [CrossRef]
- Castro, M.P.; Rojas, A.M.; Campos, C.A.; Gerschenson, L.N. Effect of preservatives, tween 20, oil content and emulsion structure on the survival of Lactobacillus fructivorans in model salad dressings. LWT-Food Sci. Technol. 2009, 42, 1428–1434. [Google Scholar] [CrossRef]
- Endo, A.; Maeno, S.; Tanizawa, Y.; Kneifel, W.; Arita, M.; Dicks, L.; Salminen, S. Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl. Environ. Microbiol. 2018, 84, e01290-18. [Google Scholar] [CrossRef]
- Yu, M.; Peng, M.; Chen, R.; Chen, J. Effect of Thermal Pretreatment on the Physiochemical Properties and Stability of Pumpkin Seed Milk. Foods 2023, 12, 1056. [Google Scholar] [CrossRef]
- Piepiórka-Stepuk, J.; Wojtasik-Kalinowska, I.; Sterczyńska, M.; Mierzejewska, S.; Stachnik, M.; Jakubowski, M. The effect of heat treatment on bioactive compounds and color of selected pumpkin cultivars. Lwt 2023, 175, 114469. [Google Scholar] [CrossRef]
- Szczepańska, J.; Barba, F.J.; Skąpska, S.; Marszałek, K. Changes in the polyphenolic profile and oxidoreductases activity under static and multi-pulsed high pressure processing of cloudy apple juice. Food Chem. 2022, 384, 132439. [Google Scholar] [CrossRef]
- Koh, W.Y.; Uthumporn, U.; Rosma, A.; Irfan, A.R.; Park, Y.H. Optimization of a fermented pumpkin-based beverage to improve Lactobacillus mali survival and α-glucosidase inhibitory activity: A response surface methodology approach. Food Sci. Hum. Wellness 2018, 7, 57–70. [Google Scholar] [CrossRef]
- Kuria, M.W.; Matofari, J.W.; Nduko, J.M. Physicochemical, antioxidant, and sensory properties of functional mango (Mangifera indica L.) leather fermented by lactic acid bacteria. J. Agric. Food Res. 2021, 6, 100206. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, C.; Ma, L.; Su, W.; Jiang, J.; Hu, X. Influence of ultrasound on the microbiological, physicochemical properties, and sensory quality of different varieties of pumpkin juice. Heliyon 2024, 10, e27927. [Google Scholar] [CrossRef]
- Shaik, L.; Chakraborty, S. Nonthermal pasteurization of pineapple juice: A review on the potential of achieving microbial safety and enzymatic stability. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4716–4737. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Pobiega, K.; Rybak, K.; Synowiec, A.; Woźniak, Ł.; Trych, U.; Gniewosz, M.; Witrowa-Rajchert, D. Changes in Physical and Chemical Parameters of Beetroot and Carrot Juices Obtained by Lactic Fermentation. Appl. Sci. 2023, 13, 6113. [Google Scholar] [CrossRef]
- Suo, G.; Zhou, C.; Su, W.; Hu, X. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrason. Sonochem. 2022, 84, 105974. [Google Scholar] [CrossRef]
- Nowacka, M.; Dadan, M.; Janowicz, M.; Wiktor, A.; Witrowa-Rajchert, D.; Mandal, R.; Pratap-Singh, A.; Janiszewska-Turak, E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5097–5144. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qi, J.; Jin, Y.; Li, F.; Wang, J.; Xu, H. Influence of fruit maturity and lactic fermentation on physicochemical properties, phenolics, volatiles, and sensory of mulberry juice. Food Biosci. 2022, 48, 101782. [Google Scholar] [CrossRef]
- Markkinen, N.; Laaksonen, O.; Nahku, R.; Kuldjarv, R.; Yang, B. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chem. 2019, 286, 204–215. [Google Scholar] [CrossRef]
- Kulczyński, B.; Sidor, A.; Gramza-Michałowska, A. Antioxidant potential of phytochemicals in pumpkin varieties belonging to Cucurbita moschata and Cucurbita pepo species. CyTA-J. Food 2020, 18, 472–484. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, L.; Huang, J.; Liang, J.; Wang, X.; Ren, Y.; Li, H.; Yue, T.; Gao, Z. Evaluation of chemical composition, antioxidant activity, and gut microbiota associated with pumpkin juice fermented by Rhodobacter sphaeroides. Food Chem. 2023, 401, 134122. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). Sustainability 2020, 12, 1305. [Google Scholar] [CrossRef]
- Zdunić, G.M.; Menković, N.R.; Jadranin, M.B.; Novaković, M.M.; Šavikin, K.P.; Živković, J.Č. Phenolic compounds and carotenoids in pumpkin fruit and related traditional products. Hem. Ind. 2016, 70, 429–433. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, P.; Lao, F.; Liu, J.; Liao, X.; Wu, J. Characterization of the major aroma-active compounds in Keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices. Food Chem. 2019, 289, 215–222. [Google Scholar] [CrossRef]
- Adiara, N.N.; Joseph, B.; Modou, D.; Toure, N.; Didier, M. Optimization scale pasteurization of baobab juice using Response Surface Methodology (RSM). Food Nutr. Sci. 2020, 11, 113–122. [Google Scholar] [CrossRef]
- Fruit and Vegetable Juices—Determination of Glucose, Fructose, Sorbitol and Sucrose Contents—Method Using High Performance Liquid Chromatography. Available online: https://www.en-standard.eu/bs-en-12630-1999-fruit-and-vegetable-juices-determination-of-glucose-fructose-sorbitol-and-sucrose-contents-method-using-high-performance-liquid-chromatography/?srsltid=AfmBOoqpEIm5jUqrTKyGIBdCoNfrOgiCtz4qqej-ZOzhWyy9qbWt6xmU (accessed on 26 August 2024).
- Nowacka, M.; Wiktor, A.; Anuszewska, A.; Dadan, M.; Rybak, K.; Witrowa-Rajchert, D. The application of unconventional technologies as pulsed electric field, ultrasound and microwave-vacuum drying in the production of dried cranberry snacks. Ultrason. Sonochem. 2019, 56, 1–13. [Google Scholar] [CrossRef]
- Rybak, K.; Wiktor, A.; Kaveh, M.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. Effect of Thermal and Non-Thermal Technologies on Kinetics and the Main Quality Parameters of Red Bell Pepper Dried with Convective and Microwave–Convective Methods. Molecules 2022, 27, 2164. [Google Scholar] [CrossRef]
- Świeca, M. Hydrogen peroxide treatment and the phenylpropanoid pathway precursors feeding improve phenolics and antioxidant capacity of quinoa sprouts via an induction of L-tyrosine and L-phenylalanine ammonia-lyases activities. J. Chem. 2016, 2016, 1936516. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Witrowa-Rajchert, D. The influence of carrot pretreatment, type of carrier and disc speed on the physical and chemical properties of spray-dried carrot juice microcapsules. Dry. Technol. 2021, 39, 439–449. [Google Scholar] [CrossRef]
- Rybak, K.; Wiktor, A.; Pobiega, K.; Witrowa-Rajchert, D.; Nowacka, M. Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. LWT Food Sci. Technol. 2021, 149, 111906. [Google Scholar] [CrossRef]
Juice Type | Strain | Day | Symbol | Extract (°Brix) | Dry Matter (%) | pH (-) | Total Acidity (g Lactic Acid/100 g Juice) |
---|---|---|---|---|---|---|---|
J | 0 | J__D0 | 6.75 ± 0.05 a | 6.31 ± 0.09 a | 6.23 ± 0.02 a | 3.57 ± 0.21 f–i | |
LB | 4 | J_LB_D4 | 6.60 ± 0.04 b | 5.61 ± 0.03 b–e | 3.73 ± 0.01 d–h | 3.81 ± 0.13 f–i | |
7 | J_LB_D7 | 5.10 ± 0.01 k | 5.41 ± 0.73 de | 3.65 ± 0.02 f–j | 7.08 ± 1.03 bc | ||
LF | 4 | J_LF_D4 | 6.00 ± 0.04 def | 5.16 ± 0.07 ef | 3.70 ± 0.04 e–i | 4.91 ± 0.02 e–f | |
7 | J_LF_D7 | 4.85 ± 0.05 l | 4.73 ± 0.07 fg | 3.58 ± 0.01 ij | 7.73 ± 0.41 bc | ||
LP | 4 | J_LP_D4 | 5.90 ± 0.02 fg | 5.44 ± 0.09 de | 3.46 ± 0.05 kl | 5.36 ± 0.04 de | |
7 | J_LP_D7 | 4.80 ± 0.03 l | 4.28 ± 0.06 g | 3.41 ± 0.01 l | 7.93 ± 0.82 b | ||
LR | 4 | J_LR_D4 | 5.50 ± 0.02 i | 4.82 ± 0.06 fg | 3.68 ± 0.01 f–i | 3.58 ± 0.39 f–i | |
7 | J_LR_D7 | 5.20 ± 0.03 j | 4.28 ± 0.21 g | 3.65 ± 0.01 f–i | 6.56 ± 0.11 c | ||
LS | 4 | J_LS_D4 | 5.90 ± 0.01 g | 5.63 ± 0.01 b–e | 3.58 ± 0.04 ki | 5.11 ± 0.04 de | |
7 | J_LS_D7 | 5.95 ± 0.05 efg | 5.52 ± 0.08 cde | 3.55 ± 0.02 jk | 9.15 ± 0.35 a | ||
HT_J | 0 | HT_J_D0 | 6.65 ± 0.05 ab | 6.29 ± 0.13 a | 6.21 ± 0.08 a | 1.65 ± 0.28 j | |
LB | 4 | HT_J_LB_D4 | 6.10 ± 0.03 cd | 6.17 ± 0.18 ab | 3.79 ± 0.04 cde | 3.08 ± 0.35 i | |
7 | HT_J_LB_D7 | 6.00 ± 0.04 cde | 6.08 ± 0.13 abc | 3.74 ± 0.04 def | 4.38 ± 0.15 e–h | ||
LF | 4 | HT_J_LF_D4 | 6.15 ± 0.05 c | 5.90 ± 0.01 a–d | 3.86 ± 0.01 bc | 3.46 ± 0.48 ghi | |
7 | HT_J_LF_D7 | 5.70 ± 0.02 h | 5.45 ± 0.03 acde | 3.63 ± 0.03 g–j | 5.08 ± 0.20 de | ||
LP | 4 | HT_J_LP_D4 | 5.95 ± 0.05 efg | 5.82 ± 0.06 a–d | 3.60 ± 0.01 hij | 4.46 ± 0.19 e–g | |
7 | HT_J_LP_D7 | 6.10 ± 0.05 cd | 5.96 ± 0.09 a–d | 3.56 ± 0.04 jk | 6.15 ± 0.27 cd | ||
LR | 4 | HT_J_LR_D4 | 6.10 ± 0.01 cd | 6.07 ± 0.01 abc | 3.92 ± 0.02 b | 3.23 ± 0.08 hi | |
7 | HT_J_LR_D7 | 6.10 ± 0.03 cd | 6.03 ± 0.02 abc | 3.80 ± 0.04 cde | 4.92 ± 0.07 ef | ||
LS | 4 | HT_J_LS_D4 | 5.95 ± 0.05 efg | 5.78 ± 0.08 a–d | 3.82 ± 0.02 bcd | 4.70 ± 0.02 e–f | |
7 | HT_J_LS_D7 | 5.90 ± 0.03 efg | 5.73 ± 0.02 a-d | 3.73 ± 0.03 def | 6.12 ± 0.38 cd |
Juice Type | Strain | Day | Symbol | L* Lightness | a* Redness | b* Yellowness |
---|---|---|---|---|---|---|
J | 0 | J_D0 | 32.84 0.07 bc | 11.17 0.02 jk | 27.94 0.24 jkl | |
LB | 4 | J_LB_D4 | 31.94 0.05 hi | 11.52 0.05 g–j | 28.54 0.24 hij | |
7 | J_LB_D7 | 32.46 0.27 de | 10.60 0.10 l | 26.17 0.57 n | ||
LF | 4 | J_LF_D4 | 32.36 0.14 ef | 10.96 0.0 kl | 28.41 0.12 h–k | |
7 | J_LF_D7 | 32.50 0.18 de | 11.11 0.26 jk | 27.68 0.33 kl | ||
LP | 4 | J_LP_D4 | 32.06 0.11 ghi | 11.86 0.10 fgh | 29.16 0.28 fgh | |
7 | J_LP_D7 | 31.30 0.18 k | 11.79 0.27 f–i | 29.62 0.76 fg | ||
LR | 4 | J_LR_D4 | 32.24 0.18 efg | 11.32 0.07 jk | 28.84 0.23 ghi | |
7 | J_LR_D7 | 32.94 0.29 b | 11.37 0.16 ijk | 27.19 0.48 lm | ||
LS | 4 | J_LS_D4 | 32.30 0.17 efg | 11.88 0.11 fg | 29.81 0.28 ef | |
7 | J_LS_D7 | 31.96 0.35 hi | 12.16 0.15 def | 29.57 0.59 fg | ||
HT_J | 0 | HT_J_D0 | 34.55 0.36 a | 15.57 0.40 a | 33.10 0.53 a | |
LB | 4 | HT_J_LB_D4 | 31.87 0.07 i | 13.40 0.10 b | 32.34 0.18 ab | |
7 | HT_J_LB_D7 | 32.66 0.04 cd | 11.28 0.15 jk | 28.15 0.37 ijk | ||
LF | 4 | HT_J_LF_D4 | 32.15 0.08 fgh | 12.65 0.17 c | 31.35 0.32 cd | |
7 | HT_J_LF_D7 | 32.14 0.14 fgh | 11.45 0.14 hij | 28.77 0.07 g–j | ||
LP | 4 | HT_J_LP_D4 | 31.60 0.05 j | 12.47 0.12 cde | 32.16 0.31 bc | |
7 | HT_J_LP_D7 | 32.49 0.15 de | 11.19 0.18 jk | 29.19 0.41 fgh | ||
LR | 4 | HT_J_LR_D4 | 33.03 0.05 b | 12.55 0.12 cd | 31.09 0.09 d | |
7 | HT_J_LR_D7 | 32.34 0.15 ef | 10.67 0.24 l | 26.79 0.14 mn | ||
LS | 4 | HT_J_LS_D4 | 32.93 0.31 b | 12.12 0.28 ef | 28.58 0.18 hij | |
7 | HT_J_LS_D7 | 31.20 0.04 k | 11.40 0.25 ij | 30.64 0.31 de |
Juice Type | Strain | Day | Symbol | Reducing Power (mg TE/g d.m.) | ABTS (mg TE/g Juice d.m.) | Polyphenols (mg Chlorogenic Acid/100 g Juice d.m.) |
---|---|---|---|---|---|---|
J | 0 | J__D0 | 43.97 ± 3.86 a | 1.10 ± 0.09 d | 75.08 ± 7.38 ab | |
LB | 4 | J_LB_D4 | 44.85 ± 0.90 a | 1.65 ± 0.25 cd | 100.61 ± 5.92 ab | |
7 | J_LB_D7 | 57.37 ± 5.08 a | 14.56 ± 0.05 a | 169.26 ± 7.41 ab | ||
LF | 4 | J_LF_D4 | 54.95 ± 2.17 a | 2.05 ± 0.17 cd | 97.62 ± 3.00 ab | |
7 | J_LF_D7 | 53.67 ± 5.56 a | 16.57 ± 0.12 a | 186.00 ± 7.67 a | ||
LP | 4 | J_LP_D4 | 49.26 ± 1.98 a | 1.34 ± 0.10 cd | 120.87 ± 4.77 ab | |
7 | J_LP_D7 | 69.44 ± 5.33 a | 18.27 ± 0.14 a | 210.86 ± 7.18 a | ||
LR | 4 | J_LR_D4 | 50.80 ± 4.72 a | 1.19 ± 0.07 cd | 114.67 ± 13.26 ab | |
7 | J_LR_D7 | 55.28 ± 2.87 a | 18.20 ± 0.05 a | 208.00 ± 6.96 a | ||
LS | 4 | J_LS_D4 | 44.63 ± 2.78 a | 1.31 ± 0.12 cd | 84.49 ± 5.67 ab | |
7 | J_LS_D7 | 56.12 ± 3.69 a | 12.66 ± 2.18 ab | 162.9111.47 ab | ||
HT_J | 0 | HT_J_D0 | 42.78 ± 2.87 a | 0.95 ± 0.01 d | 67.63 ± 1.38 ab | |
LB | 4 | HT_J_LB_D4 | 52.62 ± 4.09 a | 1.15 ± 0.08 cd | 71.38 ± 6.76 ab | |
7 | HT_J_LB_D7 | 53.94 ± 2.57 a | 10.69 ± 0.59 ab | 135.76 ± 1.59 ab | ||
LF | 4 | HT_J_LF_D4 | 47.24 ± 3.58 a | 1.30 ± 0.04 cd | 73.48 ± 2.85 ab | |
7 | HT_J_LF_D7 | 48.57 ± 1.76 a | 12.42 ± 0.43 ab | 99.95 ± 5.37 ab | ||
LP | 4 | HT_J_LP_D4 | 57.75 ± 3.72 a | 1.34 ± 0.27 cd | 102.16 ± 8.97 ab | |
7 | HT_J_LP_D7 | 52.91 ± 0.46 a | 10.70 ± 0.87 ab | 176.92 ± 3.57 ab | ||
LR | 4 | HT_J_LR_D4 | 47.38 ± 0.96 a | 1.21 ± 0.16 cd | 79.50 ± 3.52 ab | |
7 | HT_J_LR_D7 | 53.79 ± 0.50 a | 10.27 ± 0.95 ab | 138.13 ± 5.87 ab | ||
LS | 4 | HT_J_LS_D4 | 47.46 ± 3.07 a | 1.04 ± 0.16 d | 95.44 ± 4.99 ab | |
7 | HT_J_LS_D7 | 44.93 ± 2.80 a | 12.59 ± 1.29 bc | 131.50 ± 8.20 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janiszewska-Turak, E.; Rybak, K.; Witrowa-Rajchert, D.; Pobiega, K.; Wierzbicka, A.; Ossowski, S.; Sękul, J.; Kufel, A.; Wiśniewska, A.; Trych, U.; et al. Influence of Heat Treatment and Lactic Acid Fermentation on the Physical and Chemical Properties of Pumpkin Juice. Molecules 2024, 29, 4519. https://doi.org/10.3390/molecules29194519
Janiszewska-Turak E, Rybak K, Witrowa-Rajchert D, Pobiega K, Wierzbicka A, Ossowski S, Sękul J, Kufel A, Wiśniewska A, Trych U, et al. Influence of Heat Treatment and Lactic Acid Fermentation on the Physical and Chemical Properties of Pumpkin Juice. Molecules. 2024; 29(19):4519. https://doi.org/10.3390/molecules29194519
Chicago/Turabian StyleJaniszewska-Turak, Emilia, Katarzyna Rybak, Dorota Witrowa-Rajchert, Katarzyna Pobiega, Anna Wierzbicka, Szymon Ossowski, Joanna Sękul, Aniela Kufel, Aneta Wiśniewska, Urszula Trych, and et al. 2024. "Influence of Heat Treatment and Lactic Acid Fermentation on the Physical and Chemical Properties of Pumpkin Juice" Molecules 29, no. 19: 4519. https://doi.org/10.3390/molecules29194519
APA StyleJaniszewska-Turak, E., Rybak, K., Witrowa-Rajchert, D., Pobiega, K., Wierzbicka, A., Ossowski, S., Sękul, J., Kufel, A., Wiśniewska, A., Trych, U., Szczepańska-Stolarczyk, J., Krzykowski, A., & Gramza-Michałowska, A. (2024). Influence of Heat Treatment and Lactic Acid Fermentation on the Physical and Chemical Properties of Pumpkin Juice. Molecules, 29(19), 4519. https://doi.org/10.3390/molecules29194519