The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue
Abstract
:1. Introduction
2. Results
2.1. Western Blot Analysis
2.2. Immunofluorescence
2.3. Cannabinoid and Cannabinoid-Related Receptors in Gustatory Cells
2.4. Cannabinoid and Cannabinoid-Related Receptors in Extra-Gustatory Epithelial Cells
2.5. Cannabinoid and Cannabinoid-Related Receptors in Intralingual Neurons
3. Discussion
3.1. Cannabinoid and Cannabinoid-Related Receptors in Gustatory Epithelial Cells
3.2. Cannabinoid and Cannabinoid-Related Receptors in the Extra-Gustatory Epithelial Cells
3.3. Receptors in Intralingual Neurons
4. Material and Methods
4.1. Animals
4.2. Immunofluorescence
Specificity of the Primary Antibodies
4.3. Specificity of the Secondary Antibodies
4.4. Semiquantitative Analysis of the Immunoreactivity
4.5. Fluorescence Microscopy
4.6. Western Blot Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niki, M.; Jyotaki, M.; Yoshida, R.; Ninomiya, Y. Reciprocal Modulation of Sweet Taste by Leptin and Endocannabinoids. Springer: Berlin/Heidelberg, Germany, 2011; pp. 101–114. [Google Scholar]
- Liman, E.R.; Zhang, Y.V.; Montell, C. Peripheral Coding of Taste. Neuron 2014, 81, 984–1000. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Barlow, L.A. Taste bud regeneration and the search for taste progenitor cells. Arch. Ital. Biol. 2010, 148, 107–118. [Google Scholar] [PubMed]
- Vincis, R.; Fontanini, A. Central Taste Anatomy and Physiology. Handb. Clin. Neurol. 2019, 164, 187–204. [Google Scholar] [PubMed]
- Rozengurt, E.; Sternini, C. Taste receptor signaling in the mammalian gut. Curr. Opin. Pharmacol. 2007, 7, 557–562. [Google Scholar] [CrossRef]
- Roper, S.D.; Chaudhari, N. Taste buds: Cells, signals and synapses. Nat. Rev. Neurosci. 2017, 18, 485–497. [Google Scholar] [CrossRef]
- Yoshida, R.; Ohkuri, T.; Jyotaki, M.; Yasuo, T.; Horio, N.; Yasumatsu, K.; Sanematsu, K.; Shigemura, N.; Yamamoto, T.; Margolskee, R.F.; et al. Endocannabinoids selectively enhance sweet taste. Proc. Natl. Acad. Sci. USA 2010, 107, 935–939. [Google Scholar] [CrossRef]
- Roper, S.D. Taste buds as peripheral chemosensory processors. Semin. Cell Dev. Biol. 2013, 24, 71–79. [Google Scholar] [CrossRef]
- Roberts, C.D.; Dvoryanchikov, G.; Roper, S.D.; Chaudhari, N. Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells. J. Physiol. 2009, 587, 1657–1668. [Google Scholar] [CrossRef]
- Finger, T.E. Cell Types and Lineages in Taste Buds. Chem. Senses 2005, 30, i54–i55. [Google Scholar] [CrossRef]
- Chandrashekar, J.; Kuhn, C.; Oka, Y.; Yarmolinsky, D.A.; Hummler, E.; Ryba, N.J.P.; Zuker, C.S. The cells and peripheral representation of sodium taste in mice. Nature 2010, 464, 297–301. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Erlenbach, I.; Ryba, N.J.P.; Zuker, C.S. The Receptors for Mammalian Sweet and Umami Taste. Cell 2003, 115, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Mueller, K.L.; Cook, B.; Wu, D.; Zuker, C.S.; Ryba, N.J.P. Coding of Sweet, Bitter, and Umami Tastes. Cell 2003, 112, 293–301. [Google Scholar] [CrossRef]
- Sullivan, J.M.; Borecki, A.A.; Oleskevich, S. Stem and progenitor cell compartments within adult mouse taste buds. Eur. J. Neurosci. 2010, 31, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yang, R.; Thomas, S.M.; Kinnamon, J.C. Qualitative and quantitative differences between taste buds of the rat and mouse. BMC Neurosci. 2007, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Roper, S.D. TRPs in Taste and Chemesthesis. In Mammalian Transient Receptor Potential (TRP) Cation Channels: Volume II; Springer: Berlin/Heidelberg, Germany, 2014; pp. 827–871. [Google Scholar]
- von Molitor, E.; Riedel, K.; Krohn, M.; Rudolf, R.; Hafner, M.; Cesetti, T. An alternative pathway for sweet sensation: Possible mechanisms and physiological relevance. Pflug. Arch. 2020, 472, 1667–1691. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, N.; Stephen, D. Roper. Review series: The cell biology of taste. J. Cell Biol. 2010, 190, 285. [Google Scholar] [CrossRef]
- Niki, M.; Jyotaki, M.; Yoshida, R.; Yasumatsu, K.; Shigemura, N.; DiPatrizio, N.V.; Piomelli, D.; Ninomiya, Y. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice. J. Physiol. 2015, 593, 2527–2545. [Google Scholar] [CrossRef]
- Williams, C.M.; Kirkham, T.C. Anandamide induces overeating: Mediation by central cannabinoid (CB1) receptors. Psychopharmacology 1999, 143, 315–317. [Google Scholar] [CrossRef]
- Jager, G.; Witkamp, R.F. The endocannabinoid system and appetite: Relevance for food reward. Nutr. Res. Rev. 2014, 27, 172–185. [Google Scholar] [CrossRef]
- Brissard, L.; Leemput, J.; Hichami, A.; Passilly-Degrace, P.; Maquart, G.; Demizieux, L.; Degrace, P.; Khan, N.A. Orosensory Detection of Dietary Fatty Acids Is Altered in CB1R−/− Mice. Nutrients 2018, 10, 1347. [Google Scholar] [CrossRef]
- Gu, X.F.; Lee, J.-H.; Yoo, S.B.; Moon, Y.W.; Jahng, J.W. Intra-oral pre-treatment with capsaicin increases consumption of sweet solutions in rats. Nutr. Neurosci. 2009, 12, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.W.; Lee, J.-H.; Yoo, S.B.; Jahng, J.W. Capsaicin receptors are colocalized with sweet/bitter receptors in the taste sensing cells of circumvallate papillae. Genes Nutr. 2010, 5, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Gerhold, K.A.; Bautista, D.M. Molecular and Cellular Mechanisms of Trigeminal Chemosensation. Ann. N. Y. Acad. Sci. 2009, 1170, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Zamith Cunha, R.; Salamanca, G.; Mille, F.; Delprete, C.; Franciosi, C.; Piva, G.; Gramenzi, A.; Chiocchetti, R. Endocannabinoid System Receptors at the Hip and Stifle Joints of Middle-Aged Dogs: A Novel Target for the Therapeutic Use of Cannabis sativa Extract in Canine Arthropathies. Animals 2023, 13, 2833. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Clavenzani, P.; Sorteni, C.; Bo Minelli, L.; Botti, M.; Gazza, F.; Panu, R.; Ragionieri, L.; Chiocchetti, R. Neurochemical features of boar lumbosacral dorsal root ganglion neurons and characterization of sensory neurons innervating the urinary bladder trigone. J. Comp. Neurol. 2013, 521, 342–366. [Google Scholar] [CrossRef]
- Chamorro, C.A.; Fernández, J.G.; de Paz, P.; Pelaez, B.; Anel, L. Scanning electron microscopy of the wild boar and pig lingual papillae. Histol. Histopathol. 1994, 9, 657–667. Available online: http://hdl.handle.net/10201/18532 (accessed on 10 January 2022).
- Marco, E.M.; Romero-Zerbo, S.Y.; Viveros, M.-P.; Bermudez-Silva, F.J. The role of the endocannabinoid system in eating disorders. Behav. Pharmacol. 2012, 23, 526–536. [Google Scholar] [CrossRef]
- Jamshidi, N.; Taylor, D.A. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol. 2001, 134, 1151–1154. [Google Scholar] [CrossRef]
- Jarrett, M.; Limebeer, C.; Parker, L. Effect of Δ9-tetrahydrocannabinol on sucrose palatability as measured by the taste reactivity test. Physiol. Behav. 2005, 86, 475–479. [Google Scholar] [CrossRef]
- Jesudason, D.; Wittert, G. Endocannabinoid system in food intake and metabolic regulation. Curr. Opin. Lipidol. 2008, 19, 344–348. [Google Scholar] [CrossRef]
- Aguilera Vasquez, N.; Nielsen, D.E. The Endocannabinoid System and Eating Behaviours: A Review of the Current State of the Evidence. Curr. Nutr. Rep. 2022, 11, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Bassareo, V.; Di Chiara, G. Differential Influence of Associative and Nonassociative Learning Mechanisms on the Responsiveness of Prefrontal and Accumbal Dopamine Transmission to Food Stimuli in Rats Fed Ad Libitum. J. Neurosci. 1997, 17, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Fernández-Ruiz, J.J.; de Miguel, R.; Hernández, M.L.; Cebeira, M.; Ramos, J.A. An acute dose of δ9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav. Brain Res. 1993, 57, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, S.; Jones, P.M.; Persaud, S.J. GPR55: From orphan to metabolic regulator? Pharmacol. Ther. 2015, 145, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, J.; Krause, A.; Kalbe, C.; Mazzuoli-Weber, G.; Eggert, A.; Puppe, B.; Kuhla, B.; Röttgen, V. Endocannabinoid administration affects taste preference and the expression of cannabinoid and opioid receptors in the amygdala of early lactating cows. Sci. Rep. 2023, 13, 4967. [Google Scholar] [CrossRef]
- Fride, E.; Ginzburg, Y.; Breuer, A.; Bisogno, T.; Di Marzo, V.; Mechoulam, R. Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. Eur. J. Pharmacol. 2001, 419, 207–214. [Google Scholar] [CrossRef]
- Ramírez-Orozco, R.E.; García-Ruiz, R.; Morales, P.; Villalón, C.M.; Villafán-Bernal, J.R.; Marichal-Cancino, B.A. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr. Neuropharmacol. 2019, 17, 947–960. [Google Scholar] [CrossRef]
- Rhyu, M.-R.; Kim, Y.; Lyall, V. Interactions between Chemesthesis and Taste: Role of TRPA1 and TRPV1. Int. J. Mol. Sci. 2021, 22, 3360. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Du, Q.; Gu, J.; Wu, J.; Liu, Q.; Li, Z.; Zhang, T.; Xu, J.; Xie, R. Research Progress on TRPA1 in Diseases. J. Membr. Biol. 2023, 256, 301–316. [Google Scholar] [CrossRef]
- Ishida, Y.; Ugawa, S.; Ueda, T.; Yamada, T.; Shibata, Y.; Hondoh, A.; Inoue, K.; Yu, Y.; Shimada, S. P2X2- and P2X3-positive fibers in fungiform papillae originate from the chorda tympani but not the trigeminal nerve in rats and mice. J. Comp. Neurol. 2009, 514, 131–144. [Google Scholar] [CrossRef]
- Lyall, V.; Heck, G.L.; Phan, T.-H.T.; Mummalaneni, S.; Malik, S.A.; Vinnikova, A.K.; DeSimone, J.A. Ethanol Modulates the VR-1 Variant Amiloride-insensitive Salt Taste Receptor. II. Effect on Chorda Tympani Salt Responses. J. Gen. Physiol. 2005, 125, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Lyall, V.; Heck, G.L.; Vinnikova, A.K.; Ghosh, S.; Phan, T.T.; Alam, R.I.; Russell, O.F.; Malik, S.A.; Bigbee, J.W.; DeSimone, J.A. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. 2004, 558, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Aroke, E.; Powell-Roach, K.; Jaime-Lara, R.; Tesfaye, M.; Roy, A.; Jackson, P.; Joseph, P. Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. Int. J. Mol. Sci. 2020, 21, 5929. [Google Scholar] [CrossRef]
- Akopian, A.N. Regulation of Nociceptive Transmission at the Periphery via TRPA1-TRPV1 Interactions, 1st ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2011. [Google Scholar]
- Chiocchetti, R.; De Silva, M.; Aspidi, F.; Cunha, R.Z.; Gobbo, F.; Tagliavia, C.; Sarli, G.; Morini, M. Distribution of Cannabinoid Receptors in Keratinocytes of Healthy Dogs and Dogs with Atopic Dermatitis. Front. Vet. Sci. 2022, 9, 915896. [Google Scholar] [CrossRef] [PubMed]
- Chiocchetti, R.; Salamanca, G.; De Silva, M.; Gobbo, F.; Aspidi, F.; Cunha, R.Z.; Galiazzo, G.; Tagliavia, C.; Sarli, G.; Morini, M. Cannabinoid receptors in the inflammatory cells of canine atopic dermatitis. Front. Vet. Sci. 2022, 9, 987132. [Google Scholar] [CrossRef]
- Boonen, B.; Startek, J.B.; Talavera, K. Chemical Activation of Sensory TRP Channels; Springer: Berlin/Heidelberg, Germany, 2016; pp. 73–113. [Google Scholar]
- Wang, B.; Danjo, A.; Kajiya, H.; Okabe, K.; Kido, M.A. Oral Epithelial Cells are Activated via TRP Channels. J. Dent. Res. 2011, 90, 163–167. [Google Scholar] [CrossRef]
- Green, B.G. Chemesthesis and the Chemical Senses as Components of a “Chemofensor Complex. Chemestesis Senses 2011, 37, 201–206. [Google Scholar] [CrossRef]
- Kobayashi, K.; Fukuoka, T.; Obata, K.; Yamanaka, H.; Dai, Y.; Tokunaga, A.; Noguchi, K. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aδ/c-fibers and colocalization with trk receptors. J. Comp. Neurol. 2005, 493, 596–606. [Google Scholar] [CrossRef]
- Marincsák, R.; Tóth, B.; Czifra, G.; Márton, I.; Rédl, P.; Tar, I.; Tóth, L.; Kovács, L.; Bíró, T. Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis. 2009, 15, 328–335. [Google Scholar] [CrossRef]
- Sbarbati, A.; Osculati, F. Extending the enteric nervous system. Biomed. Pharmacother. 2007, 61, 377–382. [Google Scholar] [CrossRef]
- Fehér, E.; Batbayar, B.; Zelles, T. Morphological evidence of sensory neurons in the root of the rat tongue. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 2005, 286A, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Altdorfer, K.; Zelles, T.; Pongor, É.; Fehér, E. Morphological evidence of local reflex arc in the rat’s tongue. Acta Physiol. Hung 2012, 99, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Tsumori, T.; Ando, A.; Yasui, Y. A light and electron microscope study of the connections between the preganglionic fibers and the intralingual ganglion cells in the rat. Anat. Embryol. 1996, 194, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Andreis, K.; Billingsley, J.; Naimi Shirazi, K.; Wager-Miller, J.; Johnson, C.; Bradshaw, H.; Straiker, A. Cannabinoid CB1 receptors regulate salivation. Sci. Rep. 2022, 12, 14182. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Yamamoto, T. Studies on neural mechanisms of the gustatory-salivary reflex in rabbits. J. Physiol. 1978, 285, 35–47. [Google Scholar] [CrossRef]
- Sukpiriyagul, A.; Chartchaiyarerk, R.; Tabtipwon, P.; Smanchat, B.; Prommas, S.; Bhamarapravatana, K.; Suwannarurk, K. Oral Tetrahydrocannabinol (THC):Cannabinoid (CBD) Cannabis Extract Adjuvant for Reducing Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial. Int. J. Womens Health 2023, 15, 1345–1352. [Google Scholar] [CrossRef]
- Jo, Y.-H.; Chen, Y.-J.J.; Chua, S.C.; Talmage, D.A.; Role, L.W. Integration of Endocannabinoid and Leptin Signaling in an Appetite-Related Neural Circuit. Neuron 2005, 48, 1055–1066. [Google Scholar] [CrossRef]
- Tam, J.; Cinar, R.; Liu, J.; Godlewski, G.; Wesley, D.; Jourdan, T.; Szanda, G.; Mukhopadhyay, B.; Chedester, L.; Liow, J.-S.; et al. Peripheral Cannabinoid-1 Receptor Inverse Agonism Reduces Obesity by Reversing Leptin Resistance. Cell Metab. 2012, 16, 167–179. [Google Scholar] [CrossRef]
- Pirino, C.; Cappai, M.G.; Maranesi, M.; Tomassoni, D.; Giontella, A.; Pinna, W.; Boiti, C.; Kamphues, J.; Dall’Aglio, C. The presence and distribution of cannabinoid type 1 and 2 receptors in the mandibular gland: The influence of different physical forms of diets on their expression in piglets. J. Anim. Physiol. Anim. Nutr. 2018, 102, e870–e876. [Google Scholar] [CrossRef]
- Prestifilippo, J.P.; Fernández-Solari, J.; de la Cal, C.; Iribarne, M.; Suburo, A.M.; Rettori, V.; McCann, S.M.; Elverdin, J.C. Inhibition of Salivary Secretion by Activation of Cannabinoid Receptors. Exp. Biol. Med. 2006, 231, 1421–1429. [Google Scholar] [CrossRef]
- Kopach, O.; Vats, J.; Netsyk, O.; Voitenko, N.; Irving, A.; Fedirko, N. Cannabinoid receptors in submandibular acinar cells: Functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling. J. Cell Sci. 2012, 125, 1884–1895. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.Ø.; Arendt-Nielsen, L.; Boudreau, S.A. A Comparison of Oral Sensory Effects of Three TRPA1 Agonists in Young Adult Smokers and Non-smokers. Front. Physiol. 2017, 8, 663. [Google Scholar] [CrossRef] [PubMed]
- Toschi, A.; Galiazzo, G.; Piva, A.; Tagliavia, C.; Mazzuoli-Weber, G.; Chiocchetti, R.; Grilli, E. Cannabinoid and Cannabinoid-Related Receptors in the Myenteric Plexus of the Porcine Ileum. Animals 2021, 11, 263. [Google Scholar] [CrossRef] [PubMed]
- Lillo, J.; Raïch, I.; Silva, L.; Zafra, D.A.; Lillo, A.; Ferreiro-Vera, C.; Sánchez de Medina, V.; Martínez-Orgado, J.; Franco, R.; Navarro, G. Regulation of Expression of Cannabinoid CB2 and Serotonin 5HT1A Receptor Complexes by Cannabinoids in Animal Models of Hypoxia and in Oxygen/Glucose-Deprived Neurons. Int. J. Mol. Sci. 2022, 23, 9695. [Google Scholar] [CrossRef] [PubMed]
Primary Antibody | Host | Code | Dilution | Source |
---|---|---|---|---|
CB1R | Rabbit | ab23703 | 1:100 | Abcam |
CB2R | Mouse | sc-293188 | 1:50 | Santa Cruz |
CB2R | Rabbit | 13H43L20 | 1:250 | Thermo Fisher |
GFAP | Chicken | ab-4674 | 1:800 | Abcam |
GPR55 | Rabbit | NB110-55498 | 1:100 | Novus Biol. |
S100 | Rabbit | PC-157 | 1:50 | Oncogene |
SP | Rat | 10-515A | 1:500 | Fitzgerald |
Synaptophysin | Rabbit | ab14692 | 1:100 | Abcam |
TRPA1 | Rabbit | 100-91319 | 1:400 | Novus Biol. |
TRPV1 | Rabbit | ACC-030 | 1:200 | Alomone |
Secondary Antibody | Host | Code | Dilution | Source |
---|---|---|---|---|
Anti-mouse IgG Alexa-594 | Donkey | A-21203 | 1:500 | Thermo Fisher |
Anti-rat 594 | Donkey | A-21209 | 1:500 | Thermo Fisher |
Anti-rabbit 488 | Donkey | A-21206 | 1:1000 | Thermo Fisher |
Anti-chicken TRITC | Donkey | 703-025-155 | 1:200 | Jackson |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamith Cunha, R.; Grilli, E.; Piva, A.; Delprete, C.; Franciosi, C.; Caprini, M.; Chiocchetti, R. The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue. Molecules 2024, 29, 4613. https://doi.org/10.3390/molecules29194613
Zamith Cunha R, Grilli E, Piva A, Delprete C, Franciosi C, Caprini M, Chiocchetti R. The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue. Molecules. 2024; 29(19):4613. https://doi.org/10.3390/molecules29194613
Chicago/Turabian StyleZamith Cunha, Rodrigo, Ester Grilli, Andrea Piva, Cecilia Delprete, Cecilia Franciosi, Marco Caprini, and Roberto Chiocchetti. 2024. "The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue" Molecules 29, no. 19: 4613. https://doi.org/10.3390/molecules29194613
APA StyleZamith Cunha, R., Grilli, E., Piva, A., Delprete, C., Franciosi, C., Caprini, M., & Chiocchetti, R. (2024). The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue. Molecules, 29(19), 4613. https://doi.org/10.3390/molecules29194613