Synthesis of [11C]BIIB104, an α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic-Acid-Positive Allosteric Modulator, and Evaluation of the Bio-Distribution in Non-Human Primate Brains Using Positron Emission Tomography
Abstract
:1. Introduction
2. Result and Discussion
3. Materials and Methods
3.1. Radiochemistry
General
3.2. Synthesis of [11C]BIIB104
3.3. Quality Control and Molar Activity (MA) Determination
3.4. Study Design and PET Measurements in Non-Human Primates (NHPs)
3.5. Arterial Blood Sampling and Radiometabolite Analysis
3.6. Protein Binding
3.7. Image and Kinetic Model Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buonarati, O.R.; Hammes, E.A.; Watson, J.F.; Greger, I.H.; Hell, J.W. Mechanisms of postsynaptic localization of AMPA-type glutamate receptors and their regulation during long-term potentiation. Sci. Signal. 2019, 12, eaar6889. [Google Scholar] [CrossRef]
- Kamalova, A.; Nakagawa, T. AMPA receptor structure and auxiliary subunits. J. Physiol. 2021, 599, 453–469. [Google Scholar] [CrossRef]
- Ayalon, G.; Stern-Bach, Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 2001, 31, 103–113. [Google Scholar] [CrossRef]
- Zhang, D.; Hou, Q.; Wang, M.; Lin, A.; Jarzylo, L.; Navis, A.; Raissi, A.; Liu, F.; Man, H.Y. Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J. Neurosci. 2009, 29, 4498–4511. [Google Scholar] [CrossRef]
- Henley, J.M.; Barker, E.A.; Glebov, O.O. Routes, destinations and delays: Recent advances in AMPA receptor trafficking. Trends Neurosci. 2011, 34, 258–268. [Google Scholar] [CrossRef]
- Younger, D.S. Autoimmune Encephalitides. Neurol. Clin. 2019, 37, 359–381. [Google Scholar] [CrossRef]
- Allison, D.W.; Gelfand, V.I.; Spector, I.; Craig, A.M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: Differential attachment of NMDA versus AMPA receptors. J. Neurosci. 1998, 18, 2423–2436. [Google Scholar] [CrossRef]
- Chater, T.E.; Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. 2014, 8, 401. [Google Scholar] [CrossRef]
- Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999, 51, 7–61. [Google Scholar]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef]
- Humeau, Y.; Reisel, D.; Johnson, A.W.; Borchardt, T.; Jensen, V.; Gebhardt, C.; Bosch, V.; Gass, P.; Bannerman, D.M.; Good, M.A.; et al. A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J. Neurosci. 2007, 27, 10947–10956. [Google Scholar] [CrossRef]
- Ahn, K.; McKinney, M.K.; Cravatt, B.F. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem. Rev. 2008, 108, 1687–1707. [Google Scholar] [CrossRef]
- Annas, D.; Cheon, S.Y.; Yusuf, M.; Bae, S.J.; Ha, K.T.; Park, K.H. Synthesis and initial screening of lactate dehydrogenase inhibitor activity of 1,3-benzodioxole derivatives. Sci. Rep. 2020, 10, 19889. [Google Scholar] [CrossRef]
- Qneibi, M.; Hawash, M.; Jaradat, N.; Bdir, S. Affecting AMPA Receptor Biophysical Gating Properties with Negative Allosteric Modulators. Mol. Neurobiol. 2022, 59, 5264–5275. [Google Scholar] [CrossRef]
- Anggono, V.; Huganir, R.L. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol. 2012, 22, 461–469. [Google Scholar] [CrossRef]
- Zhang, H.; Bramham, C.R. Bidirectional Dysregulation of AMPA Receptor-Mediated Synaptic Transmission and Plasticity in Brain Disorders. Front. Synaptic. Neurosci. 2020, 12, 26. [Google Scholar] [CrossRef]
- Benesh, J.L.; Mueller, T.M.; Meador-Woodruff, J.H. AMPA receptor subunit localization in schizophrenia anterior cingulate cortex. Schizophr. Res. 2022, 249, 16–24. [Google Scholar] [CrossRef]
- Egbenya, D.L.; Hussain, S.; Lai, Y.C.; Xia, J.; Anderson, A.E.; Davanger, S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol. Cell. Neurosci. 2018, 92, 93–103. [Google Scholar] [CrossRef]
- Qu, W.; Yuan, B.; Liu, J.; Liu, Q.; Zhang, X.; Cui, R.; Yang, W.; Li, B. Emerging role of AMPA receptor subunit GluA1 in synaptic plasticity: Implications for Alzheimer’s disease. Cell Prolif. 2021, 54, e12959. [Google Scholar] [CrossRef]
- Zarate, C.A., Jr.; Manji, H.K. The role of AMPA receptor modulation in the treatment of neuropsychiatric diseases. Exp. Neurol. 2008, 211, 7–10. [Google Scholar] [CrossRef]
- Phelps, M.E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA 2000, 97, 9226–9233. [Google Scholar] [CrossRef]
- Fuchigami, T.; Nakayama, M.; Yoshida, S. Development of PET and SPECT probes for glutamate receptors. Sci. World J. 2015, 2015, 716514. [Google Scholar] [CrossRef]
- Lee, H.G.; Milner, P.J.; Placzek, M.S.; Buchwald, S.L.; Hooker, J.M. Virtually instantaneous, room-temperature [(11)C]-cyanation using biaryl phosphine Pd(0) complexes. J. Am. Chem. Soc. 2015, 137, 648–651. [Google Scholar] [CrossRef]
- Takahata, K.; Kimura, Y.; Seki, C.; Tokunaga, M.; Ichise, M.; Kawamura, K.; Ono, M.; Kitamura, S.; Kubota, M.; Moriguchi, S.; et al. A human PET study of [(11)C]HMS011, a potential radioligand for AMPA receptors. Ejnmmi Res. 2017, 7, 63. [Google Scholar] [CrossRef]
- Oi, N.; Tokunaga, M.; Suzuki, M.; Nagai, Y.; Nakatani, Y.; Yamamoto, N.; Maeda, J.; Minamimoto, T.; Zhang, M.R.; Suhara, T.; et al. Development of Novel PET Probes for Central 2-Amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic Acid Receptors. J. Med. Chem. 2015, 58, 8444–8462. [Google Scholar] [CrossRef]
- Chen, J.; Gan, J.; Sun, J.; Chen, Z.; Fu, H.; Rong, J.; Deng, X.; Shang, J.; Gong, J.; Shao, T.; et al. Radiosynthesis and preliminary evaluation of (11)C-labeled 4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-benzo[e] [1,2,4] thiadiazine 1,1-dioxide for PET imaging AMPA receptors. Tetrahedron Lett. 2020, 61, 151635. [Google Scholar] [CrossRef]
- Manos-Turvey, A.; Becker, G.; Francotte, P.; Serrano, M.E.; Luxen, A.; Pirotte, B.; Plenevaux, A.; Lemaire, C. Fully Automated Synthesis and Evaluation of [(18) F]BPAM121: Potential of an AMPA Receptor Positive Allosteric Modulator as PET Radiotracer. ChemMedChem 2019, 14, 788–795. [Google Scholar] [CrossRef]
- Bednar, M.M.; DeMartinis, N.; Banerjee, A.; Bowditch, S.; Gaudreault, F.; Zumpano, L.; Lin, F.R. The Safety and Efficacy of PF-04958242 in Age-Related Sensorineural Hearing Loss: A Randomized Clinical Trial. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 607–613. [Google Scholar] [CrossRef]
- Ranganathan, M.; DeMartinis, N.; Huguenel, B.; Gaudreault, F.; Bednar, M.M.; Shaffer, C.L.; Gupta, S.; Cahill, J.; Sherif, M.A.; Mancuso, J.; et al. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242. Mol. Psychiatry 2017, 22, 1633–1640. [Google Scholar] [CrossRef]
- Shaffer, C.L.; Patel, N.C.; Schwarz, J.; Scialis, R.J.; Wei, Y.; Hou, X.J.; Xie, L.; Karki, K.; Bryce, D.K.; Osgood, S.M.; et al. The discovery and characterization of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor potentiator N-(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-ylpropane-2-sulfonamide (PF-04958242). J. Med. Chem. 2015, 58, 4291–4308. [Google Scholar] [CrossRef]
- Airaksinen, A.J.; Andersson, J.; Truong, P.; Karlsson, O.; Halldin, C. Radiosynthesis of [11C] ximelagatran via palladium catalyzed [11C] cyanation. J. Label. Compd. Radiopharm. Off. J. Int. Isot. Soc. 2008, 51, 1–5. [Google Scholar] [CrossRef]
- Clark, J.D.; Gebhart, G.F.; Gonder, J.C.; Keeling, M.E.; Kohn, D.F. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997, 38, 41–48. [Google Scholar] [CrossRef]
- Varrone, A.; Sjoholm, N.; Eriksson, L.; Gulyas, B.; Halldin, C.; Farde, L. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur. J. Nucl. Med. Mol. I 2009, 36, 1639–1650. [Google Scholar] [CrossRef]
- Moein, M.M.; Nakao, R.; Amini, N.; Abdel-Rehim, M.; Schou, M.; Halldin, C. Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. Trac-Trends Anal. Chem. 2019, 110, 1–7. [Google Scholar] [CrossRef]
- Finnema, S.J.; Stepanov, V.; Nakao, R.; Sromek, A.W.; Zhang, T.Z.; Neumeyer, J.L.; George, S.R.; Seeman, P.; Stabin, M.G.; Jonsson, C.; et al. F-18-MCL-524, an F-18-Labeled Dopamine D-2 and D-3 Receptor Agonist Sensitive to Dopamine: A Preliminary PET Study. J. Nucl. Med. 2014, 55, 1164–1170. [Google Scholar] [CrossRef]
Reaction Solvents | Amount of Precursor (mg) | Reaction Temperature (°C) | Incorporation Yield (%) |
---|---|---|---|
DMF | 0.5 | 75 | 0 |
135 | <1% | ||
150 | <1% | ||
1.0 | 100 | 0 | |
135 | <2% | ||
150 | <2% | ||
2.0 | 100 | 0 | |
135 | <2% | ||
150 | <2% | ||
5.0 | 120 | 3% | |
135 | 7% | ||
150 | 5% | ||
10 | 120 | 4% | |
135 | 5% | ||
150 | 3% | ||
DMSO | 0.5 | 75 | 0 |
135 | 5% | ||
150 | 4% | ||
1.0 | 100 | 2% | |
135 | 15% | ||
150 | 12% | ||
2.0 | 120 | 10% | |
135 | 26% | ||
150 | 18% | ||
4.0 | 135 | 57% | |
6.0 | 135 | 55% | |
10.0 | 135 | 58% |
NHP | Sex | Body Weight (g) | Injected Radioactivity (MBq) | Molar Radioactivity (GBq/µmol) | Injected Mass (µg) | Condition |
---|---|---|---|---|---|---|
NHP1 | F | 6060 | 151 | 49.3 | 1.20 | Baseline |
162 | 43.7 | 1.45 | BIIB104 (0.032 mg/kg) | |||
NHP2 | F | 6750 | 149 | 49.9 | 1.17 | Baseline |
158 | 27.0 | 2.29 | BIIB104 (0.032 mg/kg) |
A (NHP1 at Baseline) | |||||||||
---|---|---|---|---|---|---|---|---|---|
1TC | 2TC | Logan | |||||||
K1 | k2 | VT | K1 | k2 | k3 | k4 | VT | VT | |
cer | 0.48 | 0.17 | 2.89 | 0.61 | 0.51 | 0.36 | 0.20 | 3.33 | 4.01 |
cau | 0.25 | 0.07 | 3.36 | 0.26 | 0.09 | 0.01 | 0.01 | 4.89 | 3.90 |
put | 0.30 | 0.08 | 3.85 | 0.31 | 0.09 | 0.01 | 0.01 | 4.86 | 4.23 |
tha | 0.29 | 0.06 | 4.84 | 0.31 | 0.09 | 0.03 | 0.04 | 5.45 | 5.23 |
fro | 0.18 | 0.06 | 3.17 | 0.19 | 0.07 | 0.01 | 0.02 | 3.89 | 3.41 |
occ | 0.31 | 0.10 | 3.22 | 0.33 | 0.13 | 0.02 | 0.03 | 4.04 | 3.86 |
hip | 0.30 | 0.09 | 3.20 | 0.31 | 0.12 | 0.01 | 0.02 | 4.07 | 3.73 |
B (NHP1 after pretreatment with BIIB104) | |||||||||
1TC | 2TC | Logan | |||||||
K1 | k2 | VT | K1 | k2 | k3 | k4 | VT | VT | |
cer | 0.51 | 0.18 | 2.75 | 0.54 | 0.23 | 0.02 | 0.14 | 2.64 | 3.32 |
cau | 0.53 | 0.18 | 2.87 | 0.68 | 0.64 | 0.52 | 0.25 | 3.26 | 3.58 |
put | 0.60 | 0.19 | 3.25 | 0.65 | 0.24 | 0.02 | 0.05 | 3.69 | 3.95 |
tha | 0.33 | 0.07 | 4.53 | 0.36 | 0.11 | 0.04 | 0.08 | 4.80 | 4.59 |
fro | 0.35 | 0.13 | 2.76 | 0.36 | 0.15 | 0.01 | 0.03 | 3.26 | 3.12 |
occ | 0.37 | 0.12 | 3.06 | 0.38 | 0.14 | 0.01 | 0.01 | 4.16 | 3.41 |
hip | 0.35 | 0.12 | 2.95 | 0.39 | 0.20 | 0.07 | 0.09 | 3.37 | 3.32 |
C (NHP2 at baseline) | |||||||||
1TC | 2TC | Logan | |||||||
K1 | k2 | VT | K1 | k2 | k3 | k4 | VT | VT | |
cer | 0.48 | 0.19 | 2.56 | 0.73 | 1.16 | 1.06 | 0.32 | 2.68 | 2.96 |
cau | 0.33 | 0.11 | 3.05 | 0.36 | 0.17 | 0.04 | 0.06 | 3.62 | 3.50 |
put | 0.38 | 0.12 | 3.24 | 0.41 | 0.17 | 0.03 | 0.05 | 3.83 | 3.71 |
tha | 0.40 | 0.10 | 3.97 | 0.53 | 0.49 | 0.60 | 0.21 | 4.22 | 4.22 |
fro | 0.24 | 0.08 | 2.87 | 0.26 | 0.11 | 0.02 | 0.05 | 3.11 | 3.05 |
occ | 0.51 | 0.18 | 2.78 | 0.68 | 0.67 | 0.53 | 0.29 | 2.92 | 3.37 |
hip | 0.37 | 0.14 | 2.67 | 0.59 | 0.86 | 0.66 | 0.19 | 3.01 | 3.16 |
D (NHP2 after pretreatment with BIIB104) | |||||||||
1TC | 2TC | Logan | |||||||
K1 | k2 | VT | K1 | k2 | k3 | k4 | VT | VT | |
cer | 0.37 | 0.15 | 2.51 | 0.53 | 0.95 | 1.20 | 0.33 | 2.59 | 2.95 |
cau | 0.47 | 0.17 | 2.73 | 0.67 | 0.78 | 0.61 | 0.25 | 3.00 | 3.55 |
put | 0.49 | 0.16 | 3.00 | 0.67 | 0.63 | 0.48 | 0.23 | 3.25 | 3.77 |
tha | 0.33 | 0.08 | 4.02 | 0.45 | 0.59 | 0.87 | 0.19 | 4.30 | 4.28 |
fro | 0.33 | 0.12 | 2.87 | 0.37 | 0.19 | 0.06 | 0.08 | 3.38 | 3.34 |
occ | 0.32 | 0.11 | 2.93 | 0.34 | 0.15 | 0.02 | 0.04 | 3.56 | 3.39 |
hip | 0.33 | 0.12 | 2.76 | 0.39 | 0.20 | 0.07 | 0.09 | 3.37 | 3.32 |
NHP1 | Logan | NHP2 | Logan |
---|---|---|---|
cer | −17% | cer | 0% |
cau | −8% | cau | +2% |
put | −6% | put | +2% |
tha | −12% | tha | +1% |
fro | −8% | fro | +10% |
occ | −12% | occ | +1% |
hip | −11% | hip | +6% |
Average | −11% | +3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nag, S.; Jia, K.; Arakawa, R.; Datta, P.; Scott, D.; Shaffer, C.; Moein, M.M.; Hutchison, M.; Kaliszczak, M.; Halldin, C. Synthesis of [11C]BIIB104, an α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic-Acid-Positive Allosteric Modulator, and Evaluation of the Bio-Distribution in Non-Human Primate Brains Using Positron Emission Tomography. Molecules 2024, 29, 427. https://doi.org/10.3390/molecules29020427
Nag S, Jia K, Arakawa R, Datta P, Scott D, Shaffer C, Moein MM, Hutchison M, Kaliszczak M, Halldin C. Synthesis of [11C]BIIB104, an α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic-Acid-Positive Allosteric Modulator, and Evaluation of the Bio-Distribution in Non-Human Primate Brains Using Positron Emission Tomography. Molecules. 2024; 29(2):427. https://doi.org/10.3390/molecules29020427
Chicago/Turabian StyleNag, Sangram, Kevin Jia, Ryosuke Arakawa, Prodip Datta, Daniel Scott, Christopher Shaffer, Mohammad Mahdi Moein, Matthew Hutchison, Maciej Kaliszczak, and Christer Halldin. 2024. "Synthesis of [11C]BIIB104, an α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic-Acid-Positive Allosteric Modulator, and Evaluation of the Bio-Distribution in Non-Human Primate Brains Using Positron Emission Tomography" Molecules 29, no. 2: 427. https://doi.org/10.3390/molecules29020427
APA StyleNag, S., Jia, K., Arakawa, R., Datta, P., Scott, D., Shaffer, C., Moein, M. M., Hutchison, M., Kaliszczak, M., & Halldin, C. (2024). Synthesis of [11C]BIIB104, an α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic-Acid-Positive Allosteric Modulator, and Evaluation of the Bio-Distribution in Non-Human Primate Brains Using Positron Emission Tomography. Molecules, 29(2), 427. https://doi.org/10.3390/molecules29020427