The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs
Abstract
:1. Introduction
2. Meat Analogous Products
3. Chia Seed
4. Chia Ingredients
4.1. Whole Chia Flour (WCF)
4.2. Defatted Chia Flour (DCF)
4.3. Chia Mucilage
4.4. Chia Oil
4.5. Coproduct 1 and Coproduct 2
5. Final Considerations and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Meat Analog as Future Food: A Review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef]
- RRizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.S.; Tonato, D.; Mazutti, M.A.; de Abreu, B.R.; da Costa Cabrera, D.; D’Oca, C.D.R.M.; Prentice-Hernández, C.; Salas-Mellado, M.; de las, M. Yield and Quality of Chia Oil Extracted via Different Methods. J. Food Eng. 2019, 262, 200–208. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Salas-Mellado, M.; de las, M. Addition of Chia Seed Mucilage for Reduction of Fat Content in Bread and Cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef]
- Lira, M.M.; de Oliveira Filho, J.G.; de Sousa, T.L.; da Costa, N.M.; Lemes, A.C.; Fernandes, S.S.; Egea, M.B. Selected Plants Producing Mucilage: Overview, Composition, and Their Potential as Functional Ingredients in the Development of Plant-Based Foods. Food Res. Int. 2023, 169, 112822. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Ant, M.; Esp, L.; Machado, S.; Costa, A.S.G.; Manuel, Á.; Pardo, J.E.; Oliveira, M.B.P.P.; Alves, R.C. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef] [PubMed]
- Aiking, H.; de Boer, J. The next Protein Transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef]
- Pyett, S.; de Vet, E.; Trindade, L.M.; van Zanten, H.; Fresco, L.O. Chickpeas, Crickets and Chlorella: Our Future Proteins; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2019; pp. 1–33. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Benjamin Ferrer Innova Market Insights’ Top Ten Trends for 2022: Health of the Planet Overtakes Personal Health Priorities. Available online: https://www.foodingredientsfirst.com/news/innova-market-insights-top-ten-trends-for-2022-health-of-the-planet-overtakes-personal-health-priorities.html#:~:text=Plant-Based%3A (accessed on 20 September 2023).
- Yang, Y.; Zheng, Y.; Ma, W.; Zhang, Y.; Sun, C.; Fang, Y. Meat and Plant-Based Meat Analogs: Nutritional Profile and In Vitro Digestion Comparison. Food Hydrocoll. 2023, 143, 108886. [Google Scholar] [CrossRef]
- Ramachandraiah, K. Potential Development of Sustainable 3d-Printed Meat Analogues: A Review. Sustain. 2021, 13, 938. [Google Scholar] [CrossRef]
- Alternative Proteins Council Industry Compliance Guidelines for Labelling of Meat & Dairy Alternative Products (Plant Based) in Australia and New Zealand. Available online: https://www.alternativeproteinscouncil.org/guidelines-for-labelling-of-meat-dairy-alternative-products-au-nz/ (accessed on 17 September 2023).
- Singh, A.; Sit, N. Meat Analogues: Types, Methods of Production and Their Effect on Attributes of Developed Meat Analogues. Food Bioprocess Technol. 2022, 15, 2664–2682. [Google Scholar] [CrossRef]
- Bohrer, B.M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Franca, P.A.P.; Duque-Estrada, P.; da Fonseca e Sá, B.F.; van der Goot, A.J.; Pierucci, A.P.T.R. Meat Substitutes—Past, Present, and Future of Products Available in Brazil: Changes in the Nutritional Profile. Futur. Foods 2022, 5, 100133. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, L.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H. Structure Characterization and Bioactivities of Protein Hydrolysates of Chia Seed Expeller Processed with Different Proteases In Silico and In Vitro. Food Biosci. 2023, 55, 102781. [Google Scholar] [CrossRef]
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.S.; Jo, C. Status of Meat Alternatives and Their Potential Role in the Future Meat Market—A Review. Asian-Australas. J. Anim. Sci. 2020, 33, 1533–1543. [Google Scholar] [CrossRef]
- Nyaguthii, K.C.; Omwamba, M.; Nduko, J.M. Gum Arabic and Soy Protein Concentrate as Binding Agents on Quality and Nutritional Properties of Mushroom-Based Sausage Analogues. Food Humanit. 2023, 1, 1627–1636. [Google Scholar] [CrossRef]
- Mazumder, M.A.R.; Panpipat, W.; Chaijan, M.; Shetty, K.; Rawdkuen, S. Role of Plant Protein on the Quality and Structure of Meat Analogs: A New Perspective for Vegetarian Foods. Futur. Foods 2023, 8, 100280. [Google Scholar] [CrossRef]
- Lin, Q.; Pan, L.; Deng, N.; Sang, M.; Cai, K.; Chen, C.; Han, J.; Ye, A. Protein Digestibility of Textured-Wheat-Protein (TWP) -Based Meat Analogues: (I) Effects of Fibrous Structure. Food Hydrocoll. 2022, 130, 107694. [Google Scholar] [CrossRef]
- Diaz, J.M.R.; Kantanen, K.; Edelmann, J.M.; Suhonen, H.; Sontag-Strohm, T.; Jouppila, K.; Piironen, V. Fibrous Meat Analogues Containing Oat Fiber Concentrate and Pea Protein Isolate: Mechanical and Physicochemical Characterization. Innov. Food Sci. Emerg. Technol. 2022, 77, 102954. [Google Scholar] [CrossRef]
- McClements, D.J.; Grossmann, L. The Science of Plant-Based Foods: Constructing next-Generation Meat, Fish, Milk, and Egg Analogs. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4049–4100. [Google Scholar] [CrossRef]
- Hrncic, M.K.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application. Molecules 2020, 25, 1–19. [Google Scholar]
- Grancieri, M.; Martino, H.S.D.; Gonzalez de Mejia, E. Digested Total Protein and Protein Fractions from Chia Seed (Salvia hispanica L.) Had High Scavenging Capacity and Inhibited 5-LOX, COX-1-2, and INOS Enzymes. Food Chem. 2019, 289, 204–214. [Google Scholar] [CrossRef]
- Aziz, T.; Ihsan, F.; Khan, A.A.; Rahman, S.; Zamani, G.Y.; Alharbi, M.; Alshammari, A.; Alasmari, A.F. Assessing the Pharmacological and Biochemical Effects of Salvia Hispanica (Chia Seed) against Oxidized Helianthus Annuus (Sunflower) Oil in Selected Animals. Acta Biochim. Pol. 2023, 70, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Mishima, M.D.V.; da Silva, B.P.; Gomes, M.J.C.; Toledo, R.C.L.; Pereira, C.E.R.; Costa, N.M.B.; Martino, H.S.D. Effect of Chia Flour Associated with High Fat Diet on Intestinal Health in Female Ovariectomized Wistar Rats. Eur. J. Nutr. 2023, 62, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Khalid, W.; Sajid, M.; Afifa, A.; Abdul, M.; Tahira, R.; Qaisrani, B.; Afzal, F.; Ali, A.; Modassar, M.; Nawaz, A.; et al. Chia Seeds (Salvia hispanica L.): A Therapeutic Weapon in Metabolic Disorders. Food Sci. Nutr. 2023, 11, 3–16. [Google Scholar] [CrossRef]
- Chan, G.A.H.; Fidelis, R.R.; de Oliveira Tavares, T.C.; Lopes, M.B.S.; Marques, K.R.; Rauber, W.A. Adubação Nitrogenada Em Plantas Medicinais de Salvia hispanica L. (Chia) Em Gurupi, Tocantins, Brasil. Revista Cubana de Plantas Medicinales 2020, 25, 1–14. [Google Scholar]
- Migliavacca, R.A.; da Silva, T.R.B.; de Vasconcelos, A.L.S.; Filho, W.M.; Baptistella, J.L.C. O cultivo da chia no brasil: Futuro e perpectivas. J. Agron. Sci. 2014, 3, 161–179. [Google Scholar]
- Ribeiro, I.Y.L.; de Oliveira, C.M.; Ferreira, L.M.; Morais, L.C. Viabilidade econômica da produção de chia (Salvia Hispânica L.) em Naviraí-MS. Encontro Int. Gestão Desenvolv. E Inovação 2022, 6, 1–19. [Google Scholar]
- Kulczynski, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef]
- Ghafoor, K.; Ahmed, I.A.M.; Özcan, M.M.; Al-Juhaimi, F.Y.; Babiker, E.E.; Azmi, I.U. An Evaluation of Bioactive Compounds, Fatty Acid Composition and Oil Quality of Chia (Salvia hispanica L.) Seed Roasted at Different Temperatures. Food Chem. 2020, 333, 127531. [Google Scholar] [CrossRef] [PubMed]
- Brandán, J.P.; Izquierdo, N.; Acreche, M.M. Oil and Protein Concentration and Fatty Acid Composition of Chia (Salvia hispanica L.) as Affected by Environmental Conditions. Ind. Crop. Prod. 2022, 177, 114496. [Google Scholar] [CrossRef]
- Motyka, S.; Skała, E.; Ekiert, H.; Szopa, A. Health-Promoting Approaches of the Use of Chia Seeds. J. Funct. Foods 2023, 103, 105480. [Google Scholar] [CrossRef]
- Gopalam, R.; Manasa, V.; Vaishnav, S.R.; Daga, P.; Tumaney, A.W. Profiling of Lipids, Nutraceuticals, and Bioactive Compounds Extracted from an Oilseed Rich in PUFA. Plant Foods Hum. Nutr. 2022, 77, 98–104. [Google Scholar] [CrossRef]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and Therapeutic Perspectives of Chia (Salvia hispanica L.): A Review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef]
- Ayerza, R. Crop Year Effects on Seed Yields, Growing Cycle Length, and Chemical Composition of Chia (Salvia hispanica L.) Growing in Ecuador and Bolivia. Emir. J. Food Agric. 2016, 28, 196–200. [Google Scholar] [CrossRef]
- Basuny, A.M.; Arafat, S.M.; Hikal, D.M. Chia (Salvia hispanica L.) Seed Oil Rich in Omega-3 Fatty Acid: A Healthy Alternative for Milk Fat in Ice Milk. Food Nutr. Sci. 2021, 12, 479–493. [Google Scholar] [CrossRef]
- Alcântara, M.A. Chia (Salvia hispanica L.): Potencial Antioxidante, Nutricional e Funcional. Ph.D. Thesis, Universidade Federal da Paraíba, João Pessoa, Brazil, 2016. [Google Scholar]
- Ghafoor, K.; Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Ahmed, I.A.M.; E Babiker, E. The Effect of Boiling, Germination and Roasting on Bioactive Properties, Phenolic Compounds, Fatty Acids and Minerals of Chia Seed (Salvia hispanica L.) and Oils. Int. J. Gastron. Food Sci. 2022, 27, 100447. [Google Scholar] [CrossRef]
- Ranjana, D.; Akan, D. Advances in Chia Seed Research. Adv. Biotechnol. Microbiol. 2017, 5, 555661. [Google Scholar] [CrossRef]
- Zettel, V.; Hitzmann, B. Applications of Chia (Salvia hispanica L.) in Food Products. Trends Food Sci. Technol. 2018, 80, 43–50. [Google Scholar] [CrossRef]
- Hsieh, K.C.; Lin, T.C.; Kuo, M.I. Effect of Whole Chia Seed Flour on Gelling Properties, Microstructure and Texture Modification of Tofu. LWT 2022, 154, 112676. [Google Scholar] [CrossRef]
- Coronel, E.B.; Guiotto, E.N.; Aspiroz, M.C.; Tomás, M.C.; Nolasco, S.M.; Capitani, M.I. Development of Gluten-Free Premixes with Buckwheat and Chia Flours: Application in a Bread Product. LWT 2021, 141, 110916. [Google Scholar] [CrossRef]
- Coelho, M.; Salas-Mellado, M. Effects of Substituting Chia (Salvia hispanica L.) Flour or Seeds for Wheat Flour on the Quality of the Bread. LWT-Food Sci. Technol. 2014, 60, 729–736. [Google Scholar] [CrossRef]
- Luna Pizarro, P.; Almeida, E.L.; Sammán, N.C.; Chang, Y.K. Evaluation of Whole Chia (Salvia hispanica L.) Flour and Hydrogenated Vegetable Fat in Pound Cake. LWT-Food Sci. Technol. 2013, 54, 73–79. [Google Scholar] [CrossRef]
- de Souza Paglarini, C.; de Figueiredo Furtado, G.; Honório, A.R.; Mokarzel, L.; da Silva Vidal, V.A.; Ribeiro, A.P.B.; Cunha, R.L.; Pollonio, M.A.R. Functional Emulsion Gels as Pork Back Fat Replacers in Bologna Sausage. Food Struct. 2019, 20, 100105. [Google Scholar] [CrossRef]
- Pires, M.A.; Barros, J.C.; Rodrigues, I.; Sichetti Munekata, P.E.; Trindade, M.A. Improving the Lipid Profile of Bologna Type Sausages with Echium (Echium Plantagineum L.) Oil and Chia (Salvia hispanica L) Flour. LWT-Food Sci. Technol. 2020, 119, 108907. [Google Scholar] [CrossRef]
- Pintado, T.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Strategies for Incorporation of Chia (Salvia hispanica L.) in Frankfurters as a Health-Promoting Ingredient. Meat Sci. 2016, 114, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Nassef, S.; El-Hadidy, G.; Abdelsattar, A. Impact of Defatted Chia Seeds Flour Addition on Chemical, Rheological, and Sensorial Properties of Toast Bread. Egypt. J. Agric. Sci. 2023, 0, 55–66. [Google Scholar] [CrossRef]
- Ibrahim, E.S.K.; Ghani, M.A. The Effect of Enzymatic Hydrolysis on the Antioxidant Activities and Amino Acid Profiles of Defatted Chia (Salvia hispanica L.) Flour. Food Res. 2020, 4, 38–50. [Google Scholar] [CrossRef]
- Aranibar, C.; Aguirre, A.; Borneo, R. Utilization of a By-Product of Chia Oil Extraction as a Potential Source for Value Addition in Wheat Muffins. J. Food Sci. Technol. 2019, 56, 4189–4197. [Google Scholar] [CrossRef]
- Aranibar, C.; Pigni, N.B.; Martínez, M.L.; Aguirre, A.; Ribotta, P.D.; Wunderlin, D.A.; Borneo, R. Influence of the Extraction Conditions on Chia Oil Quality and Partially Defatted Flour Antioxidant Properties. J. Food Sci. Technol. 2022, 59, 1982–1993. [Google Scholar] [CrossRef] [PubMed]
- Mas, A.L.; Brigante, F.I.; Salvucci, E.; Pigni, N.B.; Martinez, M.L.; Ribotta, P.; Wunderlin, D.A.; Baroni, M.V. Defatted Chia Flour as Functional Ingredient in Sweet Cookies. How Do Processing, Simulated Gastrointestinal Digestion and Colonic Fermentation Affect Its Antioxidant Properties? Food Chem. 2020, 316, 126279. [Google Scholar] [CrossRef]
- De Falco, B.; Amato, M.; Lanzotti, V. Chia Seeds Products: An Overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Ewerlin, M.; Bortolatto, R.; Torquato, A.S.; Steinmacher, N.C.; Rodrigues, A.C. Proximate Composition and Fatty Acids from Partially Defatted Chia (Salvia Hispanica) Flour. Rev. Virtual Quim. 2018, 10, 13–20. [Google Scholar] [CrossRef]
- Lin, K.Y.; Daniel, J.R.; Whistler, R.L. Structure of Chia Seed Polysaccharide Exudate. Carbohydr. Polym. 1994, 23, 13–18. [Google Scholar] [CrossRef]
- Silva, L.A.; Sinnecker, P.; Cavalari, A.A.; Sato, A.C.K.; Perrechil, F.A. Extraction of Chia Seed Mucilage: Effect of Ultrasound Application. Food Chem. Adv. 2022, 1, 100024. [Google Scholar] [CrossRef]
- Câmara, A.K.F.I.; Okuro, P.K.; da Cunha, R.L.; Herrero, A.M.; Ruiz-Capillas, C.; Pollonio, M.A.R. Chia (Salvia hispanica L.) Mucilage as a New Fat Substitute in Emulsified Meat Products: Technological, Physicochemical, and Rheological Characterization. LWT—Food Sci. Technol. 2020, 125, 109193. [Google Scholar] [CrossRef]
- Graça, C.; Marques, D.; Sousa, I.; Monteiro, A.R.G. Xanthan Gum as an Alternative to Replace the Fat for Coating and Flavoring the Extruded Snacks. J. Food Sci. Technol. 2020, 57, 3151–3156. [Google Scholar] [CrossRef] [PubMed]
- Toledo, S.Y.G.; Wu, J. Impact of Adding Polysaccharides on the Stability of Egg Yolk/Fish Oil Emulsions under Accelerated Shelf-Life Conditions. Molecules 2021, 26, 4020. [Google Scholar] [CrossRef]
- Armaforte, E.; Hopper, L.; Stevenson, G. Preliminary Investigation on the Effect of Proteins of Different Leguminous Species (Cicer arietinum, Vicia faba and Lens culinarius) on the Texture and Sensory Properties of Egg-Free Mayonnaise. LWT 2021, 136, 110341. [Google Scholar] [CrossRef]
- Câmara, A.K.F.I.; Vidal, V.A.S.; Santos, M.; Bernardinelli, O.D.; Sabadini, E.; Pollonio, M.A.R. Reducing Phosphate in Emulsi Fi Ed Meat Products by Adding Chia (Salvia hispanica L.) Mucilage in Powder or Gel Format: A Clean Label Technological Strategy. Meat Sci. 2020, 163, 108085. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lu, J.; Zhang, J.; Su, X.; Peng, X.; Guan, H.; Shi, C. Emulsion Gels Prepared with Chia Mucilage and Olive Oil as a New Animal Fat Replacer in Beef Patties. J. Food Process. Preserv. 2022, 46, e16972. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Pawel, T.; Bakalis, S.; Zhang, W. Structural Characteristics of High-Moisture Extrudates with Oil-in-Water Emulsions. Food Res. Int. 2022, 158, 111554. [Google Scholar] [CrossRef]
- Hussain Badar, I.; Liu, H.; Qian, S.; Xia, X.; Kong, B. Future Trends of Processed Meat Products Concerning Perceived Healthiness: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4739–4778. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Lorenzo, J.M.; Pateiro, M.; Munekata, P.E.S.; dos Santos, B.A.; Pinton, M.B.; Cichoski, A.J.; Campagnol, P.C.B. Main Animal Fat Replacers for the Manufacture of Healthy Processed Meat Products. Crit. Rev. Food Sci. Nutr. 2022, 9, 1–20. [Google Scholar] [CrossRef]
- Oteri, M.; Bartolomeo, G.; Rigano, F.; Aspromonte, J.; Trovato, E.; Purcaro, G.; Dugo, P.; Mondello, L.; Beccaria, M. Comprehensive Chemical Characterization of Chia (Salvia hispanica L.) Seed Oil with a Focus on Minor Lipid Components. Foods 2023, 12, 23. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Konopka, I.; Czaplicki, S.; Tańska, M. Composition and Oxidative Stability of Oil from Salvia hispanica L. Seeds in Relation to Extraction Method. Eur. J. Lipid Sci. Technol. 2017, 119, 1–9. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Prentice, C.; Salas-mellado, M.D.M. Chia Seed (Salvia hispanica). In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer Nature: Singapore, 2021; pp. 285–303. ISBN 9789811541940. [Google Scholar]
- Cho, Y.; Bae, J.; Choi, M. Physicochemical Characteristics of Meat Analogs Supplemented with Vegetable Oils. Foods 2023, 12, 312. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, S.; Eun-yeong, L.; Hwang, Y.-H.; Joo, S. Traditional Plant-Based Meat Alternatives, Current, and Future Perspective: A Review. J. Agric. Life Sci. 2021, 55, 1–10. [Google Scholar] [CrossRef]
- González, A.; Martínez, M.L.; León, A.E.; Ribotta, P.D. Effects on Bread and Oil Quality after Functionalization with Microencapsulated Chia Oil. J. Sci. Food Agric. 2018, 98, 4903–4910. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Taj, I.; Ajmal, M.; Junaid, M. Omega-3 Fatty Acids, Phenolic Compounds and Antioxidant Characteristics of Chia Oil Supplemented Margarine. Lipids Health Dis. 2017, 16, 102. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, M.M.C. Desenvolvimento e Caracterização de Cookies Adicionados de Óleo de Chia Microencapsulado. Master’s Thesis, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil, 2016. [Google Scholar]
- de Carvalho, F.A.L.; Lorenzo, J.M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M.A. Effect of Guarana (Paullinia cupana) Seed and Pitanga (Eugenia uniflora L.) Leaf Extracts on Lamb Burgers with Fat Replacement by Chia Oil Emulsion during Shelf Life Storage at 2 °C. Food Res. Int. 2019, 125, 108554. [Google Scholar] [CrossRef] [PubMed]
- Julio, L.M.; Copado, C.N.; Diehl, B.W.K.; Ixtaina, V.Y.; Tomás, M.C. Chia Bilayer Emulsions with Modified Sunflower Lecithins and Chitosan as Delivery Systems of Omega-3 Fatty Acids. LWT—Food Sci. Technol. 2018, 89, 581–590. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Gea-Quesada, A.; Sayas-Barberá, E.; Pérez-Álvarez, J.Á.; Fernández-López, J.; Viuda-Martos, M. Improving the Lipid Profile of Beef Burgers Added with Chia Oil (Salvia hispanica L.) or Hemp Oil (Cannabis sativa L.) Gelled Emulsions as Partial Animal Fat Replacers. LWT 2022, 161, 113416. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Viuda-Martos, M.; Fernández-López, J.A.; Pérez-Alvarez, J.A.; Fernández-López, J. Development of Plant-Based Burgers Using Gelled Emulsions as Fat Source and Beetroot Juice as Colorant: Effects on Chemical, Physicochemical, Appearance and Sensory Characteristics. LWT 2022, 172, 114193. [Google Scholar] [CrossRef]
- Lucas-González, R.; Roldán-Verdu, A.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of Emulsion Gels Formulated with Chestnut (Castanea sativa M.) Flour and Chia (Salvia hispanica L.) Oil as Partial Fat Replacers in Pork Burger Formulation. J. Sci. Food Agric. 2020, 100, 1265–1273. [Google Scholar] [CrossRef]
- Heck, R.T.; Saldaña, E.; Lorenzo, J.M.; Correa, L.P.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Wagner, R.; Campagnol, P.C.B. Hydrogelled Emulsion from Chia and Linseed Oils: A Promising Strategy to Produce Low-Fat Burgers with a Healthier Lipid Profile. Meat Sci. 2019, 156, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Grancieri, M.; Martino, H.S.D.; Gonzalez de Mejia, E. Chia Seed (Salvia hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M.; de las, M. How Extraction Method Affects the Physicochemical and Functional Properties of Chia Proteins. LWT 2018, 96, 26–33. [Google Scholar] [CrossRef]
- Solanki, D.; Prakash, S.; Hans, N.; Nagpal, T.; SSM, S.; Sahu, J.K.; Bhandari, B. Subcritical Water Hydrolysis of Chia Seed Proteins and Their Functional Characteristics. Food Hydrocoll. 2023, 143, 108883. [Google Scholar] [CrossRef]
- Ozón, B.; Cotabarren, J.; Valicenti, T.; Parisi, M.G.; Obregón, W.D. Chia Expeller: A Promising Source of Antioxidant, Antihypertensive and Antithrombotic Peptides Produced by Enzymatic Hydrolysis with Alcalase and Flavourzyme. Food Chem. 2022, 380, 132185. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, E.I.; Bogdanova, E.V.; Koshevarova, I.B. Nutritional Evaluation of Whey Protein Hydrolysate: Chemical Composition, Peptide Profile, and Osmolarity. Food Sci. Technol. 2022, 42, e110721. [Google Scholar] [CrossRef]
- Julio, L.M.; Ruiz-Ruiz, J.C.; Tomás, M.C.; Segura-Campos, M.R. Chia (Salvia hispanica) Protein Fractions: Characterization and Emulsifying Properties. J. Food Meas. Charact. 2019, 13, 3318–3328. [Google Scholar] [CrossRef]
- Sandoval-Oliveros, M.; Paredes-Lopez, O. Isolation and Characterization of Proteins from Chia Seeds (Salvia hispanica L.). J. Agric. Food Chem. 2012, 61, 193–201. [Google Scholar] [CrossRef]
- Madrazo, A.L.; Campos, M.R.S. In Silico Prediction of Peptide Variants from Chia (S. hispanica L.) with Antimicrobial, Antibiofilm, and Antioxidant Potential. Comput. Biol. Chem. 2022, 98, 107695. [Google Scholar] [CrossRef]
- Madruga, K.; da ROCHA, M.; Fernandes, S.S.; Salas-Mellado, M.; de las, M. Properties of Wheat and Rice Breads Added with Chia (Salvia hispanica L.) Protein Hydrolyzate. Food Sci. Technol. 2020, 40, 596–603. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senna, C.; Soares, L.; Egea, M.B.; Fernandes, S.S. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules 2024, 29, 440. https://doi.org/10.3390/molecules29020440
Senna C, Soares L, Egea MB, Fernandes SS. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules. 2024; 29(2):440. https://doi.org/10.3390/molecules29020440
Chicago/Turabian StyleSenna, Caroline, Luiza Soares, Mariana Buranelo Egea, and Sibele Santos Fernandes. 2024. "The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs" Molecules 29, no. 2: 440. https://doi.org/10.3390/molecules29020440
APA StyleSenna, C., Soares, L., Egea, M. B., & Fernandes, S. S. (2024). The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules, 29(2), 440. https://doi.org/10.3390/molecules29020440