Extraction Method Effects on Structural Properties and Functional Characteristics of Dietary Fiber Extracted from Ginseng Residue
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield and Proximate Composition
2.2. Microstructural Properties
2.3. FTIR Spectroscopy
2.4. Thermal Properties
2.5. Viscosity
2.6. Monosaccharide Composition
2.7. Hydration Properties
2.8. Adsorption Capacities
2.8.1. Nitrite Ion Absorption Capacity (NIAC)
2.8.2. Bile Acid Absorption Capacity (BAC)
2.8.3. Cholesterol Absorption Capacity (CAC)
2.8.4. Glucose Absorption Capacity (GAC)
3. Materials and Methods
3.1. Materials
3.2. Ginseng Residue Preparation
3.3. Enzymatic (EN) Extraction Method
3.4. Acid (AC) Extraction
3.5. Alkali (AL) Extraction
3.6. Proximate Composition
3.7. Scanning Electron Microscopy (SEM)
3.8. Fourier Transform Infrared (FTIR) Spectroscopy
3.9. Thermal Properties
3.10. Viscosity Measurements
3.11. HPLC Determination of Monosaccharides
3.12. Water Holding Capacity (WHC) and Oil Holding Capacity (OHC)
3.13. Water Swelling Capacity (WSC)
3.14. Adsorption Capacities
3.15. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, R.; Kim, J.H.; Kim, W.W.; Hwang, S.H.; Choi, S.H.; Kim, J.H.; Cho, I.H.; Kim, M.; Nah, S.Y. Emerging evidence that ginseng components improve cognition in subjective memory impairment, mild cognitive impairment, and early Alzheimer’s disease dementia. J. Ginseng Res. 2024, 48, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Oliynyk, S.; Oh, S. Actoprotective effect of ginseng: Improving mental and physical performance. J. Ginseng Res. 2013, 37, 144–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Songa, R.; Wei, S.; Wang, L.; Li, F.; Tanga, X.; Li, N. Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties. LWT 2020, 125, 109220. [Google Scholar] [CrossRef]
- Slavin, J.L. Dietary fiber and body weight. Nutrition 2005, 21, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Daou, C.; Zhang, H. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. J. Food Sci. Technol. 2014, 51, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Beretta, M.V.; Bernaud, F.R.; Nascimento, C.; Steemburgo, T.; Rodrigues, T.C. Higher fiber intake is associated with lower blood pressure levels in patients with type 1 diabetes. Arch. Endocrinol. Metab. 2018, 62, 47–54. [Google Scholar] [CrossRef]
- Dreher, M.L. Overview of the health benefits of adequate fiber intake. Nutr. Health 2018, 19–40. [Google Scholar] [CrossRef]
- Han, X.; Yang, D.; Zhang, S.; Liu, X.; Zhao, Y.; Song, C.; Sun, Q. Characterization of insoluble dietary fiber from Pleurotus eryngii and evaluation of its effects on obesity-preventing or relieving effects via modulation of gut microbiota. J. Future Foods 2023, 3, 55–66. [Google Scholar] [CrossRef]
- Kendall, C.W.C.; Esfahani, A.; Jenkins, D.J.A. The link between dietary fiber and human health. Food Hydrocoll. 2010, 24, 42–44. [Google Scholar] [CrossRef]
- Rivera, E.; Daggfeldt, A.; Hu, S. Ginseng extract in aluminium hydroxide adjuvanted Vaccines improves the antibody response of pigs to porcine parvovirus and Erysipelothri rhusiopathiae. Vet. Immunol. immunopathol. 2003, 91, 19–27. [Google Scholar] [CrossRef]
- Jiang, G.; Ramachandraiah, K.; Wu, Z.; Ameer, K. The influence of different extraction methods on the structure, rheological, thermal and functional properties of soluble dietary fiber from Sanchi (Panax notoginseng) flower. Foods 2022, 11, 1995. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Ameer, K.; Ramachandraiah, K.; Feng, X. Impact of water combined wet ball milling extraction and functional evaluation of dietary fiber from papaya (Carica papaya L.). Food Chem. X 2024, 22, 101435. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Ameer, K.; Ramachandraiah, K.; Feng, X.; Tan, C.; Cai, N. Effects of synergistic application of Viscozyme L–wet ball milling on structural, physicochemical and functional properties of insoluble dietary fiber from ginseng residue. LWT 2024, 209, 116777. [Google Scholar] [CrossRef]
- Liu, T.; Wang, N.; Xu, X.; Wang, D. Effect of high quality dietary fiber of Hericium erinaceus on lowering blood lipid in hyperlipidemia mice. J. Future Foods 2022, 2, 61–68. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem. 2015, 185, 90–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, J.; Zeng, W.; Huang, Y.; Yang, X. Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment. Food Chem. 2020, 311, 125873. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Z.; Yu, Q.; Peng, G.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll. 2020, 101, 105549. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Xiao, F.; Wei, Q.; Jing, Z. Ultrasound-assisted alkali extraction of insoluble dietary fiber from soybean residues. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 052005. [Google Scholar] [CrossRef]
- Feng, X.; Ameer, K.; Jiang, G.; Ramachandraiah, K. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from papaya peel and seed. Front. Sustain. Food Syst. 2024, 8, 1340961. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll. 2021, 110, 106162. [Google Scholar] [CrossRef]
- Cui, S.W.; Phillips, G.O.; Blackwell, B.; Nikiforuk, J. Characterisation and properties of Acacia senegal (L.) willd. var. senegal with enhanced properties (acacia (sen) supergum). Part 4. Spectroscopic characterisation of Acacia senegal var. senegal and acacia (sen) supergum arabic. Food Hydrocoll. 2007, 21, 347–352. [Google Scholar] [CrossRef]
- Fu, C.; Yang, X.; Lai, S.; Liu, C.; Huang, S.; Yang, H. Structure, antioxidant and α-amylase inhibitory activities of longan pericarp proanthocyanidins. J. Funct. Foods. 2015, 14, 23–32. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, Z.; Wang, W.; Mu, J.; Liu, Y.; Wang, J.; Sun, J. The effects of enzymatic modification on the functional ingredient-Dietary fiber extracted from potato residue. LWT 2022, 153, 112511. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Xu, M.; An, S.; Li, C.; Huang, C.; Liu, Y. Dietary fibres from cassava residue: Physicochemical and enzymatic improvement, structure and physical properties. AIP Adv. 2018, 8, 105035. [Google Scholar] [CrossRef]
- Cardoso, M.A.P.; Carvalho, G.M.; Yamashita, F.; Mali, S.; Olivato, J.B.; Grossmann, M.V.E. Oat fibers modification by reactive extrusion with alkaline hydrogen peroxide. PolÍMeros Cienc. E Tecnol. 2016, 26, 320–326. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.; Shen, J.; Wang, Y.; Ghosh, S.; Reaney, M.J.T. Variation of composition and functional properties of gum from six Canadian flaxseed (Linum usitatissimum L.) cultivars. Int. J. Food Sci. Technol. 2016, 51, 2313–2326. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Ma, Y.-S. Optimization of the extrusion process for preparation of soluble dietary fiber-enriched calamondin pomace and its influence on the properties of bread. J. Food Sci. Technol. 2019, 56, 5444–5453. [Google Scholar] [CrossRef]
- Neela, S.; Fanta, S.W. Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Sci. Nutr. 2019, 7, 1920–1945. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I.; Mateos-Peinado, C.; Rup’erez, P. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innov. Food Sci. Emerg. 2010, 11, 445–450. [Google Scholar] [CrossRef]
- Flutto, L. Pectin|Properties and determination. Encycl. Food Sci. Nutr. 2003, 2, 4440–4449. [Google Scholar]
- Jia, M.; Chen, J.; Liu, X.; Xie, M.; Nie, S.; Chen, Y.; Yu, Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Lv, J.S.; Liu, X.Y.; Zhang, X.P.; Wang, L.S. Chemical composition and functional characteristics of dietary fiber-rich powder obtained from core of maize straw. Food Chem. 2017, 227, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.M.; Mu, T.H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chem. 2016, 194, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Dou, W.; Alaxi, S.; Niu, Y.; Yu, L.L. Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties. Food Hydrocoll. 2017, 62, 94–101. [Google Scholar] [CrossRef]
- Niu, Y.; Xie, Z.; Zhang, H.; Sheng, Y.; Yu, L. Effects of structural modifications on physicochemical and bile acid-binding properties of psyllium. J. Agric. Food Chem. 2013, 61, 596–601. [Google Scholar] [CrossRef]
- Jiang, G.; Wu, Z.; Ameer, K.; Li, S.; Ramachandraiah, K. Particle size of ginseng (Panax ginseng Meyer) insoluble dietary fiber and its effect on physicochemical properties and antioxidant activities. Appl. Biol. Chem. 2020, 63, 70. [Google Scholar] [CrossRef]
- Kurek, M.A.; Karp, S.; Wyrwisz, J.; Niu, Y. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocoll. 2018, 85, 321–330. [Google Scholar] [CrossRef]
- Yuliarti, O.; Goh, K.K.; Matia-Merino, L.; Mawson, J.; Brennan, C. Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis). Food Chem. 2015, 187, 290–296. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Raza, H.; Ameer, K.; Ren, X.; Liang, Q.; Chen, X.; Chen, H.; Ma, H. Physicochemical properties and digestion mechanism of starch-linoleic acid complex induced by multi-frequency power ultrasound. Food Chem. 2021, 364, 130392. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Zhang, X.; Li, T.; Ren, D.; Lu, J. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace. J. Food. Sci. Technol. 2020, 57, 1421–1429. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Zheng, B.; Lin, L.; Chen, B.; Zheng, Y.; Xiao, J. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food Chem. Toxicol. 2017, 109, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
G-AC | G-AL | G-EN | |
---|---|---|---|
DF yield (%) | 60.53 ± 1.01 c | 74.77 ± 0.56 a | 67.96 ± 0.39 b |
Protein (%) | 2.10 ± 0.09 a | 0.86 ± 0.01 c | 1.41 ± 0.14 b |
Ash (%) | 0.31 ± 0.01 a | 0.16 ± 0.03 b | 0.23 ± 0.04 b |
Fat (%) | 0.22 ± 0.03 a | 0.17 ± 0.01 b | 0.18 ± 0.01 b |
G-AC | G-AL | G-EN | |
---|---|---|---|
Apparent viscosity 25 1/s [γ̇, mPa s] | 18.54 ± 0.12 a | 10.06 ± 0.17 b | 9.68 ± 0.26 b |
Consistency coefficient [K, mPa s] | 182.39 ± 1.81 b | 178.62 ± 2.12 c | 244.09 ± 1.54 a |
Flow behavior index [n, -] | 0.26 ± 0.004 a | 0.19 ± 0.001 b | 0.05 ± 0.001 c |
G-AC | G-AL | G-EN | |
---|---|---|---|
Mannose | 4.00 | 3.31 | 2.48 |
Rhamnose | 3.33 | 2.72 | 2.13 |
Galacturonic acid | 9.86 | 1.89 | 7.78 |
Glucose | 74.02 | 59.69 | 26.70 |
Galactose | 24.35 | 12.81 | 10.30 |
Xylose | 1.00 | 1.00 | 1.00 |
Arabinose | 18.49 | 10.72 | 10.13 |
G-AC | G-AL | G-EN | |
---|---|---|---|
WHC (g/g) | 8.16 ± 0.18 a | 2.40 ± 0.13 c | 4.62 ± 0.14 b |
OHC (g/g) | 3.99 ± 0.21 a | 1.37 ± 0.06 b | 1.58 ± 0.09 b |
WSC (g/g) | 8.13 ± 0.06 a | 3.23 ± 0.15 c | 5.30 ± 0.10 b |
G-AC | G-AL | G-EN | ||
---|---|---|---|---|
NIAC (ug/g) | pH = 2 | 124.38 ± 0.31 aA | 121.44 ± 0.36 cA | 123.07 ± 0.13 bA |
pH = 7 | 120.47 ± 0.49 aB | 117.32 ± 0.30 cB | 119.43 ± 0.39 bB | |
BAC (mg/g) | 91.51 ± 0.14 a | 84.30 ± 0.29 c | 89.39 ± 0.19 b | |
CAC (mg/g) | 12.85 ± 0.12 a | 11.13 ± 0.19 c | 12.13 ± 0.06 b | |
GAC (mg/g) | 50 mmol/L | 18.68 ± 0.12 aC | 17.21 ± 0.04 cC | 17.64 ± 0.12 bC |
100 mmol/L | 38.43 ± 0.01 aB | 34.68 ± 0.04 cB | 35.29 ± 0.04 bB | |
150 mmol/L | 52.66 ± 0.13 aA | 48.67 ± 0.09 cA | 50.68 ± 0.01 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Ameer, K.; Ramachandraiah, K.; Jiang, G. Extraction Method Effects on Structural Properties and Functional Characteristics of Dietary Fiber Extracted from Ginseng Residue. Molecules 2024, 29, 4875. https://doi.org/10.3390/molecules29204875
Feng X, Ameer K, Ramachandraiah K, Jiang G. Extraction Method Effects on Structural Properties and Functional Characteristics of Dietary Fiber Extracted from Ginseng Residue. Molecules. 2024; 29(20):4875. https://doi.org/10.3390/molecules29204875
Chicago/Turabian StyleFeng, Xiaoyu, Kashif Ameer, Karna Ramachandraiah, and Guihun Jiang. 2024. "Extraction Method Effects on Structural Properties and Functional Characteristics of Dietary Fiber Extracted from Ginseng Residue" Molecules 29, no. 20: 4875. https://doi.org/10.3390/molecules29204875
APA StyleFeng, X., Ameer, K., Ramachandraiah, K., & Jiang, G. (2024). Extraction Method Effects on Structural Properties and Functional Characteristics of Dietary Fiber Extracted from Ginseng Residue. Molecules, 29(20), 4875. https://doi.org/10.3390/molecules29204875