A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Purification of Pea Seedling Amine Oxidase
4.3. Spectrophotometric Activity and Protein Assays
4.4. MALDI-TOF Mass Spectrometry
4.5. Kinetic Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Schober, L.; Dobiašová, H.; Jurkaš, V.; Parmeggiani, F.; Rudroff, F.; Winkler, M. Enzymatic reactions towards aldehydes: An overview. Flavour Fragr. J. 2023, 38, 221–242. [Google Scholar] [CrossRef] [PubMed]
- Buffoni, F.; Ignesti, G. The copper-containing amine oxidases: Biochemical aspects and functional role. Mol. Genet. Metab. 2000, 71, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Cona, A.; Rea, G.; Angelini, R.; Federico, R.; Tavladoraki, P. Functions of amine oxidases in plant development and defense. Trends Plant Sci. 2006, 11, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Klema, V.J.; Wilmot, C.M. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int. J. Mol. Sci. 2012, 13, 5375–5405. [Google Scholar] [CrossRef]
- Janes, S.M.; Mu, D.; Wemmer, D.; Smith, A.J.; Kaur, S.; Maltby, D.; Burlingame, A.L.; Klinman, J.P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 1990, 248, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Dooley, D.M.; McGuirl, M.; Brown, D.E.; Turowski, P.N.; McIntire, W.S.; Knowles, P.F. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature 1991, 349, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.M.; Saysell, C.G.; Wilmot, C.M.; Tambyrajah, W.S.; Jaeger, J.; Knowles, P.F.; Phillips, S.E.V.; McPherson, M.J. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: X-ray crystallographic studies with mutational variants. Biochemistry 1999, 38, 8217–8227. [Google Scholar] [CrossRef]
- Mu, D.; Janes, S.M.; Smith, A.J.; Brown, D.E.; Dooley, D.M.; Klinman, J.P. Tyrosine codon corresponds to topa quinone at the active site of copper amine oxidases. J. Biol. Chem. 1992, 267, 7979–7982. [Google Scholar] [CrossRef]
- Johnson, B.J.; Cohen, J.; Welford, R.W.; Pearson, A.R.; Schulten, K.; Klinman, J.P.; Wilmot, C.M. Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase. J. Biol. Chem. 2007, 282, 17767–17776. [Google Scholar] [CrossRef]
- Kumar, V.; Dooley, D.M.; Freeman, H.C.; Guss, J.M.; Harvey, I.; McGuirl, M.A.; Wilce, M.C.J.; Zubak, V.M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure 1996, 4, 943–955. [Google Scholar] [CrossRef]
- Turowski, P.N.; McGuirl, M.A.; Dooley, D.M. Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J. Biol. Chem. 1993, 268, 17680–17682. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, C.M.; Murray, J.M.; Alton, G.; Parsons, M.R.; Convery, M.A.; Blakeley, V.; Corner, A.S.; Palcic, M.M.; Knowles, P.F.; McPherson, M.J.; et al. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: Exploring the reductive half-reaction. Biochemistry 1997, 36, 1608–1620. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, C.M.; Hajdu, J.; McPherson, M.J.; Knowles, P.F.; Phillips, S.E.V. Visualization of dioxygen bound to copper during enzyme catalysis. Science 1999, 286, 1724–1728. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.J.; Yukl, E.T.; Klema, V.J.; Klinman, J.P.; Wilmot, C.M. Structural snapshots from the oxidative half-reaction of a copper amine oxidase. Implications for O2 activation. J. Biol. Chem. 2013, 288, 28409–28417. [Google Scholar] [CrossRef] [PubMed]
- Shoji, M.; Murakawa, T.; Nakanishi, S.; Boero, M.; Shigeta, Y.; Hayashi, H.; Okajima, T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem. Sci. 2022, 13, 10923–10938. [Google Scholar] [CrossRef]
- Medda, R.; Padiglia, A.; Floris, G. Plant copper-amine oxidase. Phytochemistry 1995, 39, 1–9. [Google Scholar] [CrossRef]
- Vianello, F.; Malek-Mirzayans, A.; Di Paolo, M.L.; Stevanato, R.; Rigo, A. Purification and characterization of amine oxidase from pea seedling. Protein Express. Purif. 1999, 15, 196–201. [Google Scholar] [CrossRef]
- Macholán, L.; Minář, J. The depression of the synthesis of pea diamine oxidase due to light and the verification of its participation in growth processes using competitive inhibitors. Biol. Plant. 1974, 16, 86–93. [Google Scholar] [CrossRef]
- Tavladoraki, P.; Cona, A.; Angelini, R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front. Plant Sci. 2016, 7, 824. [Google Scholar] [CrossRef]
- Pietrangeli, P.; Federico, R.; Mondovì, B.; Morpurgo, L. Substrate specificity of copper-containing plant amine oxidases. J. Inorg. Chem. 2007, 101, 997–1004. [Google Scholar] [CrossRef]
- Niculescu, M.; Frébort, I.; Peč, P.; Galuszka, P.; Mattiasson, B.; Csöregi, E. Amine oxidase based amperometric biosensors for histamine detection. Electroanalysis 2000, 12, 369–375. [Google Scholar] [CrossRef]
- Di Fabio, E.; Incocciati, A.; Boffi, A.; Bonamore, A.; Macone, A. Biocatalytic production of aldehydes: Exploring the potential of Lathyrus cicera amine oxidase. Biomolecules 2021, 11, 1540. [Google Scholar] [CrossRef] [PubMed]
- Holmstedt, B.; Larsson, L.; Tham, R. Further studies of a spectrophotometric method for the determination of diamine oxidase activity. Biochim. Biophys. Acta 1961, 48, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.A. Polyamine oxidation by enzymes from Hordeum vulgare and Pisum sativum seedlings. Phytochemistry 1974, 13, 1075–1081. [Google Scholar] [CrossRef]
- Smith, T.A.; Barker, J.H.A. The di- and polyamine oxidase of plants. In Progress in Polyamine Research: Novel Biochemical, Pharmacological, and Clinical Aspects; Advances in Experimental Medicine and Biology; Zappia, V., Pegg, A.E., Eds.; Plenum Press: New York, NY, USA, 1988; Volume 250, pp. 573–587. [Google Scholar] [CrossRef]
- Angelini, R.; Rea, G.; Federico, R.; D’Ovidio, R. Spatial distribution and temporal accumulation of mRNA encoding diamine oxidase during lentil (Lens culinaris Medicus) seedling development. Plant Sci. 1996, 119, 103–113. [Google Scholar] [CrossRef]
- Kounga, P.C.; Neree, A.T.; Pietrangeli, P.; Marcocci, L.; Mateescu, M.A. Faster and sensitive zymographic detection of oxidases generating hydrogen peroxide. The case of diamine oxidase. Anal. Biochem. 2022, 648, 114676. [Google Scholar] [CrossRef]
- Macholán, L.; Haubrová, J. Isolation and some characteristics of diamine oxidase from etiolated pea seedlings. Collect. Czech. Chem. Commun. 1976, 41, 2987–2996. [Google Scholar] [CrossRef]
- Schwelberger, H.G.; Feurle, J. Luminometric determination of amine oxidase activity. Inflamm. Res. 2007, 56, S53–S54. [Google Scholar] [CrossRef]
- Pietta, P.; Calatroni, A.; Colombo, R. Determination of diamine oxidase activity by high-performance liquid chromatograph. J. Chromatogr. A 1982, 243, 123–129. [Google Scholar] [CrossRef]
- Šebela, M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. Mass Spectrom. Rev. 2023, 42, 1008–1031. [Google Scholar] [CrossRef]
- Ling, L.; Xiao, C.; Wang, S.; Guo, L.; Guo, X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI TOF-MS. Talanta 2019, 200, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.L.; Su, K.Y.; Goodman, S.D.; Yen, R.S.; Cheng, W.C.; Yang, Y.C.; Lin, L.I.; Chang, S.Y.; Fang, W. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair 2021, 97, 103028. [Google Scholar] [CrossRef] [PubMed]
- Bungert, D.; Heinzle, E.; Tholey, A. Quantitative matrix-assisted laser desorption/ionization mass spectrometry for the determination of enzyme activities. Anal. Biochem. 2004, 326, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.E.; Fahey, N.S.; Park, J.; O’Kane, P.T.; Mirkin, C.A.; Mrksich, M. A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1. Analyst 2020, 145, 3899–3908. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, Q.; Zou, H.; Guo, B.; Ni, J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002, 74, 1637–1641. [Google Scholar] [CrossRef] [PubMed]
- Šebela, M.; Luhová, L.; Frébort, I.; Hirota, S.; Faulhammer, H.G.; Stužka, V.; Peč, P. Confirmation of the presence of a Cu(II)/topa quinone active site in the amine oxidase from fenugreek seedlings. J. Exp. Bot. 1997, 48, 1897–1907. [Google Scholar] [CrossRef]
- Šebela, M.; Luhová, L.; Frébort, I.; Faulhammer, H.G.; Hirota, S.; Zajoncová, L.; Stužka, V.; Peč, P. Analysis of the active sites of copper/topa quinone-containing amine oxidases from Lathyrus odoratus and L. sativus seedlings. Phytochem. Anal. 1998, 9, 211–222. [Google Scholar] [CrossRef]
- Macholán, L.; Rozprimová, L.; Sedláčková, E. Oxidative deamination of 2-hydroxy derivatives of putrescine and cadaverine by pea-seedling and pig-kidney diamine oxidase. Biochim. Biophys. Acta 1967, 136, 258–264. [Google Scholar] [CrossRef]
- Medda, R.; Bellelli, A.; Peč, P.; Federico, R.; Cona, A.; Floris, G. Copper amine oxidases from plants. In Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology; Floris, G., Mondovì, B., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 39–50. [Google Scholar] [CrossRef]
- Mantle, T.J.; Harris, D.A. Chapter 7 Spectrophotometric assays. In Spectrophotometry and Spectrofluorimetry: A Practical Approach; Gore, M.G., Ed.; Oxford University Press: Oxford, UK, 2000; pp. 183–208. [Google Scholar] [CrossRef]
- Nicu, L.; Leïchlé, T. Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward. J. Appl. Phys. 2008, 104, 111101. [Google Scholar] [CrossRef]
- Masopustová, M.; Goga, A.; Soural, M.; Kopečná, M.; Šebela, M. N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7. Amino Acids 2024, 56, 52. [Google Scholar] [CrossRef]
- Duncan, M.W.; Roder, H.; Hunsucker, S.W. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct. Genom. Proteomic 2008, 7, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Luhová, L.; Šebela, M.; Frébort, I.; Zajoncová, L.; Faulhammer, H.G.; Peč, P. Screening of the occurrence of copper amine oxidases in Fabaceae plants. Biol. Plant. 1998, 41, 241–254. [Google Scholar] [CrossRef]
- Kruger, N.J. Errors and artifacts in coupled spectrophotometric assays of enzyme activity. Phytochemistry 1995, 38, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, A.J.; Huang, S.L.; Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem. 1978, 43, 2480–2482. [Google Scholar] [CrossRef]
- Šebela, M.; Kopečný, D.; Lamplot, Z.; Havliš, J.; Thomas, H.; Shevchenko, A. Thermostable β-cyclodextrin-conjugates of two similar plant amine oxidases and their properties. Biotechnol. Appl. Biochem. 2005, 41, 77–84. [Google Scholar] [CrossRef]
- Frébort, I.; Haviger, A.; Peč, P. Employment of guaiacol for the determination of activities of enzymes generating hydrogen peroxide and for the determination of glucose in blood and urine. Biológia 1989, 44, 729–737. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Substrate | Km [μmol·L−1] | V [nmol·s−1 per mg] | kcat [s−1] | kcat/Km [mol−1·L·s−1] | kcat/Km [Relative] |
---|---|---|---|---|---|
PUT | 289 ± 15 | 644 ± 12 | 47.4 | 1.64 × 105 | 1.000 |
CAD 1 | 148 ± 8 | 827 ± 13 | 60.9 | 4.11 × 105 | 2.506 |
DAH 1 | 95 ± 7 | 176 ± 6 | 13.0 | 1.37 × 105 | 0.835 |
HPUT | 589 ± 33 | 67 ± 2 | 4.9 | 8.32 × 103 | 0.051 |
AGM | 446 ± 23 | 114 ± 3 | 8.4 | 1.88 × 104 | 0.115 |
4AMP | 618 ± 24 | 57 ± 1 | 4.2 | 6.80 × 103 | 0.041 |
Substrate | Km [μmol·L−1] | V [nmol·s−1 per mg] | kcat [s−1] | kcat/Km [mol−1·L·s−1] | kcat/Km [Relative] |
---|---|---|---|---|---|
PUT | 214 ± 32 | 859 ± 54 | 63.2 | 2.95 × 105 | 1.000 |
CAD | 289 ± 23 | 1401 ± 51 | 103.0 | 3.56 × 105 | 1.207 |
DAH 1 | 56 ± 18 | 175 ± 21 | 12.9 | 2.30 × 105 | 0.780 |
HPUT | 379 ± 38 | 77 ± 5 | 5.7 | 1.50 × 104 | 0.051 |
AGM | 576 ± 44 | 261 ± 11 | 19.2 | 3.33 × 104 | 0.113 |
4AMP | 286 ± 21 | 153 ± 5 | 11.3 | 3.95 × 104 | 0.134 |
Substrate | Published kcat Values [s−1] | Published Km Values [µmol·L−1] |
---|---|---|
PUT | 5–280 | 65–430 |
CAD | 5–500 | 60–400 |
DAH | 20–40 | 90–160 |
HPUT | 1–20 | 250–740 |
AGM | 1–45 | 150–560 |
4AMP 1 | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strnad, J.; Soural, M.; Šebela, M. A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules 2024, 29, 4878. https://doi.org/10.3390/molecules29204878
Strnad J, Soural M, Šebela M. A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules. 2024; 29(20):4878. https://doi.org/10.3390/molecules29204878
Chicago/Turabian StyleStrnad, Jan, Miroslav Soural, and Marek Šebela. 2024. "A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry" Molecules 29, no. 20: 4878. https://doi.org/10.3390/molecules29204878
APA StyleStrnad, J., Soural, M., & Šebela, M. (2024). A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules, 29(20), 4878. https://doi.org/10.3390/molecules29204878