Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
No. | RT Min | Name | Molecular Ion | Observed m/z Value | Theoretical m/z Value | Error (δ ppm) | Content (mg/g) n = 3 | Characteristic MS/MS Fragment Peak m/z | Bioactivity |
---|---|---|---|---|---|---|---|---|---|
1 | 10.56 | liquiritigenin | C15H11O4− | 255.0661 | 255.0663 | 0.7843 | 0.577 ± 0.013 | 255.0659, 119.0492, 91.0178 | anti-inflammatory [19] |
2 | 11.50 | isoliquiritigenin | C15H11O4− | 255.0661 | 255.0663 | 0.7843 | 0.012 ± 0.000 | 255.0661, 119.0492, 91.0178 | antitumor [20] |
3 | 12.20 | pinocembrin | C15H11O4− | 255.0662 | 255.0663 | 0.3921 | 0.072 ± 0.000 | 255.0661, 213.0552, 151.0029 | antitumor [21] |
4 | 12.29 | oroxylin A | C16H11O5− | 283.0612 | 283.0612 | 0 | 0.048 ± 0.002 | 283.0611, 268.0377 | antioxidant [22] |
5 | 12.35 | wogonin | C16H11O5− | 283.0611 | 283.0612 | 0.3533 | 0.026 ± 0.001 | 283.0611, 163.0027, 268.0374 109.9998 | anti-inflammatory [23] |
6 | 12.52 | galangin 3-methyl ether | C16H11O5− | 283.0612 | 283.0612 | 0 | 0.012 ± 0.000 | 239.0346, 211.0395, 167.0494 | antibiotic [24] |
7 | 9.54 | isoquercitrin | C21H19O12− | 463.0873 | 463.0882 | 1.9438 | 0.017 ± 0.002 | 463.0874, 300.0273, 271.0247 255.0298 | anti-inflammatory [25] |
8 | 9.43 | hyperoside | C21H19O12− | 463.0875 | 463.0882 | 1.5118 | 0.025 ± 0.002 | 463.0874, 300.0273, 271.0247 | anti-inflammatory [26] |
9 | 9.57 | quercetin 3-O-β-D-glucuronide | C21H17O13− | 477.0674 | 477.0675 | 0.2096 | 0.138 ± 0.005 | 301.0353, 151.0028, 109.0284 | antimicrobial [27] |
10 | 9.93 | phloridzin | C21H23O10− | 435.1280 | 435.1297 | 3.9080 | 0.034 ± 0.001 | 273.0770, 167.0341, 123.0442, 119.0492 | antioxidant [28,29] |
11 | 10.96 | tiliroside | C30H25O13− | 593.1298 | 593.1301 | 0.5059 | 0.542 ± 0.007 | 285.0397, 255.0292, 227.0341 | antioxidant [30] |
12 | 11.36 | kaempferol | C15H9O6− | 285.0405 | 285.0405 | 0 | 0.033 ± 0.000 | 285.0405, 117.0335, 93.0334 | anti-inflammatory [31] |
13 | 11.93 | 7-hydroxyflavone | C15H9O3− | 237.0553 | 237.0557 | 1.6877 | 0.027 ± 0.000 | 237.0553, 208.0524, 91.0178 | antibacterial [32] |
14 | 12.51 | chrysin | C15H9O4− | 253.0504 | 253.0506 | 0.7905 | 0.267 ± 0.002 | 251.0500, 209.0598, 143.0491 | antitumor [33] |
15 | 12.67 | galangin | C15H9O5− | 269.0456 | 269.0455 | 0.3717 | 0.247 ± 0.001 | 269.0456, 169.0650 | anti-inflammatory [34] |
16 | 9.86 | myricetin | C15H9O8− | 317.0301 | 317.0303 | 0.6309 | 0.036 ± 0.005 | 317.0301, 151.0028, 137.0234, 109.0284 | antioxidant [35] |
17 | 13.82 | D-fructose | C6H13O6+ | 181.0715 | 181.0707 | 4.4198 | 0.247 ± 0.000 | 163.0385, 149.0229, 65.0393 | antioxidant [36] |
18 | 9.46 | 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose | C41H31O26− | 939.1146 | 939.1109 | 3.9403 | 0.547 ± 0.700 | 169.0134, 125.0234, 107.0127, 95.0126 | antioxidant [37] |
19 | 0.53 | sucrose | C12H21O11− | 341.1086 | 341.1089 | 0.8797 | 0.986 ± 0.048 | 341.1086, 179.0553, 161.0448, 89.0233 | sweetening agent [38] |
20 | 0.55 | quinic acid | C7H11O6− | 191.0555 | 191.0561 | 3.1413 | 0.377 ± 0.003 | 191.0555, 93.0335, 85.0283 | antioxidant [39] |
21 | 8.18 | salicylic acid | C7H5O3− | 137.0234 | 137.0244 | 7.2992 | 0.056 ± 0.001 | 137.0234, 93.0333 | anti-inflammatory [40,41] |
22 | 3.06 | methyl gallate | C8H7O5− | 183.0291 | 183.0299 | 4.3715 | 0.007 ± 0.000 | 183.0291, 124.0156, 78.0099 | anti-inflammatory [42] |
23 | 1.6 | protocatechuic acid | C7H5O4− | 153.0186 | 153.0193 | 4.5751 | 0.026 ± 0.006 | 153.0186, 109.0285, 108.0206 | antimicrobial [43] |
24 | 2 | 2,5-dihydroxybenzoic acid | C7H5O4− | 153.0186 | 153.0193 | 4.5751 | 0.015 ± 0.003 | 153.0182, 109.0284, 108.0206 | improvements in vascular function [44] |
25 | 3.22 | 4-hydroxybenzaldehyde | C7H5O2− | 121.0285 | 121.0295 | 8.2644 | 0.006 ± 0.001 | 121.0285, 92.0257 | improvements in vascular function [45,46] |
26 | 4.6 | caffeic acid | C9H7O4− | 179.0339 | 179.0350 | 6.1452 | 0.012 ± 0.000 | 179.0345, 136.0474,135.0441, 133.0282 | antibacterial [47] |
27 | 7.11 | cis-4-Hydroxycinnamic acid | C9H7O3− | 163.0392 | 163.0401 | 5.5214 | 0.094 ± 0.005 | 119.0492 | anti-SARS [48] |
28 | 8.71 | ferulic acid | C10H9O4− | 193.0496 | 193.0506 | 5.1813 | 0.258 ± 0.301 | 193.0136, 178.0262, 134.0364 | antibacterial [49,50] |
29 | 0.86 | gallic acid | C7H5O5− | 169.0133 | 169.0142 | 5.3254 | 4.800 ± 0.103 | 169.0133, 125.0234 | antioxidant [51] |
30 | 9.5 | ellagic acid | C14H5O8− | 300.9989 | 300.9990 | 0.3333 | 0.485 ± 0.000 | 300.9990, 145.0286, 117.0335 | antioxidant [52] |
31 | 0.52 | citric acid | C6H7O7− | 191.0189 | 191.0197 | 4.1884 | 0.757 ± 0.007 | 111.0078, 87.0076, 85.0248 | improvements in vascular function [53] |
32 | 7.98 | gallocatechin gallate | C22H17O11− | 457.0736 | 457.0776 | 8.7527 | 0.274 ± 0.004 | 169.0133, 125.0234 | antiviral [54] |
33 | 8.68 | epicatechin gallate | C22H17O10− | 441.0831 | 441.0827 | 0.9070 | 0.020 ± 0.000 | 289.0715, 169.0134, 125.0234, 109.0285 | antioxidant [55] |
34 | 16.03 | cholesteryl acetate | C29H49O2+ | 429.3706 | 429.3727 | 4.8951 | 14.418 ± 1.041 | 429.3706, 165.0912, 91.0545, 81.0705, | antitumor [56] |
35 | 16.67 | (+)-4-cholesten-3-one | C27H45O+ | 385.3459 | 385.3465 | 1.5584 | 0.003 ± 0.000 | 385.3454, 109.0649, 97.0650, 91.0545 | antitumor [57] |
36 | 15.38 | betulin | C30H51O2+ | 443.3878 | 443.3884 | 1.3544 | 0.130 ± 0.005 | 443.3497, 105.0700, 91.0547, 81.0705 | antitumor [58] |
37 | 15.18 | oleanolic acid | C30H47O3− | 455.3531 | 455.3531 | 0 | 0.026 ± 0.004 | 455.3531 | antitumor [59] |
38 | 16.22 | ethyl stearate | C20H39O2− | 311.2956 | 311.2956 | 0 | 0.209 ± 0.013 | 311.1682, 183.0114, 119.0492 | antioxidant [60] |
39 | 15.62 | oleic acid | C18H33O2− | 281.2487 | 281.2486 | 0.3558 | 0.046 ± 0.000 | 281.2487 | antioxidant [61] |
40 | 15.8 | stearic acid | C18H35O2− | 283.2643 | 283.2643 | 0 | 0.197 ± 0.002 | 283.2643, 92.1626 | antioxidant [62] |
41 | 0.54 | L-(-)-proline | C5H10NO2+ | 116.0708 | 116.0706 | 1.7241 | 0.940 ± 0.045 | 116.0706, 70.0657 | immune modulation [63] |
3. Materials and Methods
3.1. Plant Materials and Chemicals
3.2. Authentic Standards
3.3. Preparation of Sample and Authentic Standard Solutions
3.3.1. Preparation of Lyophilized Aqueous Extract and Sample Solutions
3.3.2. Preparation of Authentic Standard Solutions
3.4. Simultaneous Qualitative and Quantitative Analyses Using Database Affinity UHPLC-Q-Orbitrap-MS/MS
3.5. Relative Antioxidant Level Evaluation Experiment
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Liu, X.R.; Liu, Y.L.; Xu, Q.M.; Yang, S.L. ChemInform Abstract: Two New Flavones from Uvaria macrophylla Roxb. var. microcarpa and Their Cytotoxic Activities. ChemInform 2012, 43. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Li, X.; Xu, Q.; Yangy, S. Chemical constituents from leaves of Uvaria microcarpa. Zhong Cao Yao 2011, 42, 2197. (In Chinese) [Google Scholar]
- Lv, Z.; Huang, L.; Chen, R.; Yu, D. Chemical constituents of Uvaria kurzii. Zhongguo Zhong Yao Za Zhi 2009, 34, 2203. (In Chinese) [Google Scholar] [PubMed]
- Yang, X.N. Study on the chemical constituents of Uvaria microcarpa Champ. ex Benth. Master’s Thesis, Second Military Medical University, Shanghai, China, 2009; p. 1. (In Chinese). [Google Scholar]
- Yang, X.N.; Chen, H.S.; Jin, Y.S.; Liu, H.; Yang, X.W. Chemical Constituents from the Stems of Uvaria microcarpa. Chin. J. Nat. Med. 2009, 7, 287–289. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, P.C.; Chen, R.Y.; Dai, S.J.; Yu, S.S.; Yu, D.Q. Four new compounds from the roots of Uvaria macrophylla. J. Asian Nat. Prod. Res. 2006, 7, 687–694. [Google Scholar] [CrossRef]
- Wang, S.; Chen, R.Y.; Yu, S.S.; Yu, D.Q. Uvamalols D-G: Novel polyoxygenated seco-cyclohexenes from the roots of Uvaria macrophylla. Asian Nat. Prod. Res. 2003, 5, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, P. A Novel Dihydroflavone from the Roots of Uvaria Macrophylla. Chin. Chem. Lett. 2002, 13, 857–858. [Google Scholar]
- Pan, Y.; Wang, D. Summary of studies of Ziyupan. Guangxi TCM 2006, 29, 5–7. (In Chinese) [Google Scholar]
- Chen, S.; Li, X.; Zeng, J.; Cai, R.; Li, C.; Chen, C.B. Library-based UHPLC-Q-Exactive-Orbitrap-MS Putative Identification of Isomeric and Non-isomeric Bioactives from Zibushengfa Tablet and Pharmacopoeia Quality-marker Chemistry. J. Liq. Chromatogr. Relat. Technol. 2023, 46, 153–167. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Cai, R.; Chen, B.; Zeng, J.; Li, C.; Zhou, X.; Li, Y. UHPLC-Quadrupole-Exactive-Orbitrap-MS/MS-based Putative Identification for Eucommiae Folium (Duzhongye) and its Quality-marker Candidate for Pharmacopeia. J. Sep. Sci. 2023, 46, e2300041. [Google Scholar] [CrossRef]
- Zeng, J.; Li, X.; Cai, R.; Li, C.; Chen, S. Jinhua Qinggan Granule UHPLC-Q-extractive-Orbitrap-MS assay: Putative identification of 45 potential anti-COVID-19 constituents, confidential addition, and pharmacopoeia quality-markers recommendation. J. Food Drug Anal. 2023, 31, 534–551. [Google Scholar] [CrossRef]
- Li, X.; Zeng, J.; Li, C.; Chai, H.; Chen, S.; Jin, N.; Chen, T.; Lin, X.; Khan, S.; Cai, R. Simultaneous Qualitative and Quantitative Determination of 33 Compounds from Rubus alceifolius Poir Leaves Using UHPLC-Q-Orbitrap-MS Analysis. Curr. Anal. Chem. 2024, 20. [Google Scholar] [CrossRef]
- Li, X.C.; Zeng, J.; Cai, R.; Li, C. New UHPLC-Q-Orbitrap MS/MS-based Library-comparison Method Simultaneously Distinguishes 22 Phytophenol Isomers from Desmodium styracifolium. Microchem. J. 2023, 190, 108938. [Google Scholar] [CrossRef]
- Li, X.C.; Chen, S.M.; Zeng, J.Y.; Cai, R.X.; Liang, Y.L.; Chen, C.B.; Chen, B.; Li, C.H. Database-aided UHPLC-Q-Orbitrap MS/MS Strategy Putatively Identifies 52 Compounds from Wushicha Granule to Propose Anti-counterfeiting Quality-markers for Pharmacopoeia. Chin. Med. 2023, 18, 116. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Mehta, K.; Sehgal, A.; Singh, S.; Sharma, N.; Ahmadi, A.; Arora, S.; Bungau, S. Exploring the role of polyphenols in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 2022, 62, 5372–5393. [Google Scholar] [CrossRef]
- La, X.; He, X.; Liang, J.; Zhang, Z.; Li, H.; Liu, Y.; Liu, T.; Li, Z.; Wu, C.J.N. Gastroprotective Effect of Isoferulic Acid Derived from Foxtail Millet Bran against Ethanol-Induced Gastric Mucosal Injury by Enhancing GALNT2 Enzyme Activity. Nutrients 2024, 16, 2148. [Google Scholar] [CrossRef]
- Long, Z.; Feng, G.; Zhao, N.; Wu, L.; Zhu, H. Isoferulic acid inhibits human leukemia cell growth through induction of G2/M-phase arrest and inhibition of Akt/mTOR signaling. Mol. Med. Rep. 2020, 21, 1035–1042. [Google Scholar] [CrossRef]
- Yu, J.Y.; Ha, J.Y.; Kim, K.M.; Jung, Y.S.; Jung, J.C.; Oh, S. Anti-Inflammatory activities of licorice extract and its active constituents, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015, 20, 13041–13054. [Google Scholar] [CrossRef]
- Lee, C.-H.; Tsai, H.-Y.; Chen, C.-L.; Chen, J.-L.; Lu, C.-C.; Fang, Y.-P.; Wu, D.-C.; Huang, Y.-B.; Lin, M.-W. Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Downregulation. Biomedicines 2022, 10, 1350. [Google Scholar] [CrossRef]
- Parolia, A.; Kumar, H.; Ramamurthy, S.; Madheswaran, T.; Davamani, F.; Pichika, M.R.; Mak, K.-K.; Fawzy, A.S.; Daood, U.; Pau, A. Effect of Propolis Nanoparticles against Enterococcus faecalis Biofilm in the Root Canal. Molecules 2021, 26, 715. [Google Scholar] [CrossRef]
- Liao, H.; Ye, J.; Gao, L.; Liu, Y. The main bioactive constituents of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed. Pharmacother. 2021, 133, 110917. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Im, E.; Kim, N.D. Therapeutic Potential of Bioactive Components from Scutellaria baicalensis Georgi in Inflammatory Bowel Disease and Colorectal Cancer: A Review. Int. J. Mol. Sci. 2023, 24, 1954. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; Guo, S.; Zhang, W.; Geng, Z.; Liang, J.; Du, S.; Deng, Z.; Wang, Y. Chemical Constituents of Supercritical Extracts from Alpinia officinarum and the Feeding Deterrent Activity against Tribolium castaneum. Molecules 2017, 22, 647. [Google Scholar] [CrossRef]
- Owczarek-Januszkiewicz, A.; Magiera, A.; Olszewska, M.A. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int. J. Mol. Sci. 2022, 23, 14784. [Google Scholar] [CrossRef]
- Shingnaisui, K.; Dey, T.; Manna, P.; Kalita, J. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. J. Ethnopharmacol. 2018, 220, 35–43. [Google Scholar] [CrossRef]
- Perera, M.M.N.; Dighe, S.N.; Katavic, P.L.; Collet, T.A. Antibacterial Potential of Extracts and Phytoconstituents Isolated from Syncarpia hillii Leaves in Vitro. Plants 2022, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yuan, C.; Ramaswamy, H.S.; Ren, Y.; Ren, X. Antioxidant capacity and hepatoprotective activity of myristic acid acylated derivative of phloridzin. Heliyon 2019, 5, e01761. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Rahman, M.O.; Alqahtani, A.S.; Sultana, N.; Almarfadi, O.M.; Ali, M.A.; Lee, J. Anticancer potential of phytochemicals from Oroxylum indicum targeting Lactate Dehydrogenase A through bioinformatic approach. Toxicol. Rep. 2022, 10, 56–75. [Google Scholar] [CrossRef]
- Luo, Z.; Morgan, M.R.; Day, A.J. Transport of trans-tiliroside (kaempferol-3-β-D-(6″-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine. Xenobiotica 2015, 45, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Soliman, M.S.M.; Abdella, A.; Khidr, Y.A.; Hassan, G.O.O.; Al-Saman, M.A.; Elsanhoty, R.M. Pharmacological Activities and Characterization of Phenolic and Flavonoid Constituents in Methanolic Extract of Euphorbia cuneata Vahl Aerial Parts. Molecules 2021, 26, 7345. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; Yosri, N.; Khalifa, S.A.M.; Guo, Z.; Musharraf, S.G.; Xiao, J.; Saeed, A.; Du, M.; Khatib, A.; Abdel-Daim, M.M.; et al. Exploring natural products-based cancer therapeutics derived from egyptian flora. J. Ethnopharmacol. 2021, 269, 113626. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, P.; Wang, L.; Gao, Z.; Lv, J.; Cui, Z.; Wang, T.; Wang, D.; Wang, L. Galangin as a direct inhibitor of vWbp protects mice from Staphylococcus aureus-induced pneumonia. J. Cell Mol. Med. 2022, 26, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Ditano-Vázquez, P.; Torres-Peña, J.D.; Galeano-Valle, F.; Pérez-Caballero, A.I.; Demelo-Rodríguez, P.; Lopez-Miranda, J.; Katsiki, N.; Delgado-Lista, J.; Alvarez-Sala-Walther, L.A. The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients 2019, 11, 2833. [Google Scholar] [CrossRef]
- Ito, T.; Totoki, T.; Takada, S.; Otsuka, S.; Maruyama, I. Potential roles of 1,5-anhydro-D-fructose in modulating gut microbiome in mice. Sci. Rep. 2021, 11, 19648. [Google Scholar] [CrossRef]
- Ma, L.-J.; Hou, X.-D.; Qin, X.-Y.; He, R.-J.; Yu, H.-N.; Hu, Q.; Guan, X.-Q.; Jia, S.-N.; Hou, J.; Lei, T.; et al. Discovery of human pancreatic lipase inhibitors from root of Rhodiola crenulata via integrating bioactivity-guided fractionation, chemical profiling and biochemical assay. J. Pharm. Anal. 2022, 12, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Lajnef, I.; Khemiri, S.; Yahmed, B.; Chouaibi, M.; Smaali, I. Straightforward extraction of date palm syrup from Phoenix dactylifera L. byproducts: Application as sucrose substitute in sponge cake formulation. J. Food Meas. Charact. 2021, 5, 3942–3952. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Elansary, H.O.; El-Shanhorey, N.A.; Abdel-Hamid, A.M.E.; Ali, H.M.; Elshikh, M.S. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Front. Physiol. 2017, 8, 716. [Google Scholar] [CrossRef]
- Choi, H.W.; Tian, M.; Song, F.; Venereau, E.; Preti, A.; Park, S.-W.; Hamilton, K.; Swapna, G.V.T.; Manohar, M.; Moreau, M.; et al. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Mol. Med. 2015, 21, 526–535. [Google Scholar] [CrossRef]
- Roh, C.; Jung, U.; Jo, S.K. Screening of anti-obesity agent from herbal mixtures. Molecules 2012, 17, 3630–3638. [Google Scholar] [CrossRef] [PubMed]
- Lebaka, V.R.; Wee, Y.J.; Ye, W.; Korivi, M. Nutritional Constituent and Bioactive Constituents in Three Different Parts of Mango Fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Feliciano, R.P.; Boeres, A.; Weber, T.; dos Santos, C.N.; Ventura, M.R.; Heiss, C. Cranberry (poly)phenol metabolites correlate with improvements in vascular function: A double-blind, randomized, controlled, dose-response, crossover study. Mol. Nutr. Food Res. 2016, 60, 2130–2140. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, D.; Liu, J.; Li, G.; Zhang, Z.; Chen, C.; Zhang, L.; Li, J. Characterization of xanthine oxidase inhibitory activities of phenols from pickled radish with molecular simulation. Food Chem. X 2022, 14, 100343. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Nile, A.S.; Keum, Y.S.; Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem. 2017, 235, 119–126. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef]
- Wen, C.-C.; Shyur, L.-F.; Jan, J.-T.; Liang, P.-H.; Kuo, C.-J.; Arulselvan, P.; Wu, J.-B.; Kuo, S.-C.; Yang, N.-S. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J. Tradit. Complement. Med. 2011, 1, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Niu, L.; Chen, Y.; Qiu, X.; Du, T.; Zhu, M.; Wang, M.; Mo, H.; Xiao, S. Recent advance in the biological activity of chlorogenic acid and its application in food industry. Int. J. Food Sci. Technol. 2023, 58, 4931–4947. [Google Scholar] [CrossRef]
- Ramos, B.; Ferro, M.; Oliveira, M.; Goncalves, S.; Freire, C.S.R.; Silvestre, A.J.D.; Duarte, M.F. Biosynthesis and bioactivity of Cynara cardunculus L. guaianolides and hydroxycinnamic acids: A genomic biochemical and health-promoting perspective. Phytochem. Rev. 2019, 18, 495–528. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, Q.; Tang, R. Gallic acid functionalized polylysine for endowing cotton fiber with antibacterial, antioxidant, and drug delivery properties. Int. J. Biol. Macromol. 2022, 216, 65–74. [Google Scholar] [CrossRef]
- Li, X.C. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•) Radical Scavenging: A New and Simple Antioxidant Assay In Vitro. J. Agric. Food Chem. 2017, 65, 6288–6297. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Food 2020, 73, 104146. [Google Scholar] [CrossRef] [PubMed]
- Ketsuwan, N.; Leelarungrayub, J.; Kothan, S.; Singhatong, S. Antioxidant constituents and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less. Drug Des. Devel Ther. 2017, 11, 383–391. [Google Scholar] [CrossRef]
- Ahmad, R.; Aldholmi, M.; Alqathama, A.; Althomali, E.; Aljishi, F.; Mostafa, A.; Alqarni, A.M.; Shaaban, H. The effect of natural antioxidants, pH, and green solvents upon catechins stability during ultrasonic extraction from green tea leaves (Camellia sinensis). Ultrason. Sonochem. 2023, 94, 106337. [Google Scholar] [CrossRef]
- Rzepka, Z.; Bębenek, E.; Chrobak, E.; Wrześniok, D. Synthesis and Anticancer Activity of Indole-Functionalized Derivatives of Betulin. Pharmaceutics 2022, 14, 2372. [Google Scholar] [CrossRef]
- Lin, A.S.; Engel, S.; Smith, B.A.; Fairchild, C.R.; Aalbersberg, W.; Hay, M.E.; Kubanek, J. Structure and biological evaluation of novel cytotoxic sterol glycosides from the marine red alga Peyssonnelia sp. Bioorg. Med. Chem. 2010, 18, 8264–8269. [Google Scholar] [CrossRef]
- Sousa, J.L.C.; Freire, C.S.R.; Silvestre, A.J.D.; Silva, A.M.S. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Constituents. Molecules 2019, 24, 355. [Google Scholar] [CrossRef] [PubMed]
- Baer-Dubowska, W.; Narożna, M.; Krajka-Kuźniak, V. Anti-Cancer Potential of Synthetic Oleanolic Acid Derivatives and Their Conjugates with NSAIDs. Molecules 2021, 26, 4957. [Google Scholar] [CrossRef]
- Ye, S.; Zhong, J.; Huang, J.; Chen, L.; Yi, L.; Li, X.; Lv, J.; Miao, J.; Li, H.; Chen, D.; et al. Protective effect of plastrum testudinis extract on dopaminergic neurons in a Parkinson’s disease model through DNMT1 nuclear translocation and SNCA’s methylation. Biomed. Pharmacother. 2021, 141, 111832. [Google Scholar] [CrossRef]
- Fernández del Río, L.; Gutiérrez-Casado, E.; Varela-López, A.; Villalba, J.M. Olive Oil and the Hallmarks of Aging. Molecules 2016, 21, 163. [Google Scholar] [CrossRef]
- Dhulipalla, H.; Syed, I.; Munshi, M.; Mandapati, R.N. Development and Characterization of Coconut Oil Oleogel with Lycopene and Stearic Acid. J. Oleo Sci. 2023, 72, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, L.; Zhao, D.; Hou, C.; Xia, X.; Cai, Y.; Li, J.; Chen, Y. Adenosine and L-proline can possibly hinder Chinese Sacbrood virus infection in honey bees via immune modulation. Virology 2022, 573, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chem. 2013, 141, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, X.C.; Tian, Y.G.; Lin, Q.Q.; Xie, H.; Lu, W.B.; Chi, Y.G.; Chen, D.F. Lyophilized aqueous extracts of Mori Fructus and Mori Ramulus protect Mesenchymal stem cells from •OH-treated damage: Bioassay and antioxidant mechanism. BMC Complement. Altern. Med. 2017, 16, 423. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Wang, T.T.; Liu, J.J.; Liu, Y.L.; Zhang, J.; Lin, J.; Zhao, Z.X.; Chen, D.F. Effect and mechanism of wedelolactone as antioxidant-coumestan on •OH-treated mesenchymal stem cells. Arab. J. Chem. 2020, 13, 184–192. [Google Scholar] [CrossRef]
- Cai, R.; Li, X.; Li, C.; Zhu, J.; Zeng, J.; Li, J.; Tang, B.; Li, Z.; Liu, S.; Yan, Y. Standards-Based UPLC-Q-Exactive Orbitrap MS Systematically Identifies 36 Bioactive Compounds in Ampelopsis grossedentata (Vine Tea). Separations 2022, 9, 329. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Li, C.; Cai, R.; Chen, B.; Jiang, G.; Liang, Y.; Chen, X. Identification and Semi-quantification of 36 Compounds from Violae Herba (Zihuadiding) via UHPLC-Q-Orbitrap-MS/MS as well as Proposal of Anti-counterfeiting Quality-marker for Pharmacopeia. Chromatographia 2024, 87, 597–608. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Liu, J.; Qin, W.; Liang, M.; Liu, Q.; Chen, D. Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components. BMC Complement. Altern. Med. 2019, 19, 275. [Google Scholar] [CrossRef]
- Gross, J.H. Mass Spectrometry; Science Press: Beijing, China, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, X.; Chen, S.; Liang, Y.; Zhang, C.; Huang, Y. Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry. Molecules 2024, 29, 4886. https://doi.org/10.3390/molecules29204886
Xu X, Li X, Chen S, Liang Y, Zhang C, Huang Y. Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry. Molecules. 2024; 29(20):4886. https://doi.org/10.3390/molecules29204886
Chicago/Turabian StyleXu, Xiaoqiong, Xican Li, Shaoman Chen, Yongbai Liang, Chuanyang Zhang, and Yuhan Huang. 2024. "Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry" Molecules 29, no. 20: 4886. https://doi.org/10.3390/molecules29204886
APA StyleXu, X., Li, X., Chen, S., Liang, Y., Zhang, C., & Huang, Y. (2024). Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry. Molecules, 29(20), 4886. https://doi.org/10.3390/molecules29204886