Bis(2-butoxyethyl) Ether-Promoted O2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Procedure for the Synthesis of Ketones 2
3.2. Characterization Data of Products 2a–2ak and 4a–4d
- 1-(p-tolyl)ethan-1-one (2a) [56]: Colorless liquid (74 mg, 92%); 1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 2.65 (s, 3H), 2.48 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.7, 143.8, 134.6, 129.1, 128.3, 26.4, 21.5.
- Acetophenone (2b) [56]: Colorless liquid (65 mg, 90%); 1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.0 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 8.0 Hz, 2H), 2.67 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 198.1, 137.0, 133.0, 128.5, 128.2, 26.5.
- 1-(4-(tert-butyl)phenyl)ethan-1-one (2c) [58]: Colorless liquid (98 mg, 93%); 1H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 2.57 (s, 3H), 1.33 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 197.7, 156.7, 134.5, 128.2, 125.4, 35.0, 31.0, 26.4.
- 1-(4-methoxyphenyl)ethan-1-one (2d) [56]: White solid (80 mg, 89%); 1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 2.49 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 196.5, 163.3, 130.4, 130.1, 113.5, 55.2, 26.1.
- 1-(4-fluorophenyl)ethan-1-one (2e) [56]: Colorless liquid (72 mg, 87%); 1H NMR (400 MHz, CDCl3) δ 7.95 (dd, J = 8.80, 5.6 Hz, 2H), 7.09 (t, J = 8.4 Hz, 2H), 2.55 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 196.4, 165.6 (d, J = 255.6 Hz), 133.5 (d, J = 3.0 Hz), 130.9 (d, J = 9.4 Hz), 115.5 (d, J = 21.9 Hz), 26.4; 19F NMR (376 MHz, CD3Cl) δ −105.4.
- 1-(4-chlorophenyl)ethan-1-one (2f) [56]: Colorless liquid (84 mg, 91%); 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 2.55 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 196.7, 139.4, 135.3, 129.6, 128.7, 26.4.
- 1-(4-bromophenyl)ethan-1-one (2g) [56]: White solid (95 mg, 80%); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 2.58 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.0, 135.8, 131.9, 129.8, 128.3, 26.5.
- 1-(4-iodophenyl)ethan-1-one (2h) [56]: Brown solid (115 mg, 78%); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 2.56 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.3, 137.9, 136.3, 129.7, 101.1, 26.4.
- 1-(4-(trifluoromethyl)phenyl)ethan-1-one (2i) [56]: Colorless liquid (81 mg, 72%); 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 2.63 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 196.9, 139.6, 134.4 (q, J = 32.8 Hz), 128.6, 125.6 (q, J = 63.3 Hz), 123.6 (q, J = 273.7 Hz), 26.7; 19F NMR (376 MHz, CD3Cl) δ −63.2.
- 4-acetylbenzonitrile (2j) [59]: Yellowish solid (60 mg, 69%); 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.4 Hz, 2H), 2.64 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 196.5, 139.9, 132.5, 128.7, 117.9, 116.4, 26.7.
- methyl 4-acetylbenzoate (2k) [59]: White solid (87 mg, 82%); 1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 8.4 Hz, 2H), 3.95 (s, 3H), 2.65 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.6, 166.2, 140.2, 133.9, 129.8, 128.2, 52.5, 26.9.
- 1-(m-tolyl)ethan-1-one (2l) [56]: Colorless liquid (68 mg, 85%); 1H NMR (400 MHz, CDCl3) δ 7.74–7.71 (m, 2H), 7.35–7.29 (m, 2H), 2.55 (s, 3H), 2.37 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 198.2, 138.1, 137.0, 133.7, 128.6, 128.3, 125.4, 26.5, 21.1.
- 1-(o-tolyl)ethan-1-one (2m) [56]: Colorless liquid (60 mg, 75%); 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.35–7.30 (m, 2H), 2.65 (s, 3H), 2.61 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 201.6, 138.3, 137.5, 131.9, 131.4, 129.3, 125.6, 29.4, 21.5.
- 1,1’-(1,4-phenylene)bis(ethan-1-one) (2n) [56]: Grayish white solid (76 mg, 78%); 1H NMR (400 MHz, CDCl3) δ 8.02 (s, 4H), 2.63 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 197.5, 140.1, 128.4, 26.9.
- 1-(3,4-dimethylphenyl)ethan-1-one (2o) [58]: Colorless liquid (82 mg, 92%); 1H NMR (400 MHz, CDCl3) δ 7.69 (s, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 2.52 (s, 3H), 2.27 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 197.8, 142.4, 136.6, 134.9, 129.5, 129.2, 125.9, 26.3, 19.7, 19.5.
- 1-(3,4-dichlorophenyl)ethan-1-one (2p) [60]: white solid (102 mg, 90%); 1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 2.57 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.6, 137.6, 136.5, 133.2, 130.7, 130.3, 127.3, 26.5.
- 2,3-dihydro-1H-inden-1-one (2q) [56]: Light yellow solid (59 mg, 74%); 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.0 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.35 (t, J = 7.2 Hz, 1H), 3.12 (t, 6.0 Hz, 2H), 2.67 (t, J = 6.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 207.0, 155.1, 137.0, 134.5, 127.2, 126.6, 123.6, 36.1, 25.7.
- 9H-fluoren-9-one (2r) [56]: Yellow solid (103 mg, 95%); 1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 7.2 Hz, 2H), 7.44–7.39 (m, 4H), 7.25–7.21 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 193.8, 144.3, 134.5, 134.0, 128.9, 124.1, 120.2.
- 2-amino-9H-fluoren-9-one (2s) [60]: Brown solid (95 mg, 81%); 1H NMR (400 MHz, DMSO-d6) δ 7.43–7.39 (m, 3H), 7.35 (d, J = 8.0 Hz, 1H), 7.14–7.09 (m, 1H), 6.78 (d, J = 2.4 Hz, 1H), 6.66 (dd, J = 8.0, 2.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 194.7, 150.9, 146.4, 135.9, 135.5, 127.4, 124.2, 122.6, 119.7, 119.0, 109.9.
- 9H-xanthen-9-one (2t) [56]: Grayish white solid (108 mg, 92%); 1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 8.0 Hz, 2H), 7.71 (t, J = 7.6 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 177.2, 156.1, 134.8, 126.7, 123.8, 121.8, 117.9.
- 1-(naphthalen-1-yl)ethan-1-one (2u) [56]: Colorless liquid (84 mg, 82%); 1H NMR (400 MHz, CDCl3) δ 8.79 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 2.73 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 201.7, 135.2, 133.8, 132.9, 130.0, 128.6, 128.3, 127.9, 126.3, 125.9, 124.2, 29.8.
- 1-(naphthalen-2-yl)ethan-1-one (2v) [56]: White solid (87 mg, 85%); 1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.90–7.86 (m, 2H), 7.62–7.53 (m, 2H), 2.72 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 198.1, 135.5, 134.4, 132.5, 130.1, 129.5, 128.4, 128.4, 127.7, 126.7, 123.8, 26.6.
- 1-(pyridin-4-yl)ethan-1-one (2w) [56]: Colorless liquid (40 mg, 56%); 1H NMR (400 MHz, CDCl3) δ 8.74 (d, J = 4.8 Hz, 2H), 7.66 (d, J = 4.8 Hz, 2H), 2.56 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.2, 150.8, 142.5, 121.0, 26.5.
- 1-(thiophen-2-yl)ethan-1-one (2x) [56]: Light yellow liquid (49 mg, 65%);1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 3.6 Hz, 1H), 7.60 (d, J = 5.2 Hz, 1H), 7.08 (t, J = 4.0 Hz, 1H), 2.51 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 190.6, 144.3, 133.7, 132.4, 128.0, 26.7.
- 1-(benzo[b]thiophen-5-yl)ethan-1-one (2y) [61]: White solid (93 mg, 88%); 1H NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 7.88 (t, J = 8.4 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 2.67 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 192.2, 143.9, 142.6, 139.1, 129.6, 127.4, 125.9, 125.0, 123.0, 26.8.
- propiophenone (2z) [56]: Colorless liquid (57 mg, 71%); 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 3.01 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 200.8, 136.9, 132.8, 128.5, 127.9, 31.7, 8.2.
- 1-phenylbutan-1-one (2aa) [61]: Colorless liquid (61 mg, 69%); 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 2.96 (t, J = 7.2 Hz, 2H), 1.83–1.74 (m, 2H), 1.02 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 200.3, 137.0, 132.8, 128.4, 127.9, 40.4, 17.7, 13.8.
- 1-phenyloctan-1-one (2ab) [60]: Colorless liquid (76 mg, 62%); 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 2.96 (t, J = 7.2 Hz, 2H), 1.77–1.70 (m, 2H), 1.36–1.25 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 200.7, 137.1, 132.8, 128.5, 128.0, 38.6, 31.7, 29.3, 29.1, 24.4, 22.6, 14.1.
- Benzophenone (2ac) [56]: White solid (100 mg, 92%); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.6 Hz, 4H), 7.59 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.6 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 196.7, 137.6, 132.4, 130.0, 128.2.
- phenyl(p-tolyl)methanone (2ad) [56]: White solid (100 mg, 85%); 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 7.6 Hz, 2H), 7.72 (t, J = 7.6 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 196.4, 143.2, 137.9, 134.8, 132.1, 130.2, 129.9, 128.9, 128.1, 21.6.
- (4-methoxyphenyl)(phenyl)methanone (2ae) [56]: White solid (114 mg, 90%); 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.8 Hz, 2H), 7.75 (t, J = 7.6 Hz, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.2 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.6, 163.2, 138.3, 132.5, 131.9, 130.1, 129.7, 128.2, 113.5, 55.5.
- (4-chlorophenyl)(phenyl)methanone (2af) [56]: White solid (109 mg, 84%); 1H NMR (400 MHz, CDCl3) δ 7.76 (t, J = 8.0 Hz, 4H), 7.59 (t, J = 7.6 Hz, 1H), 7.48 (q, J = 8.4 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 195.4, 138.8, 137.2, 135.8, 132.6, 131.4, 129.9, 128.6, 128.3.
- Anthracene-9,10-dione (2ag) [56]: Yellow solid (22 mg, 18%); 1H NMR (400 MHz, CDCl3) δ 8.32 (dd, J = 5.2, 3.2 Hz, 4H), 7.81 (dd, J = 5.2, 3.2 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 183.2, 134.1, 133.5, 127.2.
- Benzoic acid (2ah) [46]: White solid (72 mg, 99%); 1H NMR (400 MHz, DMSO-d6) δ 12.99 (s, 1H), 7.95 (d, J = 6.8 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) δ 167.9, 133.4, 131.3, 129.8, 129.1.
- Methyl 2-(1-(4-acetylbenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (2ai) [56]: White solid (175 mg, 77%); 1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 7.6 Hz, 2H), 6.96 (s, 1H), 6.85 (d, J = 8.8 Hz, 1H), 6.65 (d, J = 8.8 Hz, 1H), 3.83 (s, 3H), 3.71 (s, 3H), 3.67 (s, 2H), 2.68 (s, 3H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.3, 171.3, 168.5, 156.2, 139.8, 139.6, 135.9, 130.8, 130.7, 129.7, 128.6, 115.1, 112.9, 111.7, 101.4, 55.7, 52.2, 30.1, 29.7, 26.9, 13.5.
- (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-acetylbenzoate (2aj): White solid (233 mg, 73%); 1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H), 5.43 (d, J = 4.4 Hz, 1H), 4.92–4.84 (m, 1H), 2.65 (s, 3H), 2.48 (d, J = 7.6 Hz, 2H), 2.04–1.98 (m, 3H), 1.86–1.74 (m, 2H), 1.58–1.43 (m, 6H), 1.37–1.21 (m, 6H), 1.19–1.09 (m, 5H), 1.07 (s, 3H), 1.06–0.96 (m, 4H), 0.92 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 2.0 Hz, 3H), 0.86 (d, J = 2.0 Hz, 3H), 0.69 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.6, 165.1, 140.0, 139.4, 134.6, 129.8, 128.1, 123.0, 75.2, 56.7, 56.1, 50.0, 42.3, 39.5, 36.6, 35.8, 31.8, 28.0, 26.9, 23.8, 22.8, 22.6, 19.4, 18.7, 11.9. HRMS (ESI) calcd for C36H52O3Na [M + Na]+: 555.3809, found 555.3818.
- (3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-acetylbenzoate (2ak): White solid (195 mg, 75%); 1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H), 5.47 (d, J = 4.8 Hz, 1H), 4.93–4.84 (m, 1H), 2.65 (s, 3H), 2.51–2.46 (m, 2H), 2.17–2.08 (m, 2H), 1.98–1.92 (m, 2H), 1.89–1.78 (m, 2H), 1.73–1.67 (m, 4H), 1.55–1.41 (m, 2H), 1.34–1.25 (m, 4H), 1.10 (s, 3H), 0.96 (t, J = 7.2 Hz, 1H), 0.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.7, 165.1, 140.1, 139.7, 134.5, 129.8, 128.2, 122.2, 74.9, 51.7, 50.2, 47.6, 38.1, 37.0, 36.8, 35.9, 31.5, 31.4, 30.8, 27.8, 26.9, 21.9, 20.4, 19.4, 13.6. HRMS (ESI) calcd for C28H34O4Na [M + Na]+: 457.2349, found 457.2354.
- Isopropyl 2-(4-(4-acetylbenzoyl)phenoxy)-2-methylpropanoate (2al) [56]: White solid (152 mg, 69%); 1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.0 Hz, 2H), 7.77 (dd, J = 19.2, 8.0 Hz, 4H), 6.86 (d, J = 8.4 Hz, 2H), 5.12–5.04 (m, 1H), 2.65 (s, 3H), 1.65 (s, 6H), 1.19 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 197.5, 194.6, 173.0, 160.0, 142.0, 139.2, 132.1, 129.8, 129.6, 128.1, 117.2, 79.4, 69.3, 26.8, 25.3, 21.5.
- Anthracene (4a) [62]: Grayish white solid (83 mg, 78%); 1H NMR (400 MHz, CDCl3) δ 8.44 (s, 2H), 8.02 (q, J = 3.2 Hz, 4H), 7.48 (q, J = 3.2 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 131.7, 128.1, 126.2, 125.3.
- Chalcone (4b) [61]: Yellow solid (97 mg, 78%);1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.6 Hz, 2H), 7.82 (d, J = 15.6 Hz, 1H), 7.66–7.42 (m, 9H); 13C NMR (100 MHz, CDCl3) δ 190.6, 144.9, 138.2, 134.9, 132.8, 130.5, 128.9, 128.6, 128.5, 128.4, 122.1.
- 2-phenyl-1H-benzo[d]imidazole (4c) [61]: White solid (72 mg, 62%); 1H NMR (400 MHz, DMSO-d6) δ 8.15 (d, J = 7.2 Hz, 2H), 7.60–7.48 (m, 5H), 7.24–7.19 (m, 2H); 13C NMR (100 MHz, DMSO-d6) δ 152.1, 130.9, 130.7, 129.9, 127.3, 123.2.
- N-phenylacetamide (4d) [61]: Grayish white solid (49 mg, 60%); 1H NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 8.05–8.03 (m, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.55–7.48 (m, 4H), 2.82 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 208.2, 136.7, 131.0, 128.8, 128.2, 126.8, 126.6, 125.5, 124.3, 33.8.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azeez, M.O.; Nafiu, S.A.; Olarewaju, T.A.; Olabintan, A.B.; Tanimu, A.; Gambo, Y.; Aitani, A. Selective catalytic oxidation of ethylbenzene to acetophenone: A review of catalyst systems and reaction mechanisms. Ind. Eng. Chem. Res. 2023, 62, 12795–12828. [Google Scholar] [CrossRef]
- Zhang, J.; Du, J.; Zhang, C.; Liu, K.; Yu, F.; Yuan, Y.; Duan, B.; Liu, R. Selective oxidation of alkylarenes to the aromatic ketones or benzaldehydes with water. Org. Lett. 2022, 24, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Nandanwar, S.U.; Rathod, S.; Bansal, V.; Bokade, V.V. A Review on Selective Production of Acetophenone from Oxidation of Ethylbenzene over Heterogeneous Catalysts in a Decade. Catal. Lett. 2021, 151, 2116–2131. [Google Scholar] [CrossRef]
- Vafaeezadeh, M.; Saynisch, R.; Lösch, A.; Kleist, W.; Thiel, W.R. Fast and Selective Aqueous-Phase Oxidation of Styrene to Acetophenone Using a Mesoporous Janus-Type Palladium Catalyst. Molecules 2021, 26, 6450. [Google Scholar] [CrossRef]
- Bhukta, S.; Chatterjee, R.; Dandela, R. Metal-free oxidative radical arylation of styrene with anilines to access 2-arylacetophenones and selective oxidation of amine. J. Mol. Struct. 2023, 1279, 134995. [Google Scholar] [CrossRef]
- Ghosal, S.; Das, A.; Roy, D.; Dasgupta, J. Tuning light-driven oxidation of styrene inside water-soluble nanocages. Nat. Commun. 2024, 15, 1810. [Google Scholar] [CrossRef]
- Gao, B.; Bi, C. Some catalytic characteristics of compositional catalysts of immobilized N-hydroxyphthalimide and metal salts in aerobic oxidation of 1-phenylethanol. Catal. Commun. 2018, 115, 6–11. [Google Scholar] [CrossRef]
- Singh, O.; Gupta, P.; Singh, A.; Maji, A.; Singh, U.P.; Ghosh, K. Selective oxidation of benzyl alcohol to benzaldehyde, 1-phenylethanol to acetophenone and fluorene to fluorenol catalysed by iron (II) complexes supported by pincer-type ligands: Studies on rapid degradation of organic dyes. Appl. Organomet. Chem. 2019, 33, e4825. [Google Scholar] [CrossRef]
- Mehrjoyan, F.; Afshari, M. Nano NiFe2O4 supported phenanthroline Cu(II) complex as a retrievable catalyst for selective and environmentally friendly oxidation of benzylic alcohols. J. Mol. Struct. 2021, 1236, 130284. [Google Scholar] [CrossRef]
- Nilforoushan, S.; Ghiaci, M.; Hosseini, S.M.; Laurent, S.; Muller, R.N. Selective liquid phase oxidation of ethyl benzene to acetophenone by palladium nanoparticles immobilized on a g-C3N4–rGO composite as a recyclable catalyst. New J. Chem. 2019, 43, 6921–6931. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, Q.; Huang, L.; He, Q.; Zhang, H.; Wang, P.; Zhang, Y.; Shi, S.; Zhang, X.; Gan, T.; et al. Protein powder derived nitrogen-doped carbon supported atomically dispersed iron sites for selective oxidation of ethylbenzene. Dalton Trans. 2021, 50, 11711–11715. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Ara, M.G.; Rahman, M.S.; Uddin, M.S.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Recent development of catalytic materials for ethylbenzene oxidation. J. Nanomater. 2020, 2020, 7532767. [Google Scholar] [CrossRef]
- Niu, K.; Shi, X.; Ding, L.; Liu, Y.; Song, H.; Wang, Q. HCl-Catalyzed Aerobic Oxidation of Alkylarenes to Carbonyls. ChemSusChem 2022, 15, e202102326. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wu, J.; Xiao, J.; Cao, S. Oxidation of benzylic methylenes to ketones with Oxone–KBr in aqueous acetonitrile under transition metal free conditions. Tetrahedron Lett. 2012, 53, 4418–4421. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, L.; Lu, W. Transition-metal-and halogen-free oxidation of benzylic sp3 C–H bonds to carbonyl groups using potassium persulfate. Synthesis 2017, 49, 4007–4016. [Google Scholar] [CrossRef]
- Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. Clean and efficient benzylic C−H oxidation in water using a hypervalent iodine reagent: Activation of polymeric iodosobenzene with KBr in the presence of montmorillonite-K10. J. Org. Chem. 2008, 73, 7365–7368. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Montagnon, T.; Baran, P.S.; Zhong, Y.L. Iodine(V) Reagents in Organic Synthesis. Part 4. o-Iodoxybenzoic Acid as a Chemospecific Tool for Single Electron Transfer-Based Oxidation Processes. J. Am. Chem. Soc. 2002, 124, 2245–2258. [Google Scholar] [CrossRef]
- Hussain, H.; Al-Harrasi, A.; Green, I.R.; Ahmed, I.; Abbas, G.; Rehman, N.U. meta-Chloroperbenzoic acid (mCPBA): A versatile reagent in organic synthesis. RSC Adv. 2014, 4, 12882–12917. [Google Scholar] [CrossRef]
- Zhang, Y.; Schilling, W.; Das, S. Metal-Free Photocatalysts for C− H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem 2019, 12, 2898–2910. [Google Scholar] [CrossRef]
- Tang, C.; Qiu, X.; Cheng, Z.; Jiao, N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem. Soc. Rev. 2021, 50, 8067–8101. [Google Scholar] [CrossRef]
- Hone, C.A.; Kappe, C.O. The use of molecular oxygen for liquid phase aerobic oxidations in continuous flow. Acc. Sustain. Flow. Chem. 2020, 377, 67–110. [Google Scholar]
- Qian, Y.; Li, D.; Han, Y.; Jiang, H.-L. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 20763–20771. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.-H.; Zou, Y.-F.; Qu, J.-P.; Kang, Y.-B. TBN as Organic Redox Cocatalyst for Oxidative Tiffeneau–Demjanov-Type Rearrangement Using O2 as Sole Oxidant. Org. Lett. 2024, 26, 6454–6458. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, B.; Lee, R.; Qiao, B.; Jiang, Z. Visible light-induced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate (III) complex catalyst. Org. Chem. Front. 2018, 5, 380–385. [Google Scholar] [CrossRef]
- Kumar, Y.; Jaiswal, Y.; Kumar, A. Copper (II)-Catalyzed Benzylic C (sp3)–H Aerobic Oxidation of (Hetero) Aryl Acetimidates: Synthesis of Aryl-α-ketoesters. J. Org. Chem. 2016, 81, 12247–12257. [Google Scholar] [CrossRef]
- Hruszkewycz, D.P.; Miles, K.C.; Thiel, O.R.; Stahl, S.S. Co/NHPI-mediated aerobic oxygenation of benzylic C–H bonds in pharmaceutically relevant molecules. Chem. Sci. 2017, 8, 1282–1287. [Google Scholar] [CrossRef]
- Mühldorf, B.; Wolf, R. C-H Photooxygenation of Alkyl Benzenes Catalyzed by Riboflavin Tetraacetate and a Non-Heme Iron Catalyst. Angew. Chem. Int. Ed. 2016, 55, 427–430. [Google Scholar] [CrossRef]
- Shen, H.-M.; Liu, L.; Qi, B.; Hu, M.-Y.; Ye, H.-L.; She, Y.-B. Efficient and selective oxidation of secondary benzylic C-H bonds to ketones with O2 catalyzed by metalloporphyrins under solvent-free and additive-free conditions. Mol. Catal. 2020, 493, 111102. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Yoshimura, Y.; Yamashita, H. In situ-created Mn (III) complexes active for liquid-phase oxidation of alkylaromatics to aromatic ketones with molecular oxygen. Catal. Sci. Technol. 2016, 6, 442–448. [Google Scholar] [CrossRef]
- Lin, X.; Nie, Z.; Zhang, L.; Mei, S.; Chen, Y.; Zhang, B.; Zhu, R.; Liu, Z. Nitrogen-doped carbon nanotubes encapsulate cobalt nanoparticles as efficient catalysts for aerobic and solvent-free selective oxidation of hydrocarbons. Green Chem. 2017, 19, 2164–2173. [Google Scholar] [CrossRef]
- Azam, S.U.; Peckh, K.; Orlińska, B. SCILL-SILP hybrid catalytic system by employing carbon nanotubes as a support for the selective oxidation of ethylbenzene to acetophenone. Chem. Eng. J. 2023, 457, 141207. [Google Scholar] [CrossRef]
- Upadhyay, R.; Kumar, S.; Maurya, S.K. V2O5@ TiO2 Catalyzed Green and Selective Oxidation of Alcohols, Alkylbenzenes and Styrenes to Carbonyls. ChemCatChem 2021, 13, 3594–3600. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Yoshimura, Y.; Yamashita, H. Liquid-phase oxidation of alkylaromatics to aromatic ketones with molecular oxygen over a Mn-based metal–organic framework. Dalton Trans. 2017, 46, 8415–8421. [Google Scholar] [CrossRef] [PubMed]
- Tušar, N.N.; Laha, S.; Cecowski, S.; Arčon, I.; Kaučič, V.; Gläser, R. Mn-containing porous silicates as catalysts for the solvent-free selective oxidation of alkyl aromatics to aromatic ketones with molecular oxygen. Microporous Mesoporous Mater. 2011, 146, 166–171. [Google Scholar] [CrossRef]
- Zhao, H.; Fang, J.; Xu, D.; Li, J.; Li, B.; Zhao, H.; Dong, Z. Multistep protection strategy for preparation of atomically dispersed Fe–N catalysts for selective oxidation of ethylbenzene to acetophenone. Catal. Sci. Technol. 2022, 12, 641–651. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Qu, J.-P.; Kang, Y.-B. Overcoming Electron-Withdrawing and Product-Inhibition Effects by Organocatalytic Aerobic Oxidation of Alkylpyridines and Related Alkylheteroarenes to Ketones. J. Org. Chem. 2020, 85, 3942–3948. [Google Scholar] [CrossRef]
- Xie, D.; Wang, H.; Chen, C.; Zhu, Z.; Xu, L.; Zhang, Q. Catalytic oxidation of hydrocarbon with the organic metal-free system of N-hydroxyphthalimide/tert-butyl nitrite at room temperature. Mol. Catal. 2023, 549, 113503. [Google Scholar] [CrossRef]
- Xiang, M.; Xin, Z.-K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Exploring the reducing ability of organic dye (Acr+-Mes) for fluorination and oxidation of benzylic C (sp3)–H bonds under visible light irradiation. Org. lett. 2017, 19, 3009–3012. [Google Scholar] [CrossRef]
- Yang, G.; Ma, Y.; Xu, J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. J. Am. Chem. Soc. 2004, 126, 10542–10543. [Google Scholar] [CrossRef]
- Yi, H.; Bian, C.; Hu, X.; Niu, L.; Lei, A. Visible light mediated efficient oxidative benzylic sp3 C–H to ketone derivatives obtained under mild conditions using O2. Chem. Commun. 2015, 51, 14046–14049. [Google Scholar] [CrossRef]
- Su, Y.; Li, Y.; Chen, Z.; Huang, J.; Wang, H.; Yu, H.; Cao, Y.; Peng, F. New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogen-doped Carbon Nanotubes. ChemCatChem 2021, 13, 646–655. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Xie, B.; Liu, W.; Zhang, J. Green and continuous aerobic oxidation of ethylbenzene over homogeneous and heterogeneous NHPI in a micro-packed bed reactor. Chem. Eng. J. 2023, 468, 143674. [Google Scholar] [CrossRef]
- Ghadge, V.A.; Ravi, K.; Naikwadi, D.R.; Shinde, P.B.; Biradar, A.V. Natural eumelanin-based porous N-doped carbon as an active bio-catalyst for base- and initiator-free aerobic oxidation of olefins and alkyl aromatic hydrocarbons. Green Chem. 2023, 25, 2863–2871. [Google Scholar] [CrossRef]
- Wang, C.-C.; Li, G.; Lv, W.; Yang, B.; Chen, J.; Li, J. Self-Photocatalyzed Oxidation of Alkylarenes to Carbonyls with Water. ACS Sustain. Chem. Eng. 2024, 12, 10647–10652. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Liu, X.-H.; Wen, T.-T.; Zhou, X.-T. Aerobic oxidation of alkyl aromatics to ketones catalyzed by biomimetic copper complex and N-hydroxyphthalimide (NHPI) under mild conditions. Mol. Catal. 2024, 552, 113673. [Google Scholar] [CrossRef]
- Ou, J.; He, S.; Wang, W.; Tan, H.; Liu, K. Highly efficient oxidative cleavage of olefins with O2 under catalyst-, initiator-and additive-free conditions. Org. Chem. Front. 2021, 8, 3102–3109. [Google Scholar] [CrossRef]
- Ou, J.; Tan, H.; He, S.; Wang, W.; Hu, B.; Yu, G.; Liu, K. 1,2-Dibutoxyethane-promoted oxidative cleavage of olefins into carboxylic acids using O2 under clean conditions. J. Org. Chem. 2021, 86, 14974–14982. [Google Scholar] [CrossRef]
- Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Bis (methoxypropyl) ether-promoted oxidation of aromatic alcohols into aromatic carboxylic acids and aromatic ketones with O2 under metal-and base-free conditions. Green Chem. 2018, 20, 3038–3043. [Google Scholar] [CrossRef]
- Liu, K.-J.; Deng, J.-H.; Yang, J.; Gong, S.-F.; Lin, Y.-W.; He, J.-Y.; Cao, Z.; He, W.-M. Selective oxidation of (hetero) sulfides with molecular oxygen under clean conditions. Green Chem. 2020, 22, 433–438. [Google Scholar] [CrossRef]
- Jian, L.; Jinhua, O.; Zeping, L. Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework. Acta Chim. Sinica 2023, 81, 1701. [Google Scholar]
- Bashary, R.; Khatik, G.L. Design, and facile synthesis of 1, 3 diaryl-3-(arylamino) propan-1-one derivatives as the potential alpha-amylase inhibitors and antioxidants. Bioorg. Chem. 2019, 82, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Ravi, O.; Shaikh, A.; Upare, A.; Singarapu, K.K.; Bathula, S.R. Benzimidazoles from aryl alkyl ketones and 2-amino anilines by an iodine catalyzed oxidative C (CO)–C (alkyl) bond cleavage. J. Org. Chem. 2017, 82, 4422–4428. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Sharma, B.; Kapoor, K.K. A solvent-free one step conversion of ketones to amides via Beckmann rearrangement catalysed by FeCl3· 6H2O in presence of hydroxylamine hydrochloride. Tetrahedron Lett. 2015, 56, 1915–1918. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Huang, H.; Tan, J.; Xu, K. KO t Bu-Promoted Oxidation of (Hetero) benzylic Csp3–H to Ketones with Molecular Oxygen. Org. Lett. 2016, 18, 5680–5683. [Google Scholar] [CrossRef]
- Liang, Y.-F.; Jiao, N. Oxygenation via C–H/C–C bond activation with molecular oxygen. Acc. Chem. Res. 2017, 50, 1640–1653. [Google Scholar] [CrossRef]
- Liu, K.-J.; Duan, Z.-H.; Zeng, X.-L.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W.-M. Clean oxidation of (hetero) benzylic Csp3–H bonds with molecular oxygen. ACS Sustain. Chem. Eng. 2019, 7, 10293–10298. [Google Scholar] [CrossRef]
- Miao, C.; Zhao, H.; Zhao, Q.; Xia, C.; Sun, W. NHPI and ferric nitrate: A mild and selective system for aerobic oxidation of benzylic methylenes. Catal. Sci. Technol. 2016, 6, 1378–1383. [Google Scholar] [CrossRef]
- Xu, S.; Yun, Z.; Feng, Y.; Tang, T.; Fang, Z.; Tang, T. Zeolite Y nanoparticle assemblies with high activity in the direct hydration of terminal alkynes. RSC Adv. 2016, 6, 69822–69827. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Liu, C.; Yang, H.; Fu, H. Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. Green Chem. 2020, 22, 4357–4363. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Y.; Tong, H.; Guo, H.; Liu, R.; Zhou, R. Photochemical Hydrogen Atom Transfer Catalysis for Dehydrogenation of Alcohols To Form Carbonyls. Org. Lett. 2023, 25, 5486–5491. [Google Scholar] [CrossRef]
- Liu, K.-J.; Deng, J.-H.; Zeng, T.-Y.; Chen, X.-J.; Huang, Y.; Cao, Z.; Lin, Y.-W.; He, W.-M. 1,2-Diethoxyethane catalyzed oxidative cleavage of gem-disubstituted aromatic alkenes to ketones under minimal solvent conditions. Chin. Chem. Lett. 2020, 31, 1868–1872. [Google Scholar] [CrossRef]
- Yuan, Z.; Liang, Y.; He, Y.; Deng, H.; Wu, H.; Lin, B.; Zhang, J. Fast protodeboronation of arylboronic acids and esters with AlCl3 at room temperature. Aust. J. Chem. 2023, 76, 194–200. [Google Scholar] [CrossRef]
Entry | Promoter (eq.) | [O] | T/°C | Time | Yield b (%) |
---|---|---|---|---|---|
1 | 2-Methoxyethyl ether (1) | O2 | 120 | 15 h | 63 |
2 | Bis(methoxypropyl) ether (1) | O2 | 120 | 15 h | 60 |
3 | Triethylene glycol dimethyl ether (1) | O2 | 120 | 15 h | 37 |
4 | Tetraethylene glycol dimethyl ether (1) | O2 | 120 | 15 h | 40 |
5 | 2-Ethoxyethyl ether (1) | O2 | 120 | 15 h | 65 |
6 | Bis(2-butoxyethyl) ether (1) | O2 | 120 | 15 h | 70 |
7 | 1,2-Dibutoxyethane (1) | O2 | 120 | 15 h | 47 |
8 | Methoxypropoxypropanol (1) | O2 | 120 | 15 h | 31 |
9 | Bis(2-butoxyethyl) ether (1) | O2 | 130 | 15 h | 77 |
10 | Bis(2-butoxyethyl) ether (1) | O2 | 140 | 15 h | 90 |
11 | Bis(2-butoxyethyl) ether (1) | O2 | 150 | 15 h | 92 |
12 | Bis(2-butoxyethyl) ether (1) | O2 | 110 | 15 h | 31 |
13 | Bis(2-butoxyethyl) ether (1) | O2 | 100 | 15 h | - |
14 | Bis(2-butoxyethyl) ether (1) | O2 | r.t. | 15 h | - |
15 | Bis(2-butoxyethyl) ether (3) | O2 | 150 | 15 h | 91 |
16 | Bis(2-butoxyethyl) ether (2) | O2 | 150 | 15 h | 97 |
17 | Bis(2-butoxyethyl) ether (0.5) | O2 | 150 | 15 h | 76 |
18 | Bis(2-butoxyethyl) ether (2) | O2 | 150 | 18 h | 97 |
19 c | Bis(2-butoxyethyl) ether (2) | O2 | 150 | 15 h | 97 |
20 | Bis(2-butoxyethyl) ether (2) | N2 | 150 | 15 h | - |
21 | Bis(2-butoxyethyl) ether (2) | air | 150 | 15 h | 58 |
22 | - | O2 | 150 | 15 h | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Li, Z.; Xu, X.; Jiang, H.; Chen, K.; Ou, J.; Liu, K.; Zhou, Y.; Luo, K. Bis(2-butoxyethyl) Ether-Promoted O2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions. Molecules 2024, 29, 4909. https://doi.org/10.3390/molecules29204909
Xie Y, Li Z, Xu X, Jiang H, Chen K, Ou J, Liu K, Zhou Y, Luo K. Bis(2-butoxyethyl) Ether-Promoted O2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions. Molecules. 2024; 29(20):4909. https://doi.org/10.3390/molecules29204909
Chicago/Turabian StyleXie, Yangyang, Zeping Li, Xudong Xu, Han Jiang, Keyi Chen, Jinhua Ou, Kaijian Liu, Yihui Zhou, and Kejun Luo. 2024. "Bis(2-butoxyethyl) Ether-Promoted O2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions" Molecules 29, no. 20: 4909. https://doi.org/10.3390/molecules29204909
APA StyleXie, Y., Li, Z., Xu, X., Jiang, H., Chen, K., Ou, J., Liu, K., Zhou, Y., & Luo, K. (2024). Bis(2-butoxyethyl) Ether-Promoted O2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions. Molecules, 29(20), 4909. https://doi.org/10.3390/molecules29204909