Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk
Abstract
:1. Introduction
2. Results
2.1. Content of Leptin, Insulin, and Neurotrophic Factors in Human Milk Samples
2.2. Content of Macronutrients in Human Milk Samples
2.3. Analysis of the Relationship Between the Content of Insulin, Leptin, NGF, and Macronutrients in Human Milk Samples
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Milk Sampling
4.3. Determination of Essential Macronutrients
4.4. Determination of Bioactive Components
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhind, S.M.; Rae, M.T.; Brooks, A.N. Environmental Influences on the Fetus and Neonate—Timing, Mechanisms of Action and Effects on Subsequent Adult Function. Domest. Anim. Endocrinol. 2003, 25, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Rauh, V.A.; Horton, M.K.; Miller, R.L.; Whyatt, R.M.; Perera, F. Neonatology and the Environment: Early Exposure to Airborne Environmental Toxicants. NeoReviews 2010, 11, e363–e369. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.E.; Virmani, M.D.; Rosa, F.; Munblit, D.; Matazel, K.S.; Elolimy, A.A.; Yeruva, L. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front. Immunol. 2021, 12, 604080. [Google Scholar] [CrossRef]
- Deoni, S.; Dean, D.; Joelson, S.; O’Regan, J.; Schneider, N. Early Nutrition Influences Developmental Myelination and Cognition in Infants and Young Children. NeuroImage 2018, 178, 649–659. [Google Scholar] [CrossRef]
- Kratzsch, J.; Bae, Y.J.; Kiess, W. Adipokines in Human Breast Milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Berger, P.K.; Ong, M.L.; Bode, L.; Belfort, M.B. Human Milk Oligosaccharides and Infant Neurodevelopment: A Narrative Review. Nutrients 2023, 15, 719. [Google Scholar] [CrossRef]
- Koo, W.; Tank, S.; Martin, S.; Shi, R. Human Milk and Neurodevelopment in Children with Very Low Birth Weight: A Systematic Review. Nutr. J. 2014, 13, 94. [Google Scholar] [CrossRef]
- Miller, J.; Tonkin, E.; Damarell, R.A.; McPhee, A.J.; Suganuma, M.; Suganuma, H.; Middleton, P.F.; Makrides, M.; Collins, C.T. A Systematic Review and Meta-Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients 2018, 10, 707. [Google Scholar] [CrossRef]
- European Society for Paediatric Gastroenterology, Hepatology & Nutrition (ESPGHAN); European Academy of Paediatrics (EAP); European Society for Paediatric Research (ESPR); European Academy for Allergy and Clinical Immunology (EAACI); Federation of International Societies for Paediatric Gastroenterology, Hepatology & Nutrition (FISPGHAN); Latin American Society for Pediatric Gastroenterology, Hepatology & Nutrition (LASPGHAN); Pan Arab Society for Pediatric Gastroenterology and Nutrition (PASPGHAN); Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology and Nutrition (AAPSGHAN); North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN); World Allergy Organization (WAO); et al. World Health Organization (WHO) Guideline on the Complementary Feeding of Infants and Young Children Aged 6−23 Months 2023: A Multisociety Response. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 181–188. [Google Scholar] [CrossRef]
- Abrams, S.A.; Landers, S.; Noble, L.M.; Poindexter, B.B.; Committee On Nutrition; Section on Breastfeeding; Committee on Fetus and Newborn. Donor Human Milk for the High-Risk Infant: Preparation, Safety, and Usage Options in the United States. Pediatrics 2017, 139, e20163440. [Google Scholar] [CrossRef]
- Moya-Alvarez, V.; Eussen, S.R.B.M.; Mank, M.; Koyembi, J.-C.J.; Nyasenu, Y.T.; Ngaya, G.; Mad-Bondo, D.; Kongoma, J.-B.; Stahl, B.; Sansonetti, P.J.; et al. Human Milk Nutritional Composition across Lactational Stages in Central Africa. Front. Nutr. 2022, 9, 1033005. [Google Scholar] [CrossRef] [PubMed]
- Sinkiewicz-Darol, E.; Martysiak-Żurowska, D.; Puta, M.; Adamczyk, I.; Barbarska, O.; Wesołowska, A.; Bernatowicz-Łojko, U. Nutrients and Bioactive Components of Human Milk After One Year of Lactation: Implication for Human Milk Banks. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Sinkiewicz-Darol, E.; Bernatowicz-Łojko, U.; Łubiech, K.; Adamczyk, I.; Twarużek, M.; Baranowska, B.; Skowron, K.; Spatz, D.L. Tandem Breastfeeding: A Descriptive Analysis of the Nutritional Value of Milk When Feeding a Younger and Older Child. Nutrients 2021, 13, 277. [Google Scholar] [CrossRef] [PubMed]
- Brockway, M.M.; Daniel, A.I.; Reyes, S.M.; Gauglitz, J.M.; Granger, M.; McDermid, J.M.; Chan, D.; Refvik, R.; Sidhu, K.K.; Musse, S.; et al. Human Milk Bioactive Components and Child Growth and Body Composition in the First 2 Years: A Systematic Review. Adv. Nutr. 2024, 15, 100127. [Google Scholar] [CrossRef]
- Çatlı, G.; Olgaç Dündar, N.; Dündar, B.N. Adipokines in Breast Milk: An Update. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 192–201. [Google Scholar] [CrossRef]
- Morais, T.; De Abreu, L.; De Quental, O.; Pessoa, R.; Fujimori, M.; Daboin, B.; França, E.; Honorio-França, A. Obesity as an Inflammatory Agent Can Cause Cellular Changes in Human Milk Due to the Actions of the Adipokines Leptin and Adiponectin. Cells 2019, 8, 519. [Google Scholar] [CrossRef] [PubMed]
- Soori, M.; Mohammadi, Y.; Goodarzi, M.T.; Mahmoodi, M. Association between Breast Milk Adipokines with Growth in Breast Feeding Infants, a Systematic Review and Meta-Analysis. Turk. J. Biochem. 2020, 45, 659–669. [Google Scholar] [CrossRef]
- Pandit, M.; Behl, T.; Sachdeva, M.; Arora, S. Role of Brain Derived Neurotropic Factor in Obesity. Obes. Med. 2020, 17, 100189. [Google Scholar] [CrossRef]
- Jo, D.; Son, Y.; Yoon, G.; Song, J.; Kim, O.Y. Role of Adiponectin and Brain Derived Neurotrophic Factor in Metabolic Regulation Involved in Adiposity and Body Fat Browning. J. Clin. Med. 2020, 10, 56. [Google Scholar] [CrossRef]
- Cui, X.; Jing, J.; Wu, R.; Cao, Q.; Li, F.; Li, K.; Wang, S.; Yu, L.; Schwartz, G.; Shi, H.; et al. Adipose Tissue-Derived Neurotrophic Factor 3 Regulates Sympathetic Innervation and Thermogenesis in Adipose Tissue. Nat. Commun. 2021, 12, 5362. [Google Scholar] [CrossRef]
- Iskusnykh, I.Y.; Chizhikov, V.V. Cerebellar Development after Preterm Birth. Front. Cell Dev. Biol. 2022, 10, 1068288. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, L.I.; Morrow, E.M. Genetic Control of Postnatal Human Brain Growth. Curr. Opin. Neurol. 2017, 30, 114–124. [Google Scholar] [CrossRef]
- Iskusnykh, I.Y.; Zakharova, A.A.; Kryl’skii, E.D.; Popova, T.N. Aging, Neurodegenerative Disorders, and Cerebellum. Int. J. Mol. Sci. 2024, 25, 1018. [Google Scholar] [CrossRef]
- Manti, S.; Xerra, F.; Spoto, G.; Butera, A.; Gitto, E.; Di Rosa, G.; Nicotera, A.G. Neurotrophins: Expression of Brain–Lung Axis Development. Int. J. Mol. Sci. 2023, 24, 7089. [Google Scholar] [CrossRef]
- the CHILD Study investigators; Chan, D.; Goruk, S.; Becker, A.B.; Subbarao, P.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.; Sears, M.R.; Field, C.J.; et al. Adiponectin, Leptin and Insulin in Breast Milk: Associations with Maternal Characteristics and Infant Body Composition in the First Year of Life. Int. J. Obes. 2018, 42, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Lemas, D.J.; Young, B.E.; Baker, P.R.; Tomczik, A.C.; Soderborg, T.K.; Hernandez, T.L.; De La Houssaye, B.A.; Robertson, C.E.; Rudolph, M.C.; Ir, D.; et al. Alterations in Human Milk Leptin and Insulin Are Associated with Early Changes in the Infant Intestinal Microbiome. Am. J. Clin. Nutr. 2016, 103, 1291–1300. [Google Scholar] [CrossRef]
- Fields, D.A.; Demerath, E.W. Relationship of Insulin, Glucose, Leptin, IL-6 and TNF-α in Human Breast Milk with Infant Growth and Body Composition. Pediatr. Obes. 2012, 7, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Pasquin, S.; Sharma, M.; Gauchat, J.-F. Ciliary Neurotrophic Factor (CNTF): New Facets of an Old Molecule for Treating Neurodegenerative and Metabolic Syndrome Pathologies. Cytokine Growth Factor Rev. 2015, 26, 507–515. [Google Scholar] [CrossRef]
- Dangat, K.; Khaire, A.; Joshi, S. Cross Talk of Vascular Endothelial Growth Factor and Neurotrophins in Mammary Gland Development. Growth Factors 2020, 38, 16–24. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef]
- Dechant, G.; Neumann, H. Neurotrophins. In Molecular and Cellular Biology of Neuroprotection in the CNS; Alzheimer, C., Ed.; Springer: Boston, MA, USA, 2003; Volume 513, pp. 303–334. [Google Scholar] [CrossRef]
- Arizón, P.A.; Rupérez, A.I.; Aguilera, C.; Leis, R.; Campos, M.G.; Gil, Á.; Moreno, L.A.; Bueno, G. The Adipose-Derived Nerve Growth Factor Is Associated with Abdominal Obesity in Prepubertal and Pubertal Children. Proc. Nutr. Soc. 2020, 79, E510. [Google Scholar] [CrossRef]
- Fichter, M.; Klotz, M.; Hirschberg, D.L.; Waldura, B.; Schofer, O.; Ehnert, S.; Schwarz, L.K.; Ginneken, C.V.; Schäfer, K. Breast Milk Contains Relevant Neurotrophic Factors and Cytokines for Enteric Nervous System Development. Mol. Nutr. Food Res. 2011, 55, 1592–1596. [Google Scholar] [CrossRef]
- Gencpinar, P.; Bal Yuksel, E.; Basarir, G.; Kanik, A.; Arslan, F.D.; Olgac Dundar, N.; Karakoyun, I. The Role of Breast Milk Neurotrophin Levels in Infantile Colic Pathogenesis: A Cross-Sectional Case-Control Study. Breastfeed. Med. 2023, 18, 908–912. [Google Scholar] [CrossRef]
- Dangat, K.; Kilari, A.; Mehendale, S.; Lalwani, S.; Joshi, S. Higher Levels of Brain Derived Neurotrophic Factor but Similar Nerve Growth Factor in Human Milk in Women with Preeclampsia. Int. J. Dev. Neurosci. 2013, 31, 209–213. [Google Scholar] [CrossRef]
- Juan Castell, M.F.; Peraita-Costa, I.; Soriano, J.M.; Llopis-Morales, A.; Morales-Suarez-Varela, M. A Review of the Relationship Between the Appetite-Regulating Hormone Leptin Present in Human Milk and Infant Growth. Breastfeed. Med. 2022, 17, 98–111. [Google Scholar] [CrossRef]
- Sinkiewicz-Darol, E.; Adamczyk, I.; Łubiech, K.; Pilarska, G.; Twarużek, M. Leptin in Human Milk—One of the Key Regulators of Nutritional Programming. Molecules 2022, 27, 3581. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.P.; Zhang, F.; DiMarchi, R.D. Insulin Structure and Function. Biopolymers 2007, 88, 687–713. [Google Scholar] [CrossRef] [PubMed]
- Mirshokraei, P.; Hassanpour, H.; Rahnama, A.; Foster, W.G. Gene Expression of BDNF and Its Receptors, TrkB and P75 in the Uterus and Oviduct of Pregnant and Non-Pregnant Ewes. Res. Vet. Sci. 2013, 95, 164–168. [Google Scholar] [CrossRef]
- Collado, M.; Santaella, M.; Mira-Pascual, L.; Martínez-Arias, E.; Khodayar-Pardo, P.; Ros, G.; Martínez-Costa, C. Longitudinal Study of Cytokine Expression, Lipid Profile and Neuronal Growth Factors in Human Breast Milk from Term and Preterm Deliveries. Nutrients 2015, 7, 8577–8591. [Google Scholar] [CrossRef]
- Li, R.; Xia, W.; Zhang, Z.; Wu, K. S100B Protein, Brain-Derived Neurotrophic Factor, and Glial Cell Line-Derived Neurotrophic Factor in Human Milk. PLoS ONE 2011, 6, e21663. [Google Scholar] [CrossRef]
- Demers-Mathieu, V.; Hines, D.J.; Hines, R.M.; Lavangnananda, S.; Fels, S.; Medo, E. Influence of Previous COVID-19 and Mastitis Infections on the Secretion of Brain-Derived Neurotrophic Factor and Nerve Growth Factor in Human Milk. Int. J. Mol. Sci. 2021, 22, 3846. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Żurowska, D.; Puta, M.; Kiełbratowska, B.; Wesołowska, A. Neurotrophic Factors in Human Milk in Early Lactation and the Effect of Holder and Microwave Pasteurization on Their Concentrations. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.T.; Pawlak, R.; Dean, L.L.; Christis, A.; Friend, L. A Cross-Sectional Study of Fatty Acids and Brain-Derived Neurotrophic Factor (BDNF) in Human Milk from Lactating Women Following Vegan, Vegetarian, and Omnivore Diets. Eur. J. Nutr. 2019, 58, 2401–2410. [Google Scholar] [CrossRef]
- Sánchez-Infantes, D.; Cereijo, R.; Sebastiani, G.; Pérez-Cruz, M.; Villarroya, F.; Ibáñez, L. Nerve Growth Factor Levels in Term Human Infants: Relationship to Prenatal Growth and Early Postnatal Feeding. Int. J. Endocrinol. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Dangat, K.; Kilari, A.; Mehendale, S.; Lalwani, S.; Joshi, S. Preeclampsia Alters Milk Neurotrophins and Long Chain Polyunsaturated Fatty Acids. Int. J. Dev. Neurosci. 2014, 33, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Uruakpa, F.O.; Ismond, M.A.H.; Akobundu, E.N.T. Colostrum and Its Benefits: A Review. Nutr. Res. 2002, 22, 755–767. [Google Scholar] [CrossRef]
- Dhobale, M.; Mehendale, S.; Pisal, H.; Nimbargi, V.; Joshi, S. Reduced Maternal and Cord Nerve Growth Factor Levels in Preterm Deliveries. Int. J. Dev. Neurosci. 2012, 30, 99–103. [Google Scholar] [CrossRef]
- De Nardo, M.C.; Mario, C.D.; Laccetta, G.; Boscarino, G.; Terrin, G. Enteral and Parenteral Energy Intake and Neurodevelopment in Preterm Infants: A Systematic Review. Nutrition 2022, 97, 111572. [Google Scholar] [CrossRef]
- De Nardo, M.C.; Petrella, C.; Di Chiara, M.; Di Mario, C.; Deli, G.; Travaglia, E.; Baldini, L.; Russo, A.; Parisi, P.; Fiore, M.; et al. Early Nutritional Intake Influences the Serum Levels of Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor in Preterm Newborns. Front. Neurol. 2022, 13, 988101. [Google Scholar] [CrossRef]
- Dundar, B.; Dundar, N.; Erci, T.; Bober, E.; Büyükgebiz, A. Leptin Levels in Boys with Pubertal Gynecomastia. J. Pediatr. Endocrinol. Metab. 2005, 18, 929–934. [Google Scholar] [CrossRef]
- Savino, F.; Benetti, S.; Liguori, S.A.; Sorrenti, M.; Cordero Di Montezemolo, L. Advances on Human Milk Hormones and Protection against Obesity. Cell. Mol. Biol. 2013, 59, 89–98. [Google Scholar] [PubMed]
- Schuster, S.; Hechler, C.; Gebauer, C.; Kiess, W.; Kratzsch, J. Leptin in Maternal Serum and Breast Milk: Association With Infants’ Body Weight Gain in a Longitudinal Study Over 6 Months of Lactation. Pediatr. Res. 2011, 70, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Roghair, R.D.; Colaizy, T.T.; Steinbrekera, B.; Vass, R.A.; Hsu, E.; Dagle, D.; Chatmethakul, T. Neonatal Leptin Levels Predict the Early Childhood Developmental Assessment Scores of Preterm Infants. Nutrients 2023, 15, 1967. [Google Scholar] [CrossRef]
- Chatmethakul, T.; Schmelzel, M.L.; Johnson, K.J.; Walker, J.R.; Santillan, D.A.; Colaizy, T.T.; Roghair, R.D. Postnatal Leptin Levels Correlate with Breast Milk Leptin Content in Infants Born before 32 Weeks Gestation. Nutrients 2022, 14, 5224. [Google Scholar] [CrossRef]
- Savino, F.; Costamagna, M.; Prino, A.; Oggero, R.; Silvestro, L. Leptin Levels in Breast-fed and Formula-fed Infants. Acta Paediatr. 2002, 91, 897–902. [Google Scholar] [CrossRef]
- Savino, F.; Rossi, L.; Benetti, S.; Petrucci, E.; Sorrenti, M.; Silvestro, L. Serum Reference Values for Leptin in Healthy Infants. PLoS ONE 2014, 9, e113024. [Google Scholar] [CrossRef]
- Warchoł, M.; Krauss, H.; Wojciechowska, M.; Opala, T.; Pięta, B.; Żukiewicz-Sobczak, W.; Kupsz, J.; Grochowalska, A. The Role of Ghrelin, Leptin and Insulin in Foetal Development. Ann. Agric. Environ. Med. 2014, 21, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Bronsky, J.; Mitrova, K.; Karpisek, M.; Mazoch, J.; Durilova, M.; Fisarkova, B.; Stechova, K.; Prusa, R.; Nevoral, J. Adiponectin, AFABP, and Leptin in Human Breast Milk During 12 Months of Lactation. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 474–477. [Google Scholar] [CrossRef]
- Brunner, S.; Schmid, D.; Zang, K.; Much, D.; Knoeferl, B.; Kratzsch, J.; Amann-Gassner, U.; Bader, B.L.; Hauner, H. Breast Milk Leptin and Adiponectin in Relation to Infant Body Composition up to 2 Years. Pediatr. Obes. 2015, 10, 67–73. [Google Scholar] [CrossRef]
- Ilcol, Y.; Hizli, Z.B.; Ozkan, T. Leptin concentration in breast milk and its relationship to duration of lactation and hormonal status. Int. Breastfeed. J. 2006, 1, 21. [Google Scholar] [CrossRef]
- Shehadeh, N.; Wies, R.; Eishach, O.; Berant, Μ.; Etzioni, A.; Shamir, R. Influence of Oral Insulin Supplementation on Carbohydrate, Lipid and Protein Metabolism in Weaned Balb/c Mice. J. Pediatr. Endocrinol. Metab. 2003, 16, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, T.J.; Trengove, N.J.; Graham, D.F.; Hartmann, P.E. Analysis of Insulin in Human Breast Milk in Mothers with Type 1 and Type 2 Diabetes Mellitus. Int. J. Endocrinol. 2012, 2012, 296368. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.S.; Stinson, L.F.; Rea, A.; Lai, C.T.; Payne, M.S.; Murray, K.; Geddes, D.T.; Gridneva, Z. Human Milk Lactose, Insulin, and Glucose Relative to Infant Body Composition during Exclusive Breastfeeding. Nutrients 2021, 13, 3724. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, N. Insulin in Human Milk: Postpartum Changes and Effect of Gestational Age. Arch. Dis. Child.-Fetal Neonatal Ed. 2003, 88, 214F–216F. [Google Scholar] [CrossRef]
- Yu, X.; Rong, S.S.; Sun, X.; Ding, G.; Wan, W.; Zou, L.; Wu, S.; Li, M.; Wang, D. Associations of Breast Milk Adiponectin, Leptin, Insulin and Ghrelin with Maternal Characteristics and Early Infant Growth: A Longitudinal Study. Br. J. Nutr. 2018, 120, 1380–1387. [Google Scholar] [CrossRef]
- Mazzocchi, A.; Giannì, M.L.; Morniroli, D.; Leone, L.; Roggero, P.; Agostoni, C.; De Cosmi, V.; Mosca, F. Hormones in Breast Milk and Effect on Infants’ Growth: A Systematic Review. Nutrients 2019, 11, 1845. [Google Scholar] [CrossRef]
- Dekker, P.M.; Boeren, S.; Van Goudoever, J.B.; Vervoort, J.J.M.; Hettinga, K.A. Exploring Human Milk Dynamics: Interindividual Variation in Milk Proteome, Peptidome, and Metabolome. J. Proteome Res. 2022, 21, 1002–1016. [Google Scholar] [CrossRef]
- Gidrewicz, D.A.; Fenton, T.R. A Systematic Review and Meta-Analysis of the Nutrient Content of Preterm and Term Breast Milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef]
- Kwan, C.; Fusch, G.; Rochow, N.; Fusch, C.; Kwan, C.; Fusch, G.; Rochow, N.; el-Helou, S.; Belfort, M.; Festival, J.; et al. Milk Analysis Using Milk Analyzers in a Standardized Setting (MAMAS) Study: A Multicentre Quality Initiative. Clin. Nutr. 2020, 39, 2121–2128. [Google Scholar] [CrossRef]
- Dallas, D.C. Digestion of Protein in Premature and Term Infants. J. Nutr. Disord. Ther. 2012, 2, 112. [Google Scholar] [CrossRef]
- Lee, S.; Jo, K.; Jeong, H.G.; Choi, Y.-S.; Yong, H.I.; Jung, S. Understanding Protein Digestion in Infants and the Elderly: Current in Vitro Digestion Models. Crit. Rev. Food Sci. Nutr. 2023, 63, 975–992. [Google Scholar] [CrossRef] [PubMed]
- Gridneva, Z.; Kugananthan, S.; Rea, A.; Lai, C.T.; Ward, L.C.; Murray, K.; Hartmann, P.E.; Geddes, D.T. Human Milk Adiponectin and Leptin and Infant Body Composition over the First 12 Months of Lactation. Nutrients 2018, 10, 1125. [Google Scholar] [CrossRef] [PubMed]
Long-Term Lactation Group (N = 28) | Early Lactation Group (N = 26) | 95% CI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dependent Variable | M | SD | M | SD | t | df | p | LL | UL | Cohen’s d |
Leptin, pg/mL | 143.48 | 115.74 | 242.07 | 196.72 | −2.22 | 39.84 | 0.032 * | −188.23 | −8.95 | 0.62 |
Insulin, uIU/mL | 19.57 | 7.61 | 25.82 | 14.89 | −1.92 | 36.61 | 0.063 | −12.84 | 0.36 | 0.53 |
NGF, pg/mL | 124.60 | 92.56 | 162.83 | 93.07 | −1.09 | 26 | 0.287 | −110.51 | 34.05 | 0.41 |
Parameter | Leptin, pg/mL | Insulin, uIU/mL | NGF, pg/mL | Fat, g/100 mL | Total Protein, g/100 mL | Carbohydrates, g/100 mL | Energy Value, g/100 mL | |
---|---|---|---|---|---|---|---|---|
Leptin, pg/mL | r Pearson’s | 0.47 | 0.05 | 0.02 | −0.03 | −0.29 | −0.04 | |
p value | 0.012 * | 0.867 | 0.917 | 0.872 | 0.158 | 0.855 | ||
Insulin, uIU/mL | r Pearson’s | 0.47 | −0.21 | 0.19 | 0.00 | 0.23 | 0.20 | |
p value | 0.012 * | 0.443 | 0.362 | 0.996 | 0.269 | 0.345 | ||
NGF, pg/mL | r Pearson’s | 0.05 | −0.21 | −0.18 | −0.19 | −0.17 | −0.21 | |
p value | 0.867 | 0.443 | 0.530 | 0.493 | 0.551 | 0.460 | ||
Fat, g/100 mL | r Pearson’s | 0.02 | 0.19 | −0.18 | −0.25 | 0.00 | 0.99 | |
p value | 0.917 | 0.362 | 0.530 | 0.226 | 0.987 | <0.001 * | ||
Total protein, g/100 mL | r Pearson’s | −0.03 | 0.00 | −0.19 | −0.25 | −0.15 | −0.22 | |
p value | 0.872 | 0.996 | 0.493 | 0.226 | 0.475 | 0.288 | ||
Carbohydrates, g/100 mL | r Pearson’s | −0.29 | 0.23 | −0.17 | 0.00 | −0.15 | 0.11 | |
p value | 0.158 | 0.269 | 0.551 | 0.987 | 0.475 | 0.590 | ||
Energy value, g/100 mL | r Pearson’s | −0.04 | 0.20 | −0.21 | 0.99 | −0.22 | 0.11 | |
p value | 0.855 | 0.345 | 0.460 | <0.001 * | 0.288 | 0.590 |
Parameter | Leptin, pg/mL | Insulin, uIU/mL | NGF, pg/mL | Fat, g/100 mL | Total Protein, g/100 mL | Carbohydrates, g/100 mL | Energy Value, g/100 mL | |
---|---|---|---|---|---|---|---|---|
Leptin, pg/mL | r Pearson’s | 0.36 | 0.27 | 0.26 | −0.13 | 0.22 | 0.26 | |
p value | 0.068 | 0.375 | 0.202 | 0.538 | 0.284 | 0.194 | ||
Insulin, uIU/mL | r Pearson’s | 0.36 | 0.17 | −0.10 | −0.39 | −0.04 | −0.07 | |
p value | 0.068 | 0.584 | 0.646 | 0.052 | 0.856 | 0.723 | ||
NGF, pg/mL | r Pearson’s | 0.27 | 0.17 | 0.42 | −0.01 | 0.48 | 0.48 | |
p value | 0.375 | 0.584 | 0.149 | 0.977 | 0.094 | 0.093 | ||
Fat, g/100 mL | r Pearson’s | 0.26 | −0.10 | 0.42 | −0.05 | 0.51 | 0.96 | |
p value | 0.202 | 0.646 | 0.149 | 0.825 | 0.008 * | <0.001 * | ||
Total protein, g/100 mL | r Pearson’s | −0.13 | −0.39 | −0.01 | −0.05 | 0.21 | 0.03 | |
p value | 0.538 | 0.052 | 0.977 | 0.825 | 0.306 | 0.896 | ||
Carbohydrates, g/100 mL | r Pearson’s | 0.22 | −0.04 | 0.48 | 0.51 | 0.21 | 0.57 | |
p value | 0.284 | 0.856 | 0.094 | 0.008 * | 0.306 | 0.002 * | ||
Energy value, g/100 mL | r Pearson’s | 0.26 | −0.07 | 0.48 | 0.96 | 0.03 | 0.57 | |
p value | 0.194 | 0.723 | 0.093 | <0.001 * | 0.896 | 0.002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkiewicz-Darol, E.; Łubiech, K.; Adamczyk, I. Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk. Molecules 2024, 29, 4973. https://doi.org/10.3390/molecules29204973
Sinkiewicz-Darol E, Łubiech K, Adamczyk I. Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk. Molecules. 2024; 29(20):4973. https://doi.org/10.3390/molecules29204973
Chicago/Turabian StyleSinkiewicz-Darol, Elena, Katarzyna Łubiech, and Iwona Adamczyk. 2024. "Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk" Molecules 29, no. 20: 4973. https://doi.org/10.3390/molecules29204973
APA StyleSinkiewicz-Darol, E., Łubiech, K., & Adamczyk, I. (2024). Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk. Molecules, 29(20), 4973. https://doi.org/10.3390/molecules29204973