Administration Route Differentiation of Altrenogest via the Metabolomic LC-HRMS Analysis of Equine Urine
Abstract
:1. Introduction
2. Results
2.1. MS Annotation and Statistical Analysis
2.2. Compound Identification
2.3. Classification Modeling
3. Discussion
Study Limitations and Future Work
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Administration Study
4.3. Sample Preparations and Instrumental Analyses
4.4. Statistical Multiplatform Workflow
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christou, M.A.; Christou, P.A.; Markozannes, G.; Tsatsoulis, A.; Mastorakos, G.; Tigas, S. Effects of Anabolic Androgenic Steroids on the Reproductive System of Athletes and Recreational Users: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 1869–1883. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.A. Current concepts in anabolic-androgenic steroids. Am. J. Sports Med. 2004, 32, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Waller, C.C.; McLeod, M.D. A review of designer anabolic steroids in equine sports. Drug Test. Anal. 2017, 9, 1304–1319. [Google Scholar] [CrossRef]
- Thevis, M.; Kuuranne, T.; Geyer, H. Annual banned-substance review 16th edition—Analytical approaches in human sports drug testing 2022/2023. Drug Test. Anal. 2024, 16, 5–29. [Google Scholar] [CrossRef]
- Hartgens, F.; Kuipers, H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004, 34, 513–554. [Google Scholar] [CrossRef]
- International Federation of Horseracing Authorities. International Agreement on Breeding, Racing and Wagering and Appendixes—Article 6E. Available online: https://www.ifhaonline.org/default.asp?section=IABRW&area=15 (accessed on 3 September 2024).
- Hodgson, D.; Howe, S.; Jeffcott, L.; Reid, S.; Mellor, D.; Higgins, A. Effect of prolonged use of altrenogest on behaviour in mares. Vet. J. 2005, 169, 322–325. [Google Scholar] [CrossRef]
- McConaghy, F.F.; Green, L.A.; Colgan, S.; Morris, L.H. Studies of the pharmacokinetic profile, in vivo efficacy and safety of injectable altrenogest for the suppression of oestrus in mares. Aust. Vet. J. 2016, 94, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Squires, E.L. Hormonal Manipulation of the Mare: A Review. J. Equine Vet. Sci. 2008, 28, 627–634. [Google Scholar] [CrossRef]
- McCue, P.M. Estrus Suppression in Performance Horses. J. Equine Vet. Sci. 2003, 23, 342–344. [Google Scholar] [CrossRef]
- Machnik, M.; Hegger, I.; Kietzmann, M.; Thevis, M.; Guddat, S.; Schänzer, W. Pharmacokinetics of altrenogest in horses. J. Vet. Pharmacol. Ther. 2007, 30, 86–90. [Google Scholar] [CrossRef]
- Thevis, M.; Guddat, S.; Schänzer, W. Doping control analysis of trenbolone and related compounds using liquid chromatography–tandem mass spectrometry. Steroids 2009, 74, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, M.F. Use of Altrenogest in Fillies and Mares. Available online: https://www.racingnsw.com.au/news/latest-racing-news/use-of-altrenogest-products-in-fillies-and-mares/ (accessed on 12 October 2021).
- RacingVictoria. Products Containing Altrenogest—Update. Available online: https://www.racingvictoria.com.au/notices/2023-08-22/products-containing-altrenogest-update (accessed on 30 September 2024).
- Scarth, J.P.; Teale, P.; Kuuranne, T. Drug metabolism in the horse: A review. Drug Test. Anal. 2011, 3, 19–53. [Google Scholar] [CrossRef] [PubMed]
- Strott, C.A. Steroid Sulfotransferases. Endocr. Rev. 1996, 17, 670–697. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.L.; Meredith, W.; Snape, C.E.; Sephton, M.A. Analysis of conjugated steroid androgens: Deconjugation, derivatisation and associated issues. J. Pharm. Biomed. Anal. 2009, 49, 1133–1140. [Google Scholar] [CrossRef]
- Hintikka, L.; Kuuranne, T.; Leinonen, A.; Thevis, M.; Schänzer, W.; Halket, J.; Cowan, D.; Grosse, J.; Hemmersbach, P.; Nielen, M.W.F.; et al. Liquid chromatographic–mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: Method validation and interlaboratory comparison. J. Mass Spectrom. 2008, 43, 965–973. [Google Scholar] [CrossRef]
- Cawley, A.; Keen, B.; Tou, K.; Elbourne, M.; Keledjian, J. Biomarker ratios. Drug Test. Anal. 2022, 14, 983–990. [Google Scholar] [CrossRef]
- KanehisaLaboratories. KEGG PATHWAY: Steroid Hormone Biosynthesis—Reference Pathway. 2023. Available online: https://www.genome.jp/pathway/ecb00140 (accessed on 23 October 2023).
- Steuer, A.E.; Brockbals, L.; Kraemer, T. Untargeted metabolomics approaches to improve casework in clinical and forensic toxicology—“Where are we standing and where are we heading?”. WIREs Forensic Sci. 2022, 4, e1449. [Google Scholar] [CrossRef]
- Chen, X.; Shu, W.; Zhao, L.; Wan, J. Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis. VIEW 2023, 4, 20220038. [Google Scholar] [CrossRef]
- Steuer, A.E.; Brockbals, L.; Kraemer, T. Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front. Chem. 2019, 7, 319. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Fitzgerald, C.C.J.; Hedman, R.; Uduwela, D.R.; Paszerbovics, B.; Carroll, A.J.; Neeman, T.; Cawley, A.; Brooker, L.; McLeod, M.D. Profiling Urinary Sulfate Metabolites With Mass Spectrometry. Front. Mol. Biosci. 2022, 9, 829511. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, C.C.J.; Bowen, C.; Elbourne, M.; Cawley, A.; McLeod, M.D. Energy-Resolved Fragmentation Aiding the Structure Elucidation of Steroid Biomarkers. J. Am. Soc. Mass Spectrom. 2022, 33, 1276–1281. [Google Scholar] [CrossRef]
- Picard, R.R.; Cook, R.D. Cross-Validation of Regression Models. J. Am. Stat. Assoc. 1984, 79, 575–583. [Google Scholar] [CrossRef]
- Wang, M.W.H.; Goodman, J.M.; Allen, T.E.H. Machine Learning in Predictive Toxicology: Recent Applications and Future Directions for Classification Models. Chem. Res. Toxicol. 2021, 34, 217–239. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 2020, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random Forests and Decision Trees. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 272–278. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ho, T.K. Nearest Neighbors in Random Subspaces; Springer: Berlin/Heidelberg, Germany, 1998; pp. 640–648. [Google Scholar]
- Ghosh, T.; Zhang, W.; Ghosh, D.; Kechris, K. Predictive Modeling for Metabolomics Data; Springer: New York, NY, USA, 2020; pp. 313–336. [Google Scholar]
- Want, E. Challenges in Applying Chemometrics to LC–MS-Based Global Metabolite Profile Data. Bioanalysis 2009, 1, 805–819. [Google Scholar] [CrossRef]
- Keen, B.; Cawley, A.; Reedy, B.; Fu, S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test. Anal. 2022, 14, 794–807. [Google Scholar] [CrossRef]
- Teale, P.; Barton, C.; Driver, P.M.; Kay, R.G. Biomarkers: Unrealized potential in sports doping analysis. Bioanalysis 2009, 1, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.H.M.; Ho, E.N.M.; Leung, D.K.K.; Wong, K.S.; Wan, T.S.M. Targeted Metabolomics Approach To Detect the Misuse of Steroidal Aromatase Inhibitors in Equine Sports by Biomarker Profiling. Anal. Chem. 2016, 88, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Loy, J.; Cawley, A.; Sornalingam, K.; Scrivener, C.J.; Keledjian, J.; Noble, G.K. Pharmacokinetics of Two Formulations of Altrenogest Administered to Mares. Drug Test. Anal. 2024. [Google Scholar] [CrossRef] [PubMed]
m/z | RT (min) | |
(1) | 349.11209 | 9.333 |
(2) | 367.15909 | 10.108 |
(3) | 381.13840 | 8.462 |
(4) | 395.19061 | 12.454 |
(5) | 441.15961 | 4.963 |
Compound | Formula | Structure | |
---|---|---|---|
(1) | Estrone Sulfate (E1S) | C18H22O5S | |
(2) | Testosterone Sulfate (TS) | C19H28O5S | |
(3) | 2-Methoxy-Estradiol Sulfate (2-ME2S) | C19H26O6S | |
(4) | Pregnenolone Sulfate (PregS) | C21H32O5S | |
(5) | Cortisol Sulfate (CS) | C21H30O8S |
AUC | p-Value | Log2FC | Clusters | |
---|---|---|---|---|
2-ME2S | 0.840 | 1.70 × 10−17 | 1.15 | 1 |
TS | 0.657 | 2.82 × 10−5 | −0.936 | 4 |
E1S | 0.620 | 9.62 × 10−5 | −3.35 | 3 |
CS | 0.550 | 5.05 × 10−1 | 0.109 | 2 |
PregS | 0.538 | 7.95 × 10−2 | −3.05 | 4 |
Predicted | |||
---|---|---|---|
Positive (IM) | Negative (Oral) | ||
Actual | Positive (IM) | 83 | 10 |
Negative (Oral) | 15 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbourne, M.; Keledjian, J.; Cawley, A.; Fu, S. Administration Route Differentiation of Altrenogest via the Metabolomic LC-HRMS Analysis of Equine Urine. Molecules 2024, 29, 4988. https://doi.org/10.3390/molecules29214988
Elbourne M, Keledjian J, Cawley A, Fu S. Administration Route Differentiation of Altrenogest via the Metabolomic LC-HRMS Analysis of Equine Urine. Molecules. 2024; 29(21):4988. https://doi.org/10.3390/molecules29214988
Chicago/Turabian StyleElbourne, Madysen, John Keledjian, Adam Cawley, and Shanlin Fu. 2024. "Administration Route Differentiation of Altrenogest via the Metabolomic LC-HRMS Analysis of Equine Urine" Molecules 29, no. 21: 4988. https://doi.org/10.3390/molecules29214988
APA StyleElbourne, M., Keledjian, J., Cawley, A., & Fu, S. (2024). Administration Route Differentiation of Altrenogest via the Metabolomic LC-HRMS Analysis of Equine Urine. Molecules, 29(21), 4988. https://doi.org/10.3390/molecules29214988