Toxicokinetics and Tissue Distribution of the Hepatotoxic Triterpenoid Saponin Pterocephin A in Rats Using the Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) Method
Abstract
:1. Introduction
2. Results
2.1. Method Optimization
2.1.1. Optimization of UPLC-MS/MS Conditions
2.1.2. Optimization of Extraction Method
2.2. Method Validation
2.2.1. Specificity
2.2.2. Linearity and LLOQ
2.2.3. Precision and Accuracy
2.2.4. Stability
2.2.5. Extraction Recovery and Matrix Effect
2.3. Plasma Toxicokinetics
2.3.1. Intravenous Administration TKs
2.3.2. Intragastric Administration TKs
2.4. Tissue Distribution
3. Materials and Methods
3.1. Animals
3.2. Instrumentation and Analytical Conditions
3.3. Materials and Reagents
3.4. Preparation of Standard Solution and Quality Control Samples
3.5. Sample Preparation
3.6. Method Validation
3.6.1. Specificity
3.6.2. Linearity and LLOQ
3.6.3. Precision and Accuracy
3.6.4. Stability
3.6.5. Extraction Recovery and Matrix Effect
3.7. Toxicokinetics Study
3.8. Tissue Distribution
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 1, p. 398.
- Chen, Y.L.; Yu, H.; Guo, F.J.; Wu, Y.C.; Li, Y.M. Antinociceptive and anti-inflammatory activities of a standardized extract of bis-Iridoids from Pterocephalus hookeri. J. Ethnopharmacol. 2018, 216, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.Q.; Jiang, J.; Tao, H.L.; Luo, S.Y.; Meng, X.L.; Yu, J.; Zhang, Y.; Tang, C. Traditional uses, phytochemistry, pharmacology, and toxicology of Pterocephalus hookeri (C. B. Clarke) Höeck: A Review. RSC Adv. 2021, 11, 28761–28774. [Google Scholar] [CrossRef]
- Wu, Y.C.; Guo, C.X.; Zhu, Y.Z.; Li, Y.M.; Guo, F.J.; Zhu, G.F. Four new bis-iridoids isolated from the traditional Tibetan herb Pterocephalus hookeri. Fitoterapia 2014, 98, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Yin, Y.J.; Li, Y.M.; Guo, F.J.; Zhu, G.F. Secoiridoid/iridoid subtype bis-iridoids from Pterocephalus hookeri. Magn. Reson. Chem. 2014, 52, 734–738. [Google Scholar] [CrossRef]
- Zhang, J.F.; Huang, S.; Shan, L.H.; Chen, L.; Zhang, Y.; Zhou, X.L. New iridoid glucoside from Pterocephalus hookeri. Chin. J. Org. Chem. 2015, 35, 2441–2444. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Xiong, Y.R.; Zhang, R.F.; Qiu, Y.D.; Meng, F.C.; Liao, Z.H.; Lan, X.Z.; Chen, M. Ptehosides A-I: Nine undescribed iridoids with in vitro cytotoxicity from the whole plant of Pterocephalus hookeri (C.B. Clarke) Höeck. Phytochemistry 2024, 223, 114144. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, J.F.; Shan, L.H.; Zhang, Y.; Zhou, X.L. A novel tetrairidoid glucoside from Pterocephalus hookeri. Heterocycles 2017, 94, 485–491. [Google Scholar] [CrossRef]
- Wu, Y.C.; Ying, Y.J.; Guo, F.J.; Zhu, G.F. Bis-iridoid and lignans from traditional Tibetan herb Pterocephalus hookeri. Biochem. Syst. Ecol. 2014, 56, 209–212. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Wei, L.; Lu, H.Q.; Zeng, Q.H.; Meng, F.C.; Wang, G.W.; Lan, X.Z.; Liao, Z.H.; Chen, M. Ptehoosines A and B: Two new Sesamin-type sesquilignans with antiangiogenic activity from Pterocephalus hookeri (C.B. Clarke) Höeck. Fitoterapia 2021, 151, 104886. [Google Scholar] [CrossRef]
- Shen, X.F.; Zeng, Y.; Li, J.C.; Tang, C.; Zhang, Y.; Meng, X.L. The anti-arthritic activity of total glycosides from Pterocephalus hookeri, a traditional Tibetan herbal medicine. Pharm. Biol. 2017, 55, 560–570. [Google Scholar] [CrossRef]
- Tang, C.; Gan, Z.Q.; Luo, S.Y.; Yang, J.; Yu, M.; Zou, Z.M.; Zhang, Y. Mechanism of Tibetan medicine Pterocephalus hookeri extract in treatment of rheumatoid arthritis based on serum metabolomics. Chin. J. Chin. Mater. Med. 2022, 47, 1001–1008. [Google Scholar] [CrossRef]
- Li, X.H.; Su, J.S.; Liu, X.H.; Long, W.; Zou, Z.M.; Meng, X.L.; Zhang, Y.; Tang, C. Correlation study on Tibetan medicine Pterocephalus hookeri of bitter taste receptors based on moleculardocking technology. Chin. J. Chin. Mater. Med. 2019, 44, 3157–3161. [Google Scholar] [CrossRef]
- Tang, C.; Li, H.J.; Fan, G.; Kuang, T.T.; Meng, X.L.; Zou, Z.M.; Zhang, Y. Network pharmacology and UPLC-Q-TOF/MS studies on the anti-arthritic mechanism of Pterocephalus hookeri. Trop. J. Pharm. Res. 2018, 17, 1095. [Google Scholar] [CrossRef]
- Li, Y.N. The Four Medical Tantras; People’s Medical Publishing House: Beijing, China, 1983; p. 409. [Google Scholar]
- Luo, S.D. Xin Xiu Jing Zhu Materia Medica; Sichuan Science and Technology Press: Chengdu, China, 2002; p. 591. [Google Scholar]
- Guan, X.L.; Yan, Y.N.; Wei, T.M.; Ren, Z.H.; Song, C.S. Experimental study on anti-inflammatory effect and acute toxicity of Pterocephalus hookeri. J. Tradit. Chin. Med. 2004, 27, 71–73. [Google Scholar]
- Wang, R.; Dong, Z.Y.; Zhang, X.L.; Mao, J.X.; Meng, F.C.; Lan, X.Z.; Liao, Z.H.; Chen, M. Evaluation of the Liver Toxicity of Pterocephalus hookeri Extract via Triggering Necrosis. Toxins 2019, 11, 142. [Google Scholar] [CrossRef]
- Wang, R.; Wei, L.; Dong, Z.Y.; Meng, F.C.; Wang, G.W.; Zhou, S.Y.; Lan, X.Z.; Liao, Z.H.; Chen, M. Pterocephin A, a novel Triterpenoid Saponin from Pterocephalus hookeri induced liver iInjury by activation of necroptosis. Phytomedicine 2021, 85, 153548. [Google Scholar] [CrossRef]
- Dong, M.Y.; Li, J.J.; Yang, D.L.; Li, M.F.; Wei, J.H. Biosynthesis and Pharmacological Activities of Flavonoids, Triterpene Saponins and Polysaccharides Derived from Astragalus membranaceus. Molecules 2023, 28, 5018. [Google Scholar] [CrossRef]
- Yu, J.; Xin, Y.F.; Gu, L.Q.; Gao, H.Y.; Xia, L.J.; You, Z.Q.; Xie, F.; Ma, Z.F.; Wang, Z.; Xuan, Y.X. One-month toxicokinetic study of SHENMAI injection in rats. J. Ethnopharmacol. 2014, 154, 391–399. [Google Scholar] [CrossRef]
- Ye, Y.Q.; Xue, M.Z.; Tian, X.T.; Gao, H.W.; Hu, P.; Wang, L.W.; Leng, J.; Xue, Y.R.; Huang, C.G. Pharmacokinetic and metabolite proffle of orally administered anemoside B4 in rats with an improved exposure in formulations of rectal suppository. J. Ethnopharmacol. 2023, 315, 116694. [Google Scholar] [CrossRef]
- Li, Y.H.; Zou, M.; Han, Q.; Deng, L.R.; Weinshilboum, R.M. Therapeutic potential of triterpenoid saponin anemoside B4 from Pulsatilla chinensis. Pharmacol. Res. 2020, 160, 105079. [Google Scholar] [CrossRef]
- Zeng, Z.; Sun, Z.; Wu, C.-Y.; Long, F.; Shen, H.; Zhou, J.; Li, S.-L. Quality evaluation of Pterocephali herba through simultaneously quantifying 18 bioactive components by UPLC-TQ-MS/MS analysis. J. Pharm. Biomed. Anal. 2024, 238, 115828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, X.Y.; Xu, W.; Yang, X.W. Pharmacokinetics comparison of 15 ginsenosides and 3 aglycones in Ginseng Radix et Rhizoma and Baoyuan decoction using ultra-fast liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Phytomedicine 2019, 59, 152775. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.M.; Yu, H.; Pan, L.B.; Ma, S.R.; Xu, H.; Zhang, Z.W.; Han, P.; Fu, J.; Yang, X.Y.; Keranmu, A.; et al. Biotransformation of Timosaponin BII into Seven Characteristic Metabolites by the Gut Microbiota. Molecules 2021, 26, 3861. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, C.C.; Pu, F.F.; Lin, P.Y.; Qian, T.X. Metabolite profiling of qinsenoside Rg1 after oral administration in rat. Biomed. Chromatogr. 2014, 28, 1320–1324. [Google Scholar] [CrossRef]
- Wan, J.Y.; Liu, P.; Wang, H.Y.; Qi, L.W.; Wang, C.Z.; Li, P.; Yuan, C.S. Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2013, 1286, 83–92. [Google Scholar] [CrossRef]
- Tang, C.; Fu, Q.C.; Chen, X.; Hu, Y.; Renaud, H.; Ma, C.; Rao, T.; Chen, Y.; Tan, Z.R.; Klaassen, C.D.; et al. The biotransformation of Bupleuri Radix by human gut microbiota. Xenobiotica 2020, 50, 1011–1022. [Google Scholar] [CrossRef]
- Sun, Y.C.; Xue, J.; Li, B.M.; Lin, X.T.; Wang, Z.B.; Jiang, H.H.; Zhang, W.; Wang, Q.H.; Kuang, H.X. Simultaneous quantification of triterpenoid saponins in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study after oral total saponin of Aralia elata leaves. J. Sep. Sci. 2016, 39, 4360–4368. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.W.; Liu, Z.Y.; Guo, W.W.; Luo, K.; Yang, J.; Gao, W.; Wu, X.; Chen, X.Q. A UPLC-MS/MS method for simultaneous quantification of pairs of oleanene-and ursane type triterpenoid saponins and their major metabolites in mice plasma and its application to a comparative pharmacokinetic study. RSC Adv. 2018, 8, 8586–8595. [Google Scholar] [CrossRef]
- del Hierro, J.N.; Herrera, T.; Fornari, T.; Reglero, G.; Martin, D. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J. Funct. Foods. 2018, 40, 484–497. [Google Scholar] [CrossRef]
Mobile Phase | Response Values of Different Diluents | ||
---|---|---|---|
Methanol | Acetonitrile | Acetone | |
Methanol/Water | 1.05 × 106 ± 8.35 × 104 | 2.78 × 106 ± 2.58 × 105 | 1.10 × 106 ± 8.76 × 104 |
Methanol/0.1% Ammonia | 1.95 × 108 ± 2.46 × 107 | 5.87 × 107 ± 7.04 × 106 | 6.70 × 107 ± 1.86 × 106 |
Methanol/0.1% Formic acid water | 1.77 × 107 ± 2.01 × 106 | 1.79 × 107 ± 1.26 × 106 | 1.02 × 107 ± 5.59 × 105 |
Methanol/5 mM Ammonium formate water | 4.97 × 107 ± 2.36 × 106 | 2.64 × 107 ± 1.80 × 106 | 2.36 × 107 ± 1.86 × 106 |
Acetone/Water | 1.63 × 107 ± 1.40 × 106 | 1.37 × 107 ± 1.82 × 106 | 9.99 × 106 ± 2.57 × 105 |
Acetone/0.1% Ammonia | 5.51 × 107 ± 1.95 × 106 | 1.88 × 107 ± 1.47 × 106 | 2.25 × 107 ± 1.77 × 106 |
Acetone/0.1% Formic acid water | 5.73 × 107 ± 3.69 × 106 | 5.51 × 107 ± 1.94 × 106 | 5.06 × 107 ± 1.35 × 106 |
Acetone/5 mM Ammonium formate water | 6.97 × 107 ± 1.37 × 106 | 5.54 × 107 ± 2.14 × 106 | 4.75 × 107 ± 1.30 × 106 |
Samples | Linear Equations | R2 | Linear Range (μg/mL) |
---|---|---|---|
Plasma | y = 0.2079x + 0.0013 | 0.9977 | 0.02–15 |
Heart | y = 0.2721x + 0.1382 | 0.9954 | |
Liver | y = 0.2016x + 0.1683 | 0.9963 | |
Spleen | y = 0.1688x + 0.1911 | 0.9960 | |
Lung | y = 0.1593x + 0.0185 | 0.9972 | |
Kidney | y = 0.1502x + 0.0230 | 0.9980 | |
Stomach | y = 0.1773x + 0.0149 | 0.9993 | |
Testes | y = 0.1593x + 0.0185 | 0.9972 | |
Intestines | y = 0.2234x + 0.0156 | 0.9994 |
Samples | Spiked Concentration (μg/mL) | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|---|
Calculate Concentration (μg/mL) | Extraction Recovery (%) | RSD (%) | Calculate Concentration (μg/mL) | Extraction Recovery (%) | RSD (%) | ||
Plasma | 0.02 | 0.021 ± 0.001 | 106.20 ± 5.99 | 5.31 | 0.021 ± 0.002 | 103.15 ± 8.00 | 7.53 |
0.2 | 0.194 ± 0.013 | 96.98 ± 6.33 | 6.74 | 0.193 ± 0.156 | 96.27 ± 7.78 | 8.39 | |
1.0 | 1.018 ± 0.089 | 101.80 ± 8.93 | 8.62 | 1.093 ± 0.047 | 107.36 ± 4.58 | 3.98 | |
Heart | 0.02 | 0.021 ± 0.002 | 102.84 ± 9.15 | 8.64 | 0.021 ± 0.002 | 105.79 ± 8.42 | 7.53 |
0.2 | 0.230 ± 0.016 | 108.78 ± 7.39 | 6.24 | 0.214 ± 0.020 | 107.02 ± 10.08 | 8.80 | |
1.0 | 1.096 ± 0.089 | 106.04 ± 8.58 | 7.63 | 1.052 ± 0.084 | 105.22 ± 8.38 | 7.65 | |
Liver | 0.02 | 0.020 ± 0.002 | 101.78 ± 8.32 | 8.03 | 0.022 ± 0.001 | 102.67 ± 5.92 | 5.62 |
0.2 | 0.215 ± 0.014 | 107.75 ± 7.00 | 6.03 | 0.228 ± 0.015 | 105.34 ± 6.84 | 7.57 | |
1.0 | 1.035 ± 0.082 | 102.05 ± 8.13 | 7.81 | 1.099 ± 0.085 | 103.31 ± 7.98 | 7.47 | |
Spleen | 0.02 | 0.022 ± 0.002 | 108.93 ± 9.46 | 7.97 | 0.021 ± 0.002 | 102.71 ± 8.28 | 7.85 |
0.2 | 0.192 ± 0.016 | 96.11 ± 8.26 | 8.93 | 0.223 ± 0.019 | 106.52 ± 9.17 | 8.08 | |
1.0 | 1.150 ± 0.089 | 106.61 ± 8.27 | 7.28 | 0.997 ± 0.068 | 97.35 ± 3.21 | 3.39 | |
Lung | 0.02 | 0.019 ± 0.001 | 99.79 ± 4.06 | 4.22 | 0.019 ± 0.001 | 96.30 ± 5.11 | 5.45 |
0.2 | 0.021 ± 0.015 | 104.36 ± 7.77 | 7.14 | 0.213 ± 0.012 | 100.48 ± 5.58 | 5.52 | |
1.0 | 1.032 ± 0.080 | 103.25 ± 8.03 | 7.54 | 1.089 ± 0.051 | 108.92 ± 5.06 | 4.27 | |
Kidney | 0.02 | 0.020 ± 0.001 | 99.79 ± 5.17 | 5.19 | 0.020 ± 0.001 | 99.90 ± 4.77 | 4.77 |
0.2 | 0.211 ± 0.011 | 102.11 ± 5.28 | 4.79 | 0.213 ± 0.008 | 106.53 ± 4.21 | 3.71 | |
1.0 | 1.078 ± 0.060 | 107.75 ± 5.97 | 5.14 | 1.050 ± 0.061 | 104.97 ± 6.07 | 5.51 | |
Stomach | 0.02 | 0.020 ± 0.001 | 99.01 ± 5.76 | 5.88 | 0.022 ± 0.001 | 109.16 ± 4.89 | 4.10 |
0.2 | 0.197 ± 0.007 | 98.75 ± 3.58 | 3.67 | 0.205 ± 0.008 | 102.37 ± 4.02 | 3.84 | |
1.0 | 1.070 ± 0.027 | 106.98 ± 2.65 | 2.32 | 1.091 ± 0.021 | 107.58 ± 2.05 | 3.79 | |
Testes | 0.02 | 0.021 ± 0.001 | 106.21 ± 6.47 | 5.73 | 0.020 ± 0.001 | 99.91 ± 2.41 | 2.41 |
0.2 | 0.206 ± 0.008 | 103.03 ± 3.97 | 3.74 | 0.200 ± 0.003 | 99.90 ± 1.70 | 1.70 | |
1.0 | 0.978 ± 0.032 | 97.84 ± 3.20 | 3.34 | 1.086 ± 0.040 | 108.63 ± 3.96 | 3.36 | |
Intestines | 0.02 | 0.021 ± 0.001 | 102.04 ± 5.47 | 5.26 | 0.020 ± 0.001 | 97.76 ± 4.73 | 4.95 |
0.2 | 0.202 ± 0.007 | 101.04 ± 3.51 | 3.43 | 0.207 ± 0.012 | 103.53 ± 5.92 | 5.53 | |
1.0 | 1.003 ± 0.055 | 100.34 ± 5.53 | 5.49 | 0.980 ± 0.023 | 97.90 ± 2.26 | 2.36 |
Samples | Spiked Concentration (μg/mL) | Normal Temperature | −80 °C Frozen Storage | Freeze Thawing | |||
---|---|---|---|---|---|---|---|
Extraction Recovery (%) | RSD (%) | Extraction Recovery (%) | RSD (%) | Extraction Recovery (%) | RSD (%) | ||
Plasma | 0.02 | 99.89 ± 4.27 | 4.28 | 108.61 ± 6.74 | 5.72 | 105.60 ± 8.51 | 7.63 |
0.2 | 107.50 ± 4.69 | 4.06 | 105.39 ± 8.24 | 7.42 | 99.89 ± 4.24 | 4.29 | |
1.0 | 108.76 ± 3.15 | 2.67 | 107.69 ± 5.24 | 4.52 | 103.83 ± 5.64 | 5.23 |
Samples | Spiked Concentration (μg/mL) | Extraction Recovery (%) | RSD (%) |
---|---|---|---|
Plasma | 0.02 | 97.56 ± 3.52 | 3.70 |
0.2 | 106.05 ± 4.43 | 3.94 | |
1.0 | 104.19 ± 7.24 | 6.67 | |
Heart | 0.02 | 103.34 ± 8.69 | 8.14 |
0.2 | 99.06 ± 5.23 | 5.33 | |
1.0 | 98.29 ± 4.75 | 4.91 | |
Liver | 0.02 | 103.27 ± 7.54 | 7.07 |
0.2 | 104.25 ± 8.69 | 8.00 | |
1.0 | 102.92 ± 9.10 | 8.59 | |
Spleen | 0.02 | 104.48 ± 8.06 | 7.38 |
0.2 | 96.08 ± 4.76 | 5.16 | |
1.0 | 103.93 ± 6.36 | 5.89 | |
Lung | 0.02 | 104.36 ± 7.77 | 7.14 |
0.2 | 109.29 ± 5.49 | 4.59 | |
1.0 | 101.99 ± 4.49 | 4.40 | |
Kidney | 0.02 | 99.65 ± 5.39 | 5.42 |
0.2 | 106.64 ± 4.21 | 3.71 | |
1.0 | 98.27 ± 3.23 | 3.35 | |
Stomach | 0.02 | 105.93 ± 5.50 | 4.90 |
0.2 | 104.47 ± 4.24 | 3.90 | |
1.0 | 109.91 ± 3.13 | 2.85 | |
Testes | 0.02 | 105.52 ± 6.15 | 5.52 |
0.2 | 102.49 ± 4.42 | 4.20 | |
1.0 | 106.03 ± 2.23 | 2.10 | |
Intestines | 0.02 | 99.49 ± 5.91 | 5.97 |
0.2 | 109.11 ± 6.34 | 5.32 | |
1.0 | 99.34 ± 3.82 | 3.88 |
Parameters | Unit | IV (10 mg/kg) | IG (60 mg/kg) |
---|---|---|---|
t1/2 | h | 10.466 ± 1.466 | 13.797 ± 1.755 |
Cmax | μg/mL | 80.115 ± 3.641 | 0.352 ± 0.016 |
AUCall | μg/mL×h | 217.523 ± 18.896 | 9.253 ± 0.451 |
AUCinf | (mg)/(μg/mL) | 218.704 ± 19.154 | 9.539 ± 0.480 |
Vz, Vz/F | (mg)/(μg/mL) | 0.697 ± 0.122 | 125.521 ± 17.130 |
CL, CL/F | (mg)/(μg/mL)/h | 0.046 ± 0.004 | 6.306 ± 0.327 |
MRT0-inf | h | 9.540 ± 0.752 | 23.580 ± 1.335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Dong, Z.; Zhou, H.; Mao, J.; Zeng, L.; Jiang, Y.; Meng, F.; Liao, Z.; Chen, M. Toxicokinetics and Tissue Distribution of the Hepatotoxic Triterpenoid Saponin Pterocephin A in Rats Using the Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) Method. Molecules 2024, 29, 5044. https://doi.org/10.3390/molecules29215044
Xiong Y, Dong Z, Zhou H, Mao J, Zeng L, Jiang Y, Meng F, Liao Z, Chen M. Toxicokinetics and Tissue Distribution of the Hepatotoxic Triterpenoid Saponin Pterocephin A in Rats Using the Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) Method. Molecules. 2024; 29(21):5044. https://doi.org/10.3390/molecules29215044
Chicago/Turabian StyleXiong, Yiran, Zhaoyue Dong, Hongxu Zhou, Jingxin Mao, Lingjiang Zeng, Yunbin Jiang, Fancheng Meng, Zhihua Liao, and Min Chen. 2024. "Toxicokinetics and Tissue Distribution of the Hepatotoxic Triterpenoid Saponin Pterocephin A in Rats Using the Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) Method" Molecules 29, no. 21: 5044. https://doi.org/10.3390/molecules29215044
APA StyleXiong, Y., Dong, Z., Zhou, H., Mao, J., Zeng, L., Jiang, Y., Meng, F., Liao, Z., & Chen, M. (2024). Toxicokinetics and Tissue Distribution of the Hepatotoxic Triterpenoid Saponin Pterocephin A in Rats Using the Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) Method. Molecules, 29(21), 5044. https://doi.org/10.3390/molecules29215044