Synthesis of a Small Library of Glycoderivative Putative Ligands of SGLT1 and Preliminary Biological Evaluation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Cell Cultures and Treatments
3.2. Synthesis of Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, S.K.; McGaffin, K.R.; Pastor-Soler, N.M.; Ahmad, F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc. Res. 2009, 84, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Gorboulev, V.; Schürmann, A.; Vallon, V.; Kipp, H.; Jaschke, A.; Klessen, D.; Friedrich, A.; Scherneck, S.; Rieg, T.; Cunard, R.; et al. Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012, 61, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.M.; Loo, D.D.; Hirayama, B.A.; Turk, E. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology 2004, 19, 370–376. [Google Scholar] [CrossRef]
- Pragallapati, S.; Manyam, R. Glucose transporter 1 in health and disease. J. Oral. Maxillofac. Pathol. 2019, 23, 443–449. [Google Scholar] [CrossRef]
- Koepsell, H. Glucose transporters in the small intestine in health and disease. Pflugers Arch. 2020, 472, 1207–1248. [Google Scholar] [CrossRef]
- Tsimihodimos, V.; Filippas-Ntekouan, S.; Elisaf, M. SGLT1 inhibition: Pros and cons. Eur. J. Pharmacol. 2018, 838, 153–156. [Google Scholar] [CrossRef]
- Dyer, J.; Wood, I.S.; Palejwala, A.; Ellis, A.; Shirazi-Beechey, S.P. Expression of monosaccharide transporters in intestine of diabetic humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G241–G248. [Google Scholar] [CrossRef]
- Koepsell, H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol. Ther. 2017, 170, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Onishi, A.; Koepsell, H.; Vallon, V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert. Opin. Ther. Targets 2016, 20, 1109–1125. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G. Sodium glucose cotransporter 1 (SGLT1) inhibitors in cardiovascular protection: Mechanism progresses and challenges. Pharmacol. Res. 2022, 176, 106049. [Google Scholar] [CrossRef]
- Zhao, M.; Li, N.; Zhou, H. SGLT1: A Potential Drug Target for Cardiovascular Disease. Drug Des. Devel. Ther. 2023, 17, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Afsar, B.; Afsar, R.E.; Lentine, K.L. The impact of sodium-glucose cotransporter inhibitors on gut microbiota: A scoping review. J. Diabetes Metab. Disord. 2024, 23, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Peritore-Galve, F.C.; Kaji, I.; Smith, A.; Walker, L.M.; Shupe, J.A.; Washington, M.K.; Algood, H.M.S.; Dudeja, P.K.; Goldenring, J.R.; Lacy, D.B. Increased intestinal permeability and downregulation of absorptive ion transporters. Gut Microbes 2023, 15, 2225841. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Hsiao, J.K.; Lu, Y.Z.; Lee, T.C.; Linda, C.H. Anti-apoptotic PI3K/Akt signaling by sodium/glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia. Lab. Investig. 2011, 91, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Röder, P.V.; Geillinger, K.E.; Zietek, T.S.; Thorens, B.; Koepsell, H.; Daniel, H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 2014, 9, e89977. [Google Scholar] [CrossRef]
- Lehmann, A.; Hornby, P.J. Intestinal SGLT1 in metabolic health and disease. Am. J. Physiol. Gastrointest. Liver. Physiol. 2016, 310, G887–G898. [Google Scholar] [CrossRef]
- Martinussen, C.; Veedfald, S.; Dirksen, C.; Bojsen-Møller, K.N.; Svane, M.S.; Wewer Albrechtsen, N.J.; van Hall, G.; Kristiansen, V.B.; Fenger, M.; Holst, J.J.; et al. The effect of acute dual SGLT1/SGLT2 inhibition on incretin release and glucose metabolism after gastric bypass surgery. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E956–E964. [Google Scholar] [CrossRef]
- Vrhovac, I.; Balen Eror, D.; Klessen, D.; Burger, C.; Breljak, D.; Kraus, O.; Radović, N.; Jadrijević, S.; Aleksic, I.; Walles, T.; et al. Localizations of Na+-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 2015, 467, 1881–1898. [Google Scholar] [CrossRef]
- Yu, L.C.; Huang, C.Y.; Kuo, W.T.; Sayer, H.; Turner, J.R.; Buret, A.G. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int. J. Parasitol. 2008, 38, 923–934. [Google Scholar] [CrossRef]
- Yu, L.C.; Turner, J.R.; Buret, A.G. Giardia-induced intestinal epithelial apoptosis is rescued by SGLT-1-mediated glucose uptake. FASEB J. 2007, 21, A586. [Google Scholar] [CrossRef]
- Yu, L.C.; Turner, J.R.; Buret, A.G. LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp. Cell Res. 2006, 312, 3276–3286. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.C.; Flynn, A.N.; Turner, J.R.; Buret, A.G. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: A novel cellular rescue mechanism? FASEB J. 2005, 19, 1822–1835. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, M.; Gariboldi, S.; Zanobbio, L.; Selleri, S.; Dusio, G.F.; Mauro, V.; Rossini, A.; Balsari, A.; Rumio, C. Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa. J. Immunol. 2008, 181, 3126–3136. [Google Scholar] [CrossRef] [PubMed]
- La Ferla, B.; Spinosa, V.; D’Orazio, G.; Palazzo, M.; Balsari, A.; Foppoli, A.A.; Rumio, C.; Nicotra, F. Dansyl C-glucoside as a novel agent against endotoxic shock. ChemMedChem 2010, 5, 1677–1680. [Google Scholar] [CrossRef]
- Nicotra, F.; Airoldi, C.; Cardona, F. Synthesis of C- and S-Glycosides. In Comprehensive Glycoscience; Elsevier: Oxford, UK, 2007; pp. 647–683. [Google Scholar]
- Paiotta, A.; D’Orazio, G.; Palorini, R.; Ricciardiello, R.; Zoia, L.; Votta, G.; De Gioia, L.; Chiaradonna, F.; La Ferla, P. Design, Synthesis, and Preliminary Biological Evaluation of GlcNAc-6P Analogues for the Modulation of Phosphoacetylglucosamine Mutase 1 (AGM1/PGM3). Eur. J. Org. Chem. 2018, 2018, 1946–1952. [Google Scholar] [CrossRef]
- Ricciardiello, F.; Votta, G.; Palorini, R.; Raccagni, I.; Brunelli, L.; Paiotta, A.; Tinelli, F.; D’Orazio, G.; Valtorta, S.; De Gioia, L.; et al. Inhibition of the Hexosamine Biosynthetic Pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death Dis. 2018, 9, 377. [Google Scholar] [CrossRef]
- Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 2009, 8, 661–677. [Google Scholar] [CrossRef]
- D’Orazio, G.; Parisi, G.; Policano, C.; Mechelli, R.; Codacci Pisanelli, G.; Pitaro, M.; Ristori, G.; Salvetti, M.; Nicotra, F.; La Ferla, B. Arsenical C-Glucoside Derivatives with Promising Antitumor Activity. Eur. J. Org. Chem. 2015, 2015, 4620–4623. [Google Scholar] [CrossRef]
- Nicotra, F.; Cipolla, L.; La Ferla, B.; Airoldi, C.; Zona, C.; Orsato, A.; Shaikh, N.; Russo, L. Carbohydrate scaffolds in chemical genetic studies. J. Biotechnol. 2009, 144, 234–241. [Google Scholar] [CrossRef]
- Tamburrini, A.; Colombo, C.; Bernardi, A. Design and synthesis of glycomimetics: Recent advances. Med. Res. Rev. 2020, 40, 495–531. [Google Scholar] [CrossRef]
- Hevey, R. Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals 2019, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Tejada, A.; Cañada, F.J.; Jiménez-Barbero, J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chem.-Eur. J. 2015, 21, 10616–10628. [Google Scholar] [CrossRef] [PubMed]
- Compain, P.; Martin, O.R. Carbohydrate mimetics-based glycosyltransferase inhibitors. Bioorg. Med. Chem. 2001, 9, 3077–3092. [Google Scholar] [CrossRef] [PubMed]
- Barchi, J.J., Jr. Emerging roles of carbohydrates and glycomimetics in anticancer drug design. Curr. Pharm. Des. 2000, 6, 485–501. [Google Scholar] [CrossRef]
- Filice, M.; Palomo, J.M. Monosaccharide derivatives as central scaffolds in the synthesis of glycosylated drugs. RSC Adv. 2012, 2, 1729–1742. [Google Scholar] [CrossRef]
- D’Orazio, G.; Martorana, A.M.; Filippi, G.; Polissi, A.; De Gioia, L.; La Ferla, B. N-Spirofused Bicyclic Derivatives of 1-Deoxynojirimycin: Synthesis and Preliminary Biological Evaluation. ChemistrySelect 2016, 1, 2444–2447. [Google Scholar] [CrossRef]
- Cardani, D.; Sardi, C.; La Ferla, B.; D’Orazio, G.; Sommariva, M.; Marcucci, F.; Olivero, D.; Tagliabue, E.; Koepsell, H.; Nicotra, F.; et al. Sodium glucose cotransporter 1 ligand BLF501 as a novel tool for management of gastrointestinal mucositis. Mol. Cancer 2014, 13, 23. [Google Scholar] [CrossRef]
- D’Orazio, G.; Marradi, M.; La Ferla, B. Dual-Targeting Gold Nanoparticles: Simultaneous Decoration with Ligands for Co-Transporters SGLT-1 and B0AT1. Appl. Sci. 2024, 14, 2248. [Google Scholar] [CrossRef]
- Giudicelli, J.; Bertrand, M.F.; Bilski, S.; Tran, T.T.; Poiree, J.C. Effect of cross-linkers on the structure and function of pig-renal sodium-glucose cotransporters after papain treatment. Biochem. J. 1998, 330, 733–736. [Google Scholar] [CrossRef]
- Stevens, B.R.; Fernandez, A.; Hirayama, B.; Wright, E.M.; Kempner, E.S. Intestinal brush border membrane Na+/glucose cotransporter functions in situ as a homotetramer. Proc. Natl. Acad. Sci. USA 1990, 87, 1456–1460. [Google Scholar] [CrossRef]
- Takahashi, M.; Malathi, P.; Preiser, H.; Jung, C.Y. Radiation inactivation studies on the rabbit kidney sodium-dependent glucose transporter. J. Biol. Chem. 1985, 260, 10551–10556. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.J.; Kempner, E.S. Radiation Inactivation Studies of the Renal Brush-border Membrane Phlorizin-binding Protein. J. Biol. Chem. 1982, 257, 794–797. [Google Scholar] [CrossRef]
- D’Orazio, G. Glycoderivatives: Drug Candidates and Molecular Tools. Doctoral Thesis, University of Milano-Bicocca, Milan, Italy, 2013. [Google Scholar]
- Wright, E.M.; Loo, D.D.F.; Hirayama, B.A. Biology of Human Sodium Glucose Transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef]
- Brenna, E.; Fuganti, C.; Grasselli, P.; Serra, S.; Zamboti, S. A novel general route for the synthesis of C-glycosyl tyrosine analogues. Chemistry 2002, 8, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- McGarvey, G.J.; LeClair, C.A.; Schmidtmann, B.A. Studies on the stereoselective synthesis of C-allyl glycosides. Org. Lett. 2008, 10, 4727–4730. [Google Scholar] [CrossRef]
- Cardona, F.; La Ferla, B. Synthesis of C-glycoconjugates from readily available unprotected C-allyl glycosides by chemoselective ligation. J. Carbohydr. Chem. 2008, 27, 203–213. [Google Scholar] [CrossRef]
- Štěpánek, P.; Vích, O.; Kniežo, L.; Dvořáková, H.; Vojtíšek, P. A short and efficient synthesis of alpha-C-(1→3)-linked disaccharides containing deoxyhexopyranoses. Tetrahedron Asymm. 2004, 15, 1033–1041. [Google Scholar] [CrossRef]
- Li, T.; Lee, H.B.; Park, K. Comparative stereochemical analysis of glucose-binding proteins for rational design of glucose-specific agents. J. Biomater. Sci. Polym. Ed. 1998, 9, 327–344. [Google Scholar] [CrossRef]
- La Ferla, B.; Cardona, F.; Perdigao, I.; Nicotra, F. Direct synthesis of glycidic bicyclic scaffolds in water without protecting groups. Synlett 2005, 17, 2641–2642. [Google Scholar] [CrossRef]
- Mari, S.; Cañada, J.F.; Jiménez-Barbero, J.; Bernardi, A.; Marcou, G.; Motto, I.; Velter, I.; Nicotra, F.; La Ferla, B. Synthesis and conformational analysis of galactose-derived bicyclic scaffolds. Eur. J. Org. Chem. 2006, 2006, 2925–2933. [Google Scholar] [CrossRef]
- Rumio, C.; Palazzo, M.; Balsari, A.; Nicotra, F.; La Ferla, B. Compounds with Glycidic Structure Active in the Therapy of Sistemic and Local Inflammation. PCT/EP2009/003267 date 5 July 2009. PCT WO2009135673A3. Available online: https://worldwide.espacenet.com/patent/search?q=pn%3DWO2009135673A3 (accessed on 30 December 2009).
- Palmioli, A.; Nicolini, G.; Tripodi, F.; Orsato, A.; Ceresa, C.; Donzelli, E.; Arici, M.; Coccetti, P.; Rocchetti, M.; La Ferla, B.; et al. Targeting GRP receptor: Design, synthesis and preliminary biological characterization of new non-peptide antagonists of bombesin. Bioorganic Chem. 2021, 109, 104739. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.Y.; Li, C.; Qin, Y.Q.; Yin, R.L.; Du, S.W.; Ye, F.; Liu, H.F.; Wang, M.P.; Sun, Y.; Li, X.; et al. Lactobacilli reduce chemokine IL-8 production in response to TNF-α and Salmonella challenge of Caco-2 cells. Biomed. Res. Int. 2013, 2013, 925219. [Google Scholar] [CrossRef] [PubMed]
- Sonnier, D.I.; Bailey, S.R.; Schuster, R.M.; Lentsch, A.B.; Pritts, T.A. TNF-α induces vectorial secretion of IL-8 in Caco-2 cells. J. Gastrointest. Surg. 2010, 14, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, A.M.; Bhattacharyya, A.; Bai, J.; Mifflin, R.C.; Ernst, P.B.; Mitra, S.; Crowe, S.E. Tumor necrosis factor (TNF)-alpha-induced IL-8 expression in gastric epithelial cells: Role of reactive oxygen species and AP endonuclease-1/redox factor (Ref)-1. Cytokine 2009, 46, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Sardi, C.; Martini, E.; Mello, T.; Camelliti, S.; Sfondrini, L.; Marcucci, F.; Kallikourdis, M.; Sommariva, M.; Rumio, C. Effect of acetylsalicylic acid on inflamed adipose tissue. Insulin resistance and hepatic steatosis in a mouse model of diet-induced obesity. Life Sci. 2021, 264, 118618. [Google Scholar] [CrossRef]
- Sardi, C. Diet and Inflammation: Focus on the Small Intestine and Adipose Tissue. Doctoral Thesis, University of Milan, Milan, Italy, 2015. [Google Scholar]
- Panayotova-Heiermann, M.; Eskandari, S.; Turk, E.; Zampighi, G.A.; Wright, E.M. Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter. J. Biol. Chem. 1997, 272, 20324–20327. [Google Scholar] [CrossRef]
- Panayotova-Heiermann, M.; Loo, D.D.; Kong, C.T.; Lever, J.E.; Wright, E.M. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein. J. Biol. Chem. 1996, 271, 10029–10034. [Google Scholar] [CrossRef]
- Puntheeranurak, T.; Wimmer, B.; Castaneda, F.; Gruber, H.J.; Hinterdorfer, P.; Kinne, R.K. Substrate specificity of sugar transport by rabbit SGLT1: Single-molecule atomic force microscopy versus transport studies. Biochemistry 2007, 46, 2797–2804. [Google Scholar] [CrossRef]
- Wimmer, B.; Raja, M.; Hinterdorfer, P.; Gruber, H.J.; Kinne, R.K. C-terminal loop 13 of Na+/glucose cotransporter 1 contains both stereospecific and non-stereospecific sugar interaction sites. J. Biol. Chem. 2009, 284, 983–991. [Google Scholar] [CrossRef]
- Puntheeranurak, T.; Kasch, M.; Xia, X.; Hinterdorfer, P.; Kinne, R.K. Three surface subdomains form the vestibule of the Na+/glucose cotransporter SGLT1. J. Biol. Chem. 2007, 282, 25222–25230. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.A.H.; El Ashry, E.S.H.; Schmidt, R.R. Synthesis of C-(D-glycopyranosyl)ethylamines and C-(D-glycofuranosyl)methylamines as potential glycosidase inhibitors. Carbohydr. Res. 1999, 315, 106–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Orazio, G.; La Ferla, B. Synthesis of a Small Library of Glycoderivative Putative Ligands of SGLT1 and Preliminary Biological Evaluation. Molecules 2024, 29, 5067. https://doi.org/10.3390/molecules29215067
D’Orazio G, La Ferla B. Synthesis of a Small Library of Glycoderivative Putative Ligands of SGLT1 and Preliminary Biological Evaluation. Molecules. 2024; 29(21):5067. https://doi.org/10.3390/molecules29215067
Chicago/Turabian StyleD’Orazio, Giuseppe, and Barbara La Ferla. 2024. "Synthesis of a Small Library of Glycoderivative Putative Ligands of SGLT1 and Preliminary Biological Evaluation" Molecules 29, no. 21: 5067. https://doi.org/10.3390/molecules29215067
APA StyleD’Orazio, G., & La Ferla, B. (2024). Synthesis of a Small Library of Glycoderivative Putative Ligands of SGLT1 and Preliminary Biological Evaluation. Molecules, 29(21), 5067. https://doi.org/10.3390/molecules29215067