Influence of Heat Treatment of Nitinol Wire on the Properties of Nitinol/Hybrid Layer for Ibuprofen Release
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Annealing of NiTi
2.1.1. Morphology—SEM and AFM Studies
2.1.2. Chemistry of Surface—XPS Measurements
2.1.3. Chemistry of Surface—TOF-SIMS Measurements
2.1.4. Raman Studies
2.1.5. Elemental Analysis—SEM-EDS Studies
2.1.6. Corrosion Behavior of NiTi Wires
2.1.7. Deposition of Hydroxyapatite Layer (HA)
2.1.8. Releasing of Ibuprofen from HA/PEG-b-PCL
3. Materials and Methods
3.1. Nitinol Surface Preparation
3.2. Corrosion Behavior of NiTi Wires
3.3. Electrochemical Deposition
3.4. Synthesis and Application of PEG-b-PCL Copolymer
3.5. Ibuprofen Deposition
3.6. Thickness and Profile Measurements
3.7. Releasing of Ibuprofen from HA/PEG-b-PCL
3.8. SEM-EDS
3.9. TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry)
3.10. Raman Spectroscopy
3.11. AFM (Atomic Force Microscopy)
3.12. XPS (X-Ray Photoelectron Spectroscopy)
4. Conclusions
- Chemical etching and thermal treatment significantly change the corrosion properties of nitinol. The best anti-corrosion properties reveal nitinol chemically treated and annealed at 470 and 590 °C. It is expressed by the lowest corrosion current and corrosion rates.
- Morphological studies exhibit the lowest porosity for nitinol thermally treated at 470 °C. Under these conditions, the thinnest TiO2 layer among all thermally treated samples in a rutile state is formed.
- The XPS and TOF-SIMS results reveal the lowest amount of nickel for the sample treated at 470 °C. Due to the potential possibility of releasing nickel ions into the patient’s body and the lowest corrosion current, heat treatment at 470°C seems to be the optimal condition for preparing the NiTi substrate for subsequent deposition of the hydroxyapatite layer and loading the PEG-b-PCL polymer matrix for the release of ibuprofen.
- The morphology of the electrodeposited hydroxyapatite layer significantly replicates the roughness of the nitinol surface. The lowest porosity (roughness) of nitinol annealed at 470 °C is replicated for the lowest roughness (porosity) hydroxyapatite layer.
- The PEG-b-PCL-deposited layer on the hydroxyapatite layer reveals the highest homogeneity for the layer deposited on nitinol treated at 470 °C. It strongly suggests that a homogenous and less porous hydroxyapatite layer exhibits better absorption of polymeric matrix.
- Ibuprofen was effectively loaded onto the HA/PEG-b-PCL layer in the amount of 2 mg/cm2. The ibuprofen release experiment carried out under sink conditions showed that about 70% of ibuprofen is released into PBS within 5 h for thermally treated samples. On the other hand, the amount of released ibuprofen from the HA/PEG-b-PCL layer deposited on untreated and etched nitinol is significantly lower (30% for chemically etched and 50% for untreated nitinol, respectively).
- For the potential application of such a kind of implant, a 5 h release time of ibuprofen would be optimal for reducing pain or inflammation symptoms.
- Considering corrosion properties, the amount of nickel content on the outermost layer of nitinol surface, and ibuprofen release efficiency from the HA/ PEG-b-PCL bilayer, nitinol surface preparation by chemical etching and subsequent thermal heating at 470 °C under air condition is the most optimal.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vojtěch, D.; Fojt, J.; Joska, L.; Novák, P. Surface Treatment of NiTi Shape Memory Alloy and Its Influence on Corrosion Behavior. Surf. Coat. Technol. 2010, 204, 3895–3901. [Google Scholar] [CrossRef]
- Shabalovskaya, S.; Anderegg, J.; Van Humbeeck, J. Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications. Acta Biomater. 2008, 4, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.; Goryczka, T.; Dulski, M.; Psiuk, B.; Szurko, A.; Lekston, Z. Functionalization of the Implant Surface Made of NiTi Shape Memory Alloy. Materials 2023, 16, 1609. [Google Scholar] [CrossRef] [PubMed]
- Wadood, A. Brief Overview on Nitinol as Biomaterial. Adv. Mater. Sci. Eng. 2016, 2016, 4173138. [Google Scholar] [CrossRef]
- Lojen, G.; Stambolić, A.; Šetina Batič, B.; Rudolf, R. Experimental Continuous Casting of Nitinol. Metals 2020, 10, 505. [Google Scholar] [CrossRef]
- Kubášová, K.; Drátovská, V.; Losertová, M.; Salvetr, P.; Kopelent, M.; Kořínek, F.; Havlas, V.; Džugan, J.; Daniel, M. A Review on Additive Manufacturing Methods for NiTi Shape Memory Alloy Production. Materials 2024, 17, 1248. [Google Scholar] [CrossRef]
- Simka, W.; Kaczmarek, M.; Baron-Wiecheć, A.; Nawrat, G.; Marciniak, J.; Żak, J. Electropolishing and Passivation of NiTi Shape Memory Alloy. Electrochim. Acta 2010, 55, 2437–2441. [Google Scholar] [CrossRef]
- Fushimi, K.; Stratmann, M.; Hassel, A.W. Electropolishing of NiTi Shape Memory Alloys in Methanolic H2SO4. Electrochim. Acta 2006, 52, 1290–1295. [Google Scholar] [CrossRef]
- Pohl, M.; Heßing, C.; Frenzel, J. Electrolytic Processing of NiTi Shape Memory Alloys. Mater. Sci. Eng. A 2004, 1–2, 191–199. [Google Scholar] [CrossRef]
- Barison, S.; Cattarin, S.; Daolio, S.; Musiani, M.; Tuissi, A. Characterisation of Surface Oxidation of Nickel–Titanium Alloy by Ion-Beam and Electrochemical Techniques. Electrochim. Acta 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Trépanier, T.; Bilodeau, L.; Piron, D. Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance. J. Biomed. Mater. Res. 1998, 43, 433–440. [Google Scholar] [CrossRef]
- Cissé, O.; Savadogo, O.; Wu, M.; Yahia, L. Effect of Surface Treatment of NiTi Alloy on Its Corrosion Behavior in Hanks’ Solution. J. Biomed. Mater. Res. 2002, 61, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Armitage, D.A.; Parker, T.L.; Grant, D.M. Biocompatibility and Hemocompatibility of Surface-Modified NiTi Alloys. J. Biomed. Mater. Res. A 2003, 66, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sheykholeslami, S.O.R.; Fathyunes, L.; Etminanfar, M.; Khalil-Allafi, J. In-Vitro Biological Behavior of Calcium Phosphate Coating Applied on Nanostructure Surface of Anodized Nitinol Alloy. Mater. Res. Express 2019, 6, 095407. [Google Scholar] [CrossRef]
- Shi, P.; Cheng, F.T.; Man, H.C. Improvement in Corrosion Resistance of NiTi by Anodization in Acetic Acid. Mater. Lett. 2007, 61, 2385–2388. [Google Scholar] [CrossRef]
- Kawakita, J.; Stratmann, M.; Hassel, A.W. High Voltage Pulse Anodization of a NiTi Shape Memory Alloy. J. Electrochem. Soc. 2007, 154, C294. [Google Scholar] [CrossRef]
- Bakhshi, R.; Darbyshire, A.; Evans, J.; You, Z.; Lu, J.; Am, A. Polymeric Coating of Surface Modified Nitinol Stent with POSS-Nanocomposite Polymer. Colloids Surf. B Biointerfaces 2011, 86, 93–105. [Google Scholar] [CrossRef]
- Shabalovskaya, S.A.; Anderegg, J.; Laab, F.; Thiel, P.A.; Rondelli, G. Surface Conditions of Nitinol Wires, Tubing, and as-Cast Alloys. The Effect of Chemical Etching, Aging in Boiling Water, and Heat Treatment. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 65, 193–203. [Google Scholar] [CrossRef]
- Heßing, C.; Gabert, S.; Pohl, M.; Parezanović, I. High-Temperature Corrosion of NiTi-Shape-Memory Alloys. Mater. Werkst. 2004, 35, 332–337. [Google Scholar] [CrossRef]
- Kim, K.S.; Jee, K.K.; Kim, W.C.; Jang, W.Y.; Han, S.H. Effect of Heat Treatment Temperature on Oxidation Behavior in Ni–Ti Alloy. Mater. Sci. Eng. A 2008, 481–482, 658–661. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Simka, W.; Baron, A.; Szewczenko, J.; Marciniak, J. Electrochemical Behavior of Ni-Ti Alloy after Surface Modification. J. Achiev. Mater. Manuf. Eng. 2006, 18, 111–114. [Google Scholar]
- Wever, D.J.; Veldhuizen, A.G.; de Vries, J.; Busscher, H.J.; Uges, D.R.A.; van Horn, J.R. Electrochemical and Surface Characterization of a Nickel–Titanium Alloy. Biomaterials 1998, 19, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Etminanfar, M.R.; Khalil-Allafi, J. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods. J. Mater. Eng. Perform. 2016, 25, 466–473. [Google Scholar] [CrossRef]
- Etminanfar, M.R.; Khalil-Allafi, J.; Sheykholeslami, S.O.R. The Effect of Hydroxyapatite Coatings on the Passivation Behavior of Oxidized and Unoxidized Superelastic Nitinol Alloys. J. Mater. Eng. Perform. 2018, 27, 501–509. [Google Scholar] [CrossRef]
- Etminanfar, M.R.; Sheykholeslami, S.O.R.; Khalili, V.; Mahdavi, S. Biocompatibility and Drug Delivery Efficiency of PEG-b-PCL/Hydroxyapatite Bilayer Coatings on Nitinol Superelastic Alloy. Ceram. Int. 2020, 46, 12711–12717. [Google Scholar] [CrossRef]
- Nagaoka, A.; Yokoyama, K.; Sakai, J. Evaluation of Hydrogen Absorption Behaviour during Acid Etching for Surface Modification of Commercial Pure Ti, Ti–6Al–4V and Ni–Ti Superelastic Alloys. Corros. Sci. 2010, 52, 1130–1138. [Google Scholar] [CrossRef]
- Cui, Z.D.; Man, H.C.; Yang, X.J. The Corrosion and Nickel Release Behavior of Laser Surface-Melted NiTi Shape Memory Alloy in Hanks’ Solution. Surf. Coat. Technol. 2005, 192, 347–353. [Google Scholar] [CrossRef]
- Stepputat, V.N.; Zeidler, H.; Safranchik, D.; Strokin, E.; Böttger-Hiller, F. Investigation of Post-Processing of Additively Manufactured Nitinol Smart Springs with Plasma-Electrolytic Polishing. Materials 2021, 14, 4093. [Google Scholar] [CrossRef]
- Saedi, S.; Saghaian, S.E.; Jahadakbar, A.; Moghaddam, N.S.; Andani, M.T.; Lu, Y.C.; Elahinia, M.; Karaca, H.E. Shape Memory Response of Porous NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. J. Mater. Sci. Mater. Med. 2018, 29, 40. [Google Scholar] [CrossRef]
- Chekotu, J.C.; Groarke, R.; O’Toole, K.; Brabazon, D. Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production. Materials 2019, 12, 809. [Google Scholar] [CrossRef]
- Sheykholeslami, S.O.R.; Khalil-Allafi, J.; Fathyunes, L. Preparation, Characterization, and Corrosion Behavior of Calcium Phosphate Coating Electrodeposited on the Modified Nanoporous Surface of NiTi Alloy for Biomedical Applications. Metall. Mater. Trans. A 2018, 49, 5878–5887. [Google Scholar] [CrossRef]
- Fathi, M.H.; Doostmohammadi, A. Bioactive Glass Nanopowder and Bioglass Coating for Biocompatibility Improvement of Metallic Implant. J. Mater. Process. Technol. 2009, 209, 1385–1391. [Google Scholar] [CrossRef]
- Kim, H.-W.; Knowles, J.C.; Kim, H.-E. Hydroxyapatite/Poly(ε-Caprolactone) Composite Coatings on Hydroxyapatite Porous Bone Scaffold for Drug Delivery. Biomaterials 2004, 25, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Bailon, P.; Berthold, W. Polyethylene Glycol-Conjugated Pharmaceutical Proteins. Pharm. Sci. Technol. Today 1998, 1, 352–356. [Google Scholar] [CrossRef]
- Dash, T.K.; Konkimalla, V.B. Poly-є-Caprolactone Based Formulations for Drug Delivery and Tissue Engineering: A Review. J. Control. Release Off. J. Control. Release Soc. 2012, 158, 15–33. [Google Scholar] [CrossRef]
- Martinez-Diaz, S.; Garcia-Giralt, N.; Lebourg, M.; Gómez-Tejedor, J.-A.; Vila, G.; Caceres, E.; Benito, P.; Pradas, M.M.; Nogues, X.; Ribelles, J.L.G.; et al. In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. Am. J. Sports Med. 2010, 38, 509–519. [Google Scholar] [CrossRef]
- Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P. The in Vivo Degradation, Absorption and Excretion of PCL-Based Implant. Biomaterials 2006, 27, 1735–1740. [Google Scholar] [CrossRef]
- Byun, J.-H.; Lee, H.A.R.; Kim, T.H.; Lee, J.H.; Oh, S.H. Effect of Porous Polycaprolactone Beads on Bone Regeneration: Preliminary in Vitro and in Vivostudies. Biomater. Res. 2014, 18, 18. [Google Scholar] [CrossRef]
- Känkänen, V.; Fernandes, M.; Liu, Z.; Seitsonen, J.; Hirvonen, S.-P.; Ruokolainen, J.; Pinto, J.F.; Hirvonen, J.; Balasubramanian, V.; Santos, H.A. Microfluidic Preparation and Optimization of Sorafenib-Loaded Poly(Ethylene Glycol-Block-Caprolactone) Nanoparticles for Cancer Therapy Applications. J. Colloid Interface Sci. 2023, 633, 383–395. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Angiopep-Conjugated Poly(Ethylene Glycol)-Co-Poly(ε-Caprolactone) Nanoparticles as Dual-Targeting Drug Delivery System for Brain Glioma. Biomaterials 2011, 32, 4293–4305. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, J.; Liu, S.; Lu, Q.; He, J.; Zhou, Z.; Hu, Y. Enzyme Sensitive, Surface Engineered Nanoparticles for Enhanced Delivery of Camptothecin. J. Control. Release 2015, 216, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Guo, B.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z. Biodegradable Micelles with Sheddable Poly(Ethylene Glycol) Shells for Triggered Intracellular Release of Doxorubicin. Biomaterials 2009, 30, 6358–6366. [Google Scholar] [CrossRef]
- Qiu, J.-F.; Gao, X.; Wang, B.-L.; Wei, X.-W.; Gou, M.-L.; Men, K.; Liu, X.-Y.; Guo, G.; Qian, Z.-Y.; Huang, M.-J. Preparation and Characterization of Monomethoxy Poly(Ethylene Glycol)-Poly(ε-Caprolactone) Micelles for the Solubilization and in Vivo Delivery of Luteolin. Int. J. Nanomed. 2013, 8, 3061–3069. [Google Scholar] [CrossRef]
- Gong, C.; Deng, S.; Wu, Q.; Xiang, M.; Wei, X.; Li, L.; Gao, X.; Wang, B.; Sun, L.; Chen, Y.; et al. Improving Antiangiogenesis and Anti-Tumor Activity of Curcumin by Biodegradable Polymeric Micelles. Biomaterials 2013, 34, 1413–1432. [Google Scholar] [CrossRef]
- Gu, Y.W.; Tay, B.Y.; Lim, C.S.; Yong, M.S. Characterization of Bioactive Surface Oxidation Layer on NiTi Alloy. Appl. Surf. Sci. 2005, 252, 2038–2049. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; McIntyre, N.S. New Interpretations of XPS Spectra of Nickel Metal and Oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Krajewski, M.; Liou, S.-C.; Jurkiewicz, K.; Brzózka, K.; Chiou, W.-A.; Kubacki, J.; Burian, A. The Glass-like Structure of Iron–Nickel Nanochains Produced by the Magnetic-Field-Induced Reduction Reaction with Sodium Borohydride. Phys. Chem. Chem. Phys. 2021, 24, 326–335. [Google Scholar] [CrossRef]
- Chrzanowski, W.; Neel, E.A.A.; Armitage, D.A.; Knowles, J.C. Effect of Surface Treatment on the Bioactivity of Nickel–Titanium. Acta Biomater. 2008, 4, 1969–1984. [Google Scholar] [CrossRef]
- Sheiko, N.; Kékicheff, P.; Marie, P.; Schmutz, M.; Jacomine, L.; Perrin-Schmitt, F. PEEK (Polyether-Ether-Ketone)-Coated Nitinol Wire: Film Stability for Biocompatibility Applications. Appl. Surf. Sci. 2016, 389, 651–665. [Google Scholar] [CrossRef]
- Shabalovskaya, S.A.; Rondelli, G.C.; Undisz, A.L.; Anderegg, J.W.; Burleigh, T.D.; Rettenmayr, M.E. The Electrochemical Characteristics of Native Nitinol Surfaces. Biomaterials 2009, 30, 3662–3671. [Google Scholar] [CrossRef] [PubMed]
- Abidi, I.H.; Cagang, A.A.; Tyagi, A.; Riaz, M.A.; Wu, R.; Sun, Q.; Luo, Z. Oxidized Nitinol Substrate for Interference Enhanced Raman Scattering of Monolayer Graphene. RSC Adv. 2016, 6, 7093–7100. [Google Scholar] [CrossRef]
- Kaminski, J.; Witkowska, J.; Plocinski, T.; Tarnowski, M.; Wierzchon, T. Structure and Corrosion Resistance of Titanium Oxide Layers Produced on NiTi Alloy in Low-Temperature Plasma. Int. J. Mater. Res. 2018, 109, 443–450. [Google Scholar] [CrossRef]
- Ohtsu, N.; Yamasaki, K.; Taniho, H.; Konaka, Y.; Tate, K. Pulsed Anodization of NiTi Alloy to Form a Biofunctional Ni-Free Oxide Layer for Corrosion Protection and Hydrophilicity. Surf. Coat. Technol. 2021, 412, 127039. [Google Scholar] [CrossRef]
- Chembath, M.; Balaraju, J.N.; Sujata, M. Effect of Anodization and Annealing on Corrosion and Biocompatibility of NiTi Alloy. Surf. Coat. Technol. 2016, 302, 302–309. [Google Scholar] [CrossRef]
- Ekoi, E.J.; Gowen, A.; Dorrepaal, R.; Dowling, D.P. Characterisation of Titanium Oxide Layers Using Raman Spectroscopy and Optical Profilometry: Influence of Oxide Properties. Results Phys. 2019, 12, 1574–1585. [Google Scholar] [CrossRef]
- Qian, L.H.; Yan, X.Q.; Fujita, T.; Inoue, A.; Chen, M.W. Surface Enhanced Raman Scattering of Nanoporous Gold: Smaller Pore Sizes Stronger Enhancements. Appl. Phys. Lett. 2007, 90, 153120. [Google Scholar] [CrossRef]
- Milošev, I.; Kapun, B. The Corrosion Resistance of Nitinol Alloy in Simulated Physiological Solutions: Part 1: The Effect of Surface Preparation. Mater. Sci. Eng. C 2012, 32, 1087–1096. [Google Scholar] [CrossRef]
- Mroczka, R.; Słodkowska, A. Studies of Benzotriazole on and into the Copper Electrodeposited Layer by Cyclic Voltammetry, Time-of-Flight Secondary-Ion Mass Spectrometry, Atomic Force Microscopy, and Surface Enhanced Raman Spectroscopy. Molecules 2023, 28, 5912. [Google Scholar] [CrossRef]
- Chembath, M.; Balaraju, J.N.; Sujata, M. Surface Characteristics, Corrosion and Bioactivity of Chemically Treated Biomedical Grade NiTi Alloy. Mater. Sci. Eng. C 2015, 56, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Milošev, I.; Kapun, B. The Corrosion Resistance of Nitinol Alloy in Simulated Physiological Solutions Part 2: The Effect of Surface Treatment. Mater. Sci. Eng. C 2012, 32, 1068–1077. [Google Scholar] [CrossRef]
- Available online: https://cdn.caymanchem.com/cdn/insert/70280.pdf (accessed on 1 October 2024).
- Moustafine, R.I.; Zaharov, I.M.; Kemenova, V.A. Physicochemical Characterization and Drug Release Properties of Eudragit E PO/Eudragit L 100-55 Interpolyelectrolyte Complexes. Eur. J. Pharm. Biopharm. 2006, 63, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Benkő, E.; Ilič, I.G.; Kristó, K.; Regdon, G.; Csóka, I.; Pintye-Hódi, K.; Srčič, S.; Sovány, T. Predicting Drug Release Rate of Implantable Matrices and Better Understanding of the Underlying Mechanisms through Experimental Design and Artificial Neural Network-Based Modelling. Pharmaceutics 2022, 14, 228. [Google Scholar] [CrossRef]
- Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych. Farmakopea Polska, VIII; Polskie Towarzystwo Farmaceutyczne: Warsaw, Poland, 2008; ISBN 978-83-88157-53-0. [Google Scholar]
Atomic % | Mass % | |||||
---|---|---|---|---|---|---|
Ti | Ni | O | Ti | Ni | O | |
NiTi | 13.67 | 10.22 | 76.1 | 25.7 | 27.0 | 47.3 |
HF | 20.86 | 6.59 | 72.54 | 39.1 | 13.6 | 47.3 |
HF_470 | 29.23 | 0.44 | 70.33 | 54.8 | 1.1 | 44.1 |
HF_570 | 28.61 | 1.13 | 70.25 | 52.5 | 3.7 | 43.8 |
HF_610 | 26.93 | 1.31 | 71.76 | 50.8 | 4.0 | 45.2 |
Corrosion Potential Ec [V] | Corrosion Current Density jc [A/cm2] | βc [V] | Corrosion Rate [mm/year] | |
---|---|---|---|---|
NiTi | −0.152 | 4.41 × 10−8 | 0.058 | 0.0005 |
HF | −0.302 | 4.26 × 10−8 | 0.091 | 0.0005 |
HF_470 | −0.308 | 1.88 × 10−8 | 0.048 | 0.0002 |
HF_590 | −0.344 | 2.08 × 10−8 | 0.059 | 0.0002 |
HF_610 | −0.339 | 4.26 × 10−8 | 0.035 | 0.0005 |
Average % Mass | Ratio | ||
---|---|---|---|
P | Ca | Ca:P | |
NiTi | 13.35 | 21.89 | 1.64 |
HF | 19.94 | 33.536 | 1.68 |
HF_470 | 19.67 | 33.45 | 1.70 |
HF_570 | 20.54 | 38.04 | 1.85 |
HF_610 | 21.69 | 37.52 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczka, R.; Słodkowska, A.; Kubacki, J. Influence of Heat Treatment of Nitinol Wire on the Properties of Nitinol/Hybrid Layer for Ibuprofen Release. Molecules 2024, 29, 5200. https://doi.org/10.3390/molecules29215200
Mroczka R, Słodkowska A, Kubacki J. Influence of Heat Treatment of Nitinol Wire on the Properties of Nitinol/Hybrid Layer for Ibuprofen Release. Molecules. 2024; 29(21):5200. https://doi.org/10.3390/molecules29215200
Chicago/Turabian StyleMroczka, Robert, Agnieszka Słodkowska, and Jerzy Kubacki. 2024. "Influence of Heat Treatment of Nitinol Wire on the Properties of Nitinol/Hybrid Layer for Ibuprofen Release" Molecules 29, no. 21: 5200. https://doi.org/10.3390/molecules29215200
APA StyleMroczka, R., Słodkowska, A., & Kubacki, J. (2024). Influence of Heat Treatment of Nitinol Wire on the Properties of Nitinol/Hybrid Layer for Ibuprofen Release. Molecules, 29(21), 5200. https://doi.org/10.3390/molecules29215200