Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy
Abstract
:1. Introduction
2. Results
2.1. Untargeted Lipid Analysis
2.2. Iterative MS/MS Analysis
2.3. GC-MS/MS Targeted Analysis
3. Discussions
3.1. Untargeted Lipid Analysis
3.2. Iterative MS/MS Analysis
3.3. GC-MS/MS Analysis
4. Materials and Methods
4.1. Chemicals
4.2. Patients
4.3. Sample Preparation
4.4. UHPLC-IM-QTOF-MS/MS Analysis
4.5. Data Analysis
4.6. Iterative MS/MS Approach
4.7. GC-MS/MS Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acars | acylcarnitines; |
CCS | collisional cross section; |
CE | collision energy; |
Cers | ceramides; |
CMP-Neu5Ac | Cytidine-5-monophospho-N-acetylneuraminic acid; |
FA | fatty acid; |
GlcCer | Glucosylceramide; |
GNEM | GNE myopathy; |
GSLs | glycosphingolipids; |
HIBM | hereditary inclusion body myopathy; |
LPCs | lysophosphocholines; |
LPCATs | lysophosphatidylcholine acyltransferases; |
LPE | lysophosphatidylethanolamine; |
LPG | lysophosphatidylglycerol; |
LPLAT | lysophospholipid acyltransferase; |
ManNac-kinase | N-acetylmannosamine kinase; |
MCP1 | monocyte chemoattractant protein-1; |
MCVs | missing cryptic variants; |
MDH | malate dehydrogenase; |
MSTFA | N-methyl-N-(trimethylsilyl) trifluoroacetamide; |
MVA | multivariate statistical analysis; |
NeuAc | N-acetylneuraminic acid; |
NIA | negative ionization analysis; |
OPLS-DA | orthogonal partial least squares analysis; |
PA | phosphatidic acid; |
PCs | phosphocholines; |
PCA | principal component analysis; |
PE | phosphatidylethanolamine; |
PG | phosphatidylglycerol; |
PKB | protein kinase B; |
PIA | positive ionization analysis; |
PLA2 | phospholipase A2; |
PLS-DA | partial least squares analysis; |
QC | quality control; |
SMs | sphingomyelins; |
SMases | sphingomyelinases; |
TCA | Krebs cycle; |
TGs | triacylglycerols; |
VUSs | variants of unknown significance; |
UDP-GlcNAc | UDP-N-acetylglucosamine. |
References
- Mullen, J.; Alrasheed, K.; Mozaffar, T. GNE myopathy: History, etiology, and treatment trials. Front. Neurol. 2022, 13, 1002310. [Google Scholar] [CrossRef]
- Nonaka, I.; Sunohara, N.; Ishiura, S.; Satoyoshi, E. Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J. Neurol. Sci. 1981, 51, 141–155. [Google Scholar] [CrossRef]
- Eisenberg, I.; Thiel, C.; Levi, T.; Tiram, E.; Argov, Z.; Sadeh, M.; Jackson, C.L.; Thierfelder, L.; Mitrani-Rosenbaum, S. Fine-structure mapping of the hereditary inclusion body myopathy locus. Genomics 1999, 55, 43–48. [Google Scholar] [CrossRef]
- Sommar, K.M.; Ellis, D.B. Uridine diphosphate n-acetyl-d-glucosamine 2-epimerase from rat liver. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1971, 268, 581–589. [Google Scholar] [CrossRef]
- Cantz, M.; Ulrich-Bott, B. Disorders of Glycoprotein Degradation. In Carbohydrate and Glycoprotein Metabolism; Maternal Phenylketonuria; Harkness, R.A., Pollitt, R.J., Addison, G.M., Eds.; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar] [CrossRef]
- Gahl, W.A.; Krasnewich, D.M.; Williams, J.C. Sialidoses. In Handbook of Clinical Neurology; Vinken, P.J., Bruyn, G.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Pogoryelova, O.; Cammish, P.; Mansbach, H.; Argov, Z.; Nishino, I.; Skrinar, A.; Chan, Y.; Nafissi, S.; Shamshiri, H.; Kakkis, E.; et al. Phenotypic stratification and genotype–phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion. Neuromuscul. Disord. 2018, 28, 158–168. [Google Scholar] [CrossRef]
- Huizing, M.; Krasnewich, D.M. Hereditary Inclusion Body Myopathy: A decade of progress. Biochim. Biophys. Acta—Mol. Basis Dis. 2009, 1792, 881–887. [Google Scholar] [CrossRef]
- Haghighi, A.; Nafissi, S.; Qurashi, A.; Tan, Z.; Shamshiri, H.; Nilipour, Y.; Haghighi, A.; Desnick, R.J.; Kornreich, R. Genetics of GNE myopathy in the non-Jewish Persian population. Eur. J. Hum. Genet. 2016, 24, 243–251. [Google Scholar] [CrossRef]
- Malicdan, M.C.V.; Noguchi, S.; Nishino, I. A preclinical trial of sialic acid metabolites on distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy, a sugar-deficient myopathy: A review. Ther. Adv. Neurol. Disord. 2010, 3, 127–135. [Google Scholar] [CrossRef]
- Patzel, K.A.; Yardeni, T.; Le Poëc-Celic, E.; Leoyklang, P.; Dorward, H.; Alonzi, D.S.; Kukushkin, N.V.; Xu, B.; Zhang, Y.; Sollogoub, M.; et al. Non-specific accumulation of glycosphingolipids in GNE myopathy. J. Inherit. Metab. Dis. 2014, 37, 297–308. [Google Scholar] [CrossRef]
- Liu, C.Y.; Yao, J.; Kovacs, W.C.; Shrader, J.A.; Joe, G.; Ouwerkerk, R.; Mankodi, A.K.; Gahl, W.A.; Summers, R.M.; Carrillo, N. Skeletal Muscle Magnetic Resonance Biomarkers in GNE Myopathy. Neurology 2021, 96, 798–808. [Google Scholar] [CrossRef]
- Gil de la Fuente, A.; Godzien, J.; Fernández López, M.; Rupérez, F.J.; Barbas, C.; Otero, A. Knowledge-based metabolite annotation tool: CEU Mass Mediator. J. Pharm. Biomed. Anal. 2018, 154, 138–149. [Google Scholar] [CrossRef]
- Carrillo, N.; Malicdan, M.C.; Huizing, M. GNE Myopathy: Etiology, Diagnosis, and Therapeutic Challenges. Neurotherapeutics 2018, 15, 900–914. [Google Scholar] [CrossRef]
- Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 2020, 159, 245–293. [Google Scholar] [CrossRef]
- Cabezas, R.; Martin-Jiménez, C.; Zuluaga, M.; Pinzón, A.; Barreto, G.E.; González, J. Integrated Metabolomics and Lipidomics Reveal High Accumulation of Glycerophospholipids in Human Astrocytes under the Lipotoxic Effect of Palmitic Acid and Tibolone Protection. Int. J. Mol. Sci. 2022, 23, 2474. [Google Scholar] [CrossRef]
- Engel, A.G.; Angelini, C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: A new syndrome. Science 1973, 2, 899–902. [Google Scholar] [CrossRef]
- Eto, M.; Shindou, H.; Koeberle, A.; Harayama, T.; Yanagida, K.; Shimizu, T. Lysophosphatidylcholine acyltransferase 3 is the key enzyme for incorporating arachidonic acid into glycerophospholipids during adipocyte differentiation. Int. J. Mol. Sci. 2012, 13, 16267–16280. [Google Scholar] [CrossRef]
- Shao, G.; Qian, Y.; Lu, L.; Liu, Y.; Wu, T.; Ji, G.; Xu, H. Research progress in the role and mechanism of LPCAT3 in metabolic related diseases and cancer. J. Cancer 2022, 19, 2430–2439. [Google Scholar] [CrossRef]
- Ferrara, P.J.; Rong, X.; Maschek, J.A.; Verkerke, A.R.P.; Siripoksup, P.; Song, H.; Green, T.D.; Krishnan, K.C.; Johnson, J.M.; Turk, J.; et al. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J. Clin. Investig. 2021, 131, 135963. [Google Scholar] [CrossRef]
- Eisenberg, I.; Novershtern, N.; Itzhaki, Z.; Becker-Cohen, M.; Sadeh, M.; Willems, P.H.G.M.; Friedman, N.; Koopman, W.J.H.; Mitrani-Rosenbaum, S. Mitochondrial processes are impaired in hereditary inclusion body myopathy. Hum. Mol. Genet. 2008, 17, 3663–3674. [Google Scholar] [CrossRef]
- Patwardhan, G.A.; Beverly, L.J.; Siskind, L.J. Sphingolipids and mitochondrial apoptosis. J. Bioenerg. Biomembr. 2016, 48, 153–168. [Google Scholar] [CrossRef]
- Weiss, L.; Jung, K.M.; Nalbandian, A.; Llewellyn, K.; Yu, H.; Ta, L.; Chang, I.; Migliore, M.; Squire, E.; Ahmed, F.; et al. Ceramide contributes to pathogenesis and may be targeted for therapy in VCP inclusion body myopathy. Hum. Mol. Genet. 2020, 29, 3945–3953. [Google Scholar] [CrossRef]
- Bandet, C.L.; Tan-Chen, S.; Bourron, O.; Le Stunff, H.; Hajduch, E. Sphingolipid metabolism: New insight into ceramide-induced lipotoxicity in muscle cells. Int. J. Mol. Sci. 2019, 20, 479. [Google Scholar] [CrossRef]
- Castro, B.M.; Prieto, M.; Silva, L.C. Ceramide: A simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 2014, 54, 53–67. [Google Scholar] [CrossRef]
- Allen, J.A.; Halverson-Tamboli, R.A.; Rasenick, M.M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 2007, 8, 128–140. [Google Scholar] [CrossRef]
- Hallak, D.; Lopez, M.; Bulgart, H.; Koczwara, K.; Lek, M.; Weisleder, N. Compromised membrane repair in muscle cells from GNE myopathy patients. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Boon, J.; Hoy, A.J.; Stark, R.; Brown, R.D.; Meex, R.C.; Henstridge, D.C.; Schenk, S.; Meikle, P.J.; Horowitz, J.F.; Kingwell, B.A.; et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 2013, 62, 401–410. [Google Scholar] [CrossRef]
- Malicdan, M.C.V.; Noguchi, S.; Nishino, I. Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Autophagy 2007, 3, 396–398. [Google Scholar] [CrossRef]
- Zhang, T.; Shang, R.; Miao, J. The role of amyloid β in the pathological mechanism of GNE myopathy. Neurol. Sci. 2022, 43, 6309–6321. [Google Scholar] [CrossRef]
- Singh, R.; Arya, R. GNE Myopathy and Cell Apoptosis: A Comparative Mutation Analysis. Mol. Neurobiol. 2016, 53, 3088–3101. [Google Scholar] [CrossRef]
- Fischer, C.; Kleinschnitz, K.; Wrede, A.; Muth, I.; Kruse, N.; Nishino, I.; Schmidt, J. Cell stress molecules in the skeletal muscle of GNE myopathy. BMC Neurol. 2013, 13, 24. [Google Scholar] [CrossRef]
- Rustin, P.; Bourgeron, T.; Parfait, B.; Chretien, D.; Munnich, A.; Rötig, A. Inborn errors of the Krebs cycle: A group of unusual mitochondrial diseases in human. Biochim. Biophys. Acta—Mol. Basis Dis. 1997, 1361, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, D.; Moriggi, M.; Torretta, E.; Barbacini, P.; De Palma, S.; Viganò, A.; Lochmüller, H.; Muntoni, F.; Ferlini, A.; Mora, M.; et al. Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: Changes contributing to preserve muscle function in Becker muscular dystrophy patients. J. Cachexia Sarcopenia Muscle 2020, 11, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, I.; Avidan, N.; Potikha, T.; Hochner, H.; Chen, M.; Olender, T.; Barash, M.; Shemesh, M.; Sadeh, M.; Grabov-Nardini, G.; et al. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 2001, 29, 83–87. [Google Scholar] [CrossRef]
- Argov, Z.; Yarom, R. ‘Rimmed vacuole myopathy’ sparing the quadriceps. A unique disorder in Iranian jews. J. Neurol. Sci. 1984, 64, 33–43. [Google Scholar] [CrossRef]
Lipid | Adduct | m/z exp. | m/z theor. | Δ (ppm) | RT (min) | Formula | DTCCSN2 (Å2) Theoretical | DTCCSN2 (Å2) Measured | Deviation of CCS Values (%) | VIP | p Value | Regulation in GNE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acar 16:0 | +H+ | 400.3418 | 400.3421 | 0.75 | 0.82 | C23H45NO4 | 213.80 | 213.87 | 0.03 | 1.08 | 0.03 | ↓ |
Acar 18:0 | +H+ | 428.3733 | 428.3734 | 0.24 | 1.14 | C25H49NO4 | 220.50 | 220.47 | −0.01 | 1.31 | 0.02 | ↓ |
Acar 18:1 | +H+ | 426.3593 | 426.3578 | 3.5 | 0.99 | C25H47NO4 | 221.90 | 218.73 | −1.43 | 1.69 | 0.006 | ↓ |
LPC 15:0 | +H+ | 482.3293 | 482.3281 | 2.49 | 1.08 | C23H48NO7P | 226.34 | 231.18 | 2.14 | 2.12 | 0.001 | ↓ |
LPC 16:0 | +H+ | 496.3403 | 496.3398 | 1.01 | 1.12 | C24H50NO7P | 233.30 | 231.39 | −0.81 | 1.37 | 0.007 | ↓ |
LPC 17:0 | +H+ | 510.3573 | 510.3554 | 3.71 | 1.15 | C25H52NO7P | 236.07 | 232.52 | −1.50 | 1.14 | 0.0002 | ↓ |
LPC 18:3 | +H+ | 518.3235 | 518.3241 | −1.16 | 0.89 | C26H48NO7P | 224.1 | 224.05 | −0.02 | 2.19 | 0.0006 | ↓ |
LPC 18:2 | +H+ | 520.3396 | 520.3398 | 0.38 | 0.98 | C26H50NO7P | 228.4 | 227.83 | −0.25 | 1.15 | 0.005 | ↓ |
LPC 18:1 | +H+ | 522.3552 | 522.3554 | −0.19 | 1.21 | C26H52NO7P | 232.92 | 233.84 | 0.39 | 1.02 | 0.044 | ↓ |
LPC 18:0 | +H+ | 524.3711 | 524.3713 | 0.38 | 1.25 | C26H54NO7P | 238.53 | 235.15 | −1.42 | 1.34 | 0.004 | ↓ |
LPC 20:4 | +H+ | 544.3413 | 544.3398 | 2.75 | 1.18 | C28H50NO7P | 230.97 | 234.48 | 1.51 | 1.14 | 0.03 | ↓ |
LPC 20:0 | +H+ | 552.4013 | 552.4024 | −1.99 | 1.61 | C28H58NO7P | 248.6 | 247.00 | −0.64 | 1.15 | 0.005 | ↓ |
PC 16:0_16:1 | +H+ | 732.5533 | 732.5538 | −0.68 | 3.32 | C40H78NO8P | 286.5 | 282.31 | −1.46 | 1.33 | 0.008 | ↑ |
PC 16:1_18:2 | +H+ | 756.5563 | 756.5538 | 3.30 | 2.18 | C42H78NO8P | 282.0 | 282.88 | 0.31 | 1.53 | 0.02 | ↓ |
PC 16:0_18:2 | +H+ | 758.5673 | 758.5694 | −2.76 | 3.25 | C42H80NO8P | 286.5 | 287.27 | 0.27 | 2.23 | 0.08 | ↓ |
PC 16:0_18:0 | +H+ | 762.5993 | 762.6007 | −1.83 | 3.67 | C42H84NO8P | 290.8 | 291.38 | 0.20 | 1.03 | 0.03 | ↑ |
PC 35:1 | +H+ | 774.6033 | 774.6007 | 3.36 | 2.64 | C43H84NO8P | 289.8 | 285.8 | −1.38 | 1.03 | ns | ↓ |
PC 35:0 | +H+ | 776.61953 | 776.6164 | −1.41 | 3.98 | C43H86NO8P | 294.3 | 286.51 | −2.65 | 1.23 | ns | ↓ |
PC 18:1_18:2 | +H+ | 784.5823 | 784.5851 | −3.57 | 2.69 | C44H82NO8P | 288.2 | 292.3 | 1.42 | 1.25 | ns | ↓ |
PC 18:3_20:0 | +H+ | 812.6163 | 812.6164 | −0.12 | 4.63 | C46H86NO8P | 294.5 | 296.95 | 0.83 | 1.04 | 0.000006 | ↓ |
PC 20:2_20:4 | +H+ | 834.5983 | 834.6007 | −2.87 | 3.57 | C48H84NO8P | 297.6 | 299.82 | 0.75 | 1.15 | 0.02 | ↓ |
SM 32:2 | +H+ | 673.5303 | 673.5279 | 3.56 | 3.24 | C37H73N2O6P | 275.00 | 274.32 | −0.25 | 1.27 | ns | ↓ |
SM 18:0_16:0 | +H+ | 705.5903 | 705.5905 | −0.28 | 3.44 | C39H81N2O6P | 288.2 | 288.72 | 0.18 | 1.07 | ns | ↓ |
SM 38:1 | +H+ | 759.6353 | 759.6365 | −1.58 | 5.95 | C43H87N2O6P | 296.7 | 296.13 | −0.19 | 2.81 | 0.001 | ↓ |
SM 40:1 | +H+ | 787.6663 | 787.6688 | −3.17 | 6.02 | C45H91N2O6P | 299.1 | 302.02 | 0.98 | 1.12 | 0.02 | ↓ |
SM 42:2 | +H+ | 815.7003 | 815.7001 | 0.24 | 7.41 | C47H95N2O6P | 304.9 | 303.91 | −0.32 | 1.46 | 0.004 | ↓ |
SM 43:1 | +H+ | 829.7153 | 829.7157 | −0.48 | 7.83 | C48H97N2O6P | 310.7 | 310.98 | 0.09 | 1.09 | 0.004 | ↓ |
TG 14:0_16:1_18:2 | +NH4+ | 818.7233 | 818.7232 | 0.12 | 12.61 | C51H92O6 | 305.08 | 306.96 | 0.38 | 1.25 | ns | ↓ |
TG 14:0_16:1_18:1 | +NH4+ | 820.7393 | 820.7389 | 0.49 | 13.54 | C51H94O6 | 310.3 | 310.24 | −0.02 | 1.26 | ns | ↑ |
TG 14:0_16:1_18:0 | +NH4+ | 822.7553 | 822.7545 | 0.97 | 14.09 | C51H96O6 | 311.5 | 314.41 | 0.93 | 1.14 | 0.01 | ↑ |
Lipid | Adduct | m/z Experimental | m/z Theoretical | Δ (ppm) | RT (min) | Formula | DTCCSN2 (Å2) Theoretical | DTCCSN2 (Å2) Measured | Deviation of CCS Values (%) | VIP | p Value | Regulation in GNE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FA 14:0 | −H− | 227.2020 | 227.2017 | 1.32 | 1.19 | C14H28O2 | 149.21 | 147.32 | −1.27 | 1.58 | 0.003 | ↓ |
FA 16:0 | −H− | 255.2341 | 255.2337 | 1.56 | 1.57 | C16H32O2 | 169.9 | 169.15 | −0.44 | 1.02 | 0.0004 | ↓ |
FA OH 18:0 | −H− | 299.2603 | 299.2592 | −1.67 | 1.33 | C18H36O3 | 191.8 | 196.50 | 2.45 | 1.55 | 0.0006 | ↓ |
FA 20:4 | −H− | 303.234 | 303.233 | 3.29 | 1.28 | C20H32O2 | 183.66 | 186.71 | 1.66 | 1.56 | 0.03 | ↓ |
DHA | −H− | 327.2347 | 327.233 | 3.05 | 1.43 | C22H32O2 | 190.5 | 190.52 | 0.01 | 1.59 | 0.04 | ↓ |
Oleyl arachidonate | −H− | 553.4906 | 553.4909 | −0.53 | 4.81 | C38H66O2 | 295.15 | 296.09 | 0.32 | 1.27 | 0.01 | ↑ |
LPE 20:0 | −H− | 508.3407 | 508.3409 | −0.39 | 1.7 | C25H52NO7P | 227.41 | 227.39 | −0.008 | 1.12 | 0.003 | ↓ |
LPG 20:1 | −H− | 537.3202 | 537.3198 | 0.74 | 1.89 | C26H51O9P | 230.61 | 230.14 | −0.20 | 1.63 | 0.03 | ↓ |
LPC 18:0 | +CHO2− | 568.3604 | 568.3602 | 0.35 | 1.55 | C26H54NO7P | 248.2 | 241.54 | −2.68 | 1.15 | 0.003 | ↓ |
PA 16:1_17:2 | −H− | 655.4324 | 655.4344 | −3.05 | 3.25 | C36H65O8P | 251.3 | 255.90 | 1.83 | 2.00 | ns | ↑ |
PA 16:0_21:0 | −H− | 703.5646 | 703.5647 | −0.14 | 8.24 | C40H81O7P | 261.2 | 258.14 | −1.14 | 1.24 | ns | ↓ |
PA 18:0_22:2 | −H− | 741.5794 | 741.5804 | −1.341 | 9.11 | C43H83O7P | 278.8 | 278.45 | −0.13 | 1.26 | ns | ↓ |
PG 12:0_16:1 | +CHO2− | 709.4303 | 709.4297 | 0.84 | 1.26 | C34H65O10P | 273.21 | 272.94 | −0.10 | 2.02 | 0.0003 | ↑ |
Cer 18:0_22:0 | +CHO2− | 668.6201 | 668.6198 | 0.44 | 8.56 | C40H81NO3 | 255.98 | 253.98 | 0 | 1.27 | 0.03 | ↑ |
GlcCer 18:0_16:0 | −H− | 700.5735 | 700.5733 | 0.28 | 9.74 | C40H79NO8 | 271.04 | 272.24 | 0.44 | 2.02 | 0.007 | ↓ |
PC 16:0_16:0 | +CHO2− | 778.5603 | 778.5604 | −0.12 | 5.31 | C40H80NO8P | 284.7 | 284.98 | 0.1 | 1.63 | 0.006 | ↓ |
PC 16:0_18:3 | +CHO2− | 800.5445 | 800.5447 | −0.24 | 4.69 | C42H78NO8P | 284.6 | 283.16 | −0.50 | 1.12 | 0.03 | ↓ |
PE 18:0_18:1 | −H− | 744.5546 | 744.5549 | −0.40 | 3.39 | C41H80NO8P | 272.91 | 273.42 | 0.19 | 1.28 | ns | ↓ |
PE 16:0_20:4 | −H− | 722.5135 | 722.5131 | 0.55 | 3.88 | C41H74NO7P | 261.8 | 252.11 | −3.70 | 1.03 | ns | ↑ |
PE P-18:1_20:4 | −H− | 748.531 | 748.5287 | 3.07 | 3.95 | C43H76NO7P | 277.29 | 283.25 | 2.15 | 1.09 | 0.04 | ↑ |
PE 18:0_20:4 | −H− | 766.542 | 766.5392 | 3.65 | 4.37 | C43H78NO8P | 275.9 | 275.89 | −0.003 | 1.54 | 0.006 | ↑ |
PE P-20:3_20:4 | −H− | 772.531 | 772.5287 | 2.97 | 3.77 | C45H76NO7P | 291.14 | 295.31 | 1.43 | 1.33 | 0.02 | ↑ |
PE P-20:2_20:4 | −H− | 774.546 | 774.5443 | 2.19 | 4.57 | C45H78NO7P | 287.9 | 292.39 | 1.55 | 1.03 | ns | ↑ |
SM 16:1_16:0 | +CHO2− | 719.536 | 719.5345 | 2.08 | 2.47 | C37H75N2O6P | 267.5 | 266.35 | −0.43 | 1.27 | ns | ↓ |
SM 18:0_16:1 | +CHO2− | 747.568 | 747.5658 | 2.94 | 3.11 | C39H79N2O6P | 280.9 | 280.88 | −0.007 | 1.41 | ns | ↓ |
SM d36:1 | +CHO2− | 775.598 | 775.5971 | 1.16 | 7.27 | C41H83N2O6P | 286.4 | 286.37 | −0.01 | 1.22 | 0.003 | ↓ |
Patient ID | Sex | Age at Sample Collection | Visit Number | Genotype | Ambulation Status |
---|---|---|---|---|---|
HIM003-13N-S1 | F | 45 | 1 | Ambulant | |
HIM006-13N-S1 | F | 48 | 1 | Ambulant | |
HIM007-13N-S1 | M | 45 | 1 | Non-Ambulant | |
HIM008-13N-S1 | M | 43 | 1 | Non-Ambulant | |
HIM009-13N-S1 | M | 54 | 1 | Ambulant | |
HIM010-13N-S1 | M | 56 | 1 | c.650A>G:p.Tyr217Cys and c.2179G>A:p.Val727Met | Ambulant |
HIM013-14N-S1 | F | 36 | 1 | c.650A>G:p.Tyr217Cys and c.2179G>A:p.Val727Met | Ambulant |
HIM014-14N-S1 | F | 38 | 1 | c.2179G>A:p.Val727Met and c.1652G>A:p.Cys551Tyr | Non-Ambulant |
HIM015-14N-S1 | M | 58 | 1 | Non-Ambulant | |
HIM016-14N-S1 | F | 35 | 1 | c.830G>A:p.Arg277Gln and c.2179G>A:p.Val727Met | Ambulant |
HIM017-14N-S1 | F | 30 | 1 | Ambulant | |
HIM018-14N-S1 | M | 36 | 1 | Ambulant | |
HIM019-14N-S1 | F | 47 | 1 | c.764C>T:p.Thr255Ile and c.764C>T:p.Thr255Ile | Ambulant-W/C |
HIM020-14N-S1 | M | 35 | 1 | c.764C>T:p.Thr255Ile and c.764C>T:p.Thr255Ile | Ambulant |
HIM021-15N-S3 | F | 41 | 3 | c.1225G>Tp:Asp409Tyr and c.1985C>T:p.Ala662Val | Ambulant |
HIM023-15N-S1 | M | 50 | 1 | c.1985C>T:p.Ala662Val and c.1985C>T:p.Ala662Val | Ambulant |
HIM024-15N-S1 | M | 34 | 1 | Ambulant | |
HIM025-15N-S1 | F | 42 | 1 | Non-Ambulant | |
HIM302-16N-S11 | F | 48 | 11 | Ambulant | |
HIM303-16N-S10 | M | 29 | 10 | c.331G>T:p.Asp111Tyr and c.1853T>C:p.Ile618Thr | Ambulant |
HIM304-16N-S11 | F | 51 | 11 | c.479G>A:p:Arg160Gln and c.922C>T:p:Arg308Trp | Ambulant |
HIM305-15N-S2 | F | 38 | 2 | Ambulant | |
HIM305-17N-S12 | F | 39 | 12 | ||
HIM306-17N-S11 | F | 37 | 11 | Ambulant | |
HIM309-15N-S1 | M | 31 | 1 | c.1664C>T:p.Ala555Val and c.1853T>C:p.Ile618Thr | Ambulant |
HIM309-17N-S10 | M | 32 | 10 | ||
HIM310-17N-S10 | F | 39 | 10 | c.2179G>A:p.Val727Met and c.1034C>T:p.Pro345Leu | Ambulant |
HIM311-16N-S11 | M | 53 | 11 | c.841C>A:p.Leu281Met and c.1225G>T:p.Asp409Tyr | Ambulant |
HIM312-17N-S13 | M | 56 | 13 | c.1225G>T:p.Asp409Tyr and c.2179G>A:p.Val727Met | Ambulant |
HIM314-16N-S1 | M | 39 | 1 | c.705G>A:p.Trp235* and c.1096C>T:p.Arg366Trp | Ambulant |
HIM315-17N-S10 | M | 53 | 10 | Ambulant | |
HIM317-16N-S1 | M | 51 | 1 | c.1313dupT:p.Ser439Lysfs*6 and c.2179G>A:p.Val727Met | Ambulant |
HIM320-16N-S1 | F | 32 | 1 | c.829C>T:p.Arg277Trp and c.1768G>A:p.Gly590Arg | Ambulant |
Ambulant | |||||
HIM306-15N- S4, HIM306-16N-S5,6,10 and HIM306-17N-S11-12 | F | 35–37 | 4, 5, 6, 10, 11, 12 | Ambulant | |
HIM307-16N-S4,5,6,10 and HIM307-17N-S11,12 | F | 37–39 | 4, 5, 6, 10, 11, 12 | Ambulant | |
HIM311-16N- S4,5,6,10 and HIM311-17N-S11-12 | M | 52–53 | 4, 5, 6, 10, 11, 12 | c.841C>A:p.Leu281Met and c.1225G>T:p.Asp409Tyr | Ambulant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manis, C.; Casula, M.; Roos, A.; Hentschel, A.; Vorgerd, M.; Pogoryelova, O.; Derksen, A.; Spendiff, S.; Lochmüller, H.; Caboni, P. Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy. Molecules 2024, 29, 5211. https://doi.org/10.3390/molecules29215211
Manis C, Casula M, Roos A, Hentschel A, Vorgerd M, Pogoryelova O, Derksen A, Spendiff S, Lochmüller H, Caboni P. Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy. Molecules. 2024; 29(21):5211. https://doi.org/10.3390/molecules29215211
Chicago/Turabian StyleManis, Cristina, Mattia Casula, Andreas Roos, Andreas Hentschel, Matthias Vorgerd, Oksana Pogoryelova, Alexa Derksen, Sally Spendiff, Hanns Lochmüller, and Pierluigi Caboni. 2024. "Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy" Molecules 29, no. 21: 5211. https://doi.org/10.3390/molecules29215211
APA StyleManis, C., Casula, M., Roos, A., Hentschel, A., Vorgerd, M., Pogoryelova, O., Derksen, A., Spendiff, S., Lochmüller, H., & Caboni, P. (2024). Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy. Molecules, 29(21), 5211. https://doi.org/10.3390/molecules29215211