Antiviral Effects and Mechanisms of Active Ingredients in Tea
Abstract
:1. Introduction
2. Inhibitory Effects of Tea Functional Components on Different Viruses
2.1. Influenza Virus
2.1.1. Hemagglutinin (HA)
2.1.2. Neuraminidase (NA)
2.1.3. RNA Polymerase
2.1.4. Non-Structural Protein 1 (NS1)
2.2. Rotavirus
2.3. Adenovirus (ADV)
2.4. Human Immunodeficiency Virus (HIV)
2.5. Human Papillomavirus (HPV)
2.6. Hepatitis Virus
2.7. Epstein–Barr (EB) Virus
2.8. Coronavirus
2.9. Other Viruses
3. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Guan, X.; Yang, J.; Xie, X.; Lin, C.; Li, J. Research on the Behavior of Tea Consumption in China with the CKB Data. J. Tea Sci. 2018, 38, 287–295. [Google Scholar]
- Sung, J.-W.; Lee, E.-K.; Seong-Hyuk, J. A Research on the Consumption of Korean Traditional Tea in View of Cultural and Artistic Goods. J. Tea Cult. Ind. Stud. 2018, 39, 101–126. [Google Scholar]
- Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wei, Y.; Huang, Y.; Weng, X.C.; Wei, X.L. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit. Rev. Food Sci. 2023, 63, 11522–11544. [Google Scholar] [CrossRef] [PubMed]
- Daddar, S.; Nirupama, N. The potential of recurrent epidemics and pandemics in a highly mobile global society. Nat. Hazards 2015, 77, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Li, S.; Xie, Y.; Chen, X. Advantages of Integrated Chinese and Western Medicine in Prevention and Treatment of Viral Diseases. Chin. J. Integr. Tradit. West. Med. 2022, 42, 232–235. [Google Scholar]
- Shujun, Z.H.U.; Wang, C.; Chen, H. Advances in Research on Natural Compounds as Antiviral Agents. Jiangsu J. Agric. Sci. 2006, 22, 86–90. [Google Scholar]
- Fu, Z.-P.; Zhou, Z.-X.; Liu, X.-Y.; Zhan, P. Advances in the study of antiviral natural products. Yaoxue Xuebao 2020, 55, 703–719. [Google Scholar]
- Falco, I.; Randazzo, W.; Sanchez, G. Antiviral Activity of Natural Compounds for Food Safety. Food Environ. Virol. 2024, 18, 280–296. [Google Scholar] [CrossRef]
- Kaihatsu, K.; Yamabe, M.; Ebara, Y. Antiviral Mechanism of Action of Epigallocatechin-3--gallate and Its Fatty Acid Esters. Molecules 2018, 23, 2475. [Google Scholar] [CrossRef]
- Ide, K.; Kawasaki, Y.; Kawakami, K.; Yamada, H. Anti-influenza Virus Effects of Catechins: A Molecular and Clinical Review. Curr. Med. Chem. 2016, 23, 4773–4783. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Li, Q.S.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules 2021, 26, 3962. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Liu, Y.Q. Research progress on property and application of theaflavins. Afr. J. Biotechnol. 2006, 5, 213–218. [Google Scholar]
- Liu, C.; Zhang, Z.; Wang, J.; Zhou, F.; Zeng, H.; Zhang, S.; Huang, J.A.; Liu, Z. Progress in Research on the Bioactivity of Theaflavins. Food Sci. 2022, 43, 318–329. [Google Scholar]
- Liu, Y.; Wang, D.; Li, J.; Zhang, Z.; Wang, Y.; Qiu, C.; Sun, Y.; Pan, C. Research progress on the functions and biosynthesis of theaflavins. Food Chem. 2024, 450, 139285. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Nian, X.X.; Li, X.D.; Huang, S.H.; Duan, K.; Li, X.G.; Yang, X.M. The Epidemiology of Influenza and the Associated Vaccines Development in China: A Review. Vaccines 2022, 10, 1873. [Google Scholar] [CrossRef] [PubMed]
- Bamunuarachchi, G.; Pushparaj, S.; Liu, L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol. 2021, 18, 767–784. [Google Scholar] [CrossRef]
- Eisfeld, A.J.; Neumann, G.; Kawaoka, Y. At the centre: Influenza A virus ribonucleoproteins. Nat. Rev. Microbiol. 2015, 13, 28–41. [Google Scholar] [CrossRef]
- Paules, C.I.; Sullivan, S.G.; Subbarao, K.; Fauci, A.S. Chasing Seasonal Influenza—The Need for a Universal Influenza Vaccine. N. Engl. J. Med. 2018, 378, 7–9. [Google Scholar] [CrossRef]
- Li, Y.B.; Wang, L.L.; Si, H.L.; Yu, Z.S.; Tian, S.J.; Xiang, R.; Deng, X.Q.; Liang, R.Y.; Jiang, S.B.; Yu, F. Influenza virus glycoprotein-reactive human monoclonal antibodies. Microbes Infect. 2020, 22, 263–271. [Google Scholar] [CrossRef]
- Liu, C.G.; Eichelberger, M.C.; Compans, R.W.; Air, G.M. Influenza Type-a Virus Neuraminidase Does Not Play a Role in Viral Entry, Replication, Assembly, or Budding. J. Virol. 1995, 69, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Rossman, J.S.; Lamb, R.A. Influenza virus assembly and budding. Virology 2011, 411, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kraft, M.L.; Yeager, A.N.; Weber, P.K.; Zimmerberg, J. Is the Site of Influenza Virus Assembly and Budding Enriched with Cholesterol and Sphingolipids? Biophys. J. 2017, 112, 318–319. [Google Scholar] [CrossRef]
- Zhang, X.; Abel, T.; Su, S.; Herrmann, A.; Ludwig, K.; Veit, M. Structural and functional analysis of the roles of influenza C virus membrane proteins in assembly and budding. J. Biol. Chem. 2022, 298, 101727. [Google Scholar] [CrossRef] [PubMed]
- Nagai, E.; Iwai, M.; Koketsu, R.; Sogabe, R.; Morimoto, R.; Suzuki, Y.; Ohta, Y.; Okuno, Y.; Ohshima, A.; Enomoto, T.; et al. Inhibition of influenza virus replication by adlay tea. J. Sci. Food Agr. 2018, 98, 1899–1905. [Google Scholar] [CrossRef]
- Nagai, E.; Iwai, M.; Koketsu, R.; Okuno, Y.; Suzuki, Y.; Morimoto, R.; Sumitani, H.; Ohshima, A.; Enomoto, T.; Isegawa, Y. Anti-Influenza Virus Activity of Adlay Tea Components. Plant Food Hum. Nutr. 2019, 74, 538–543. [Google Scholar] [CrossRef]
- Yamada, H. Effects of Green Tea on Influenza Infection and the Common Cold. In Health Benefits of Green tea: An Evidence-Based Approach; CABI Publishing: Oxfordshire, UK, 2017. [Google Scholar]
- Baatartsogt, T.; Bui, V.N.; Trinh, D.Q.; Yamaguchi, E.; Gronsang, D.; Thampaisarn, R.; Ogawa, H.; Imai, K. High antiviral effects of hibiscus tea extract on the 115 subtypes of low and highly pathogenic avian influenza viruses. J. Vet. Med. Sci. 2016, 78, 1405–1411. [Google Scholar] [CrossRef]
- Shin, W.-J.; Kim, Y.-K.; Lee, K.-H.; Seong, B.-L. Evaluation of the Antiviral Activity of a Green Tea Solution as a Hand-Wash Disinfectant. Biosci. Biotechnol. Biochem. 2012, 76, 581–584. [Google Scholar] [CrossRef]
- Green, R.H. Inhibition of multiplication of influenza virus by extracts of tea. Proceedings of the Society for Experimental Biology and Medicine. Soc. Exp. Biol. Med. 1949, 71, 84. [Google Scholar] [CrossRef]
- Sauter, N.K.; Hanson, J.E.; Glick, G.D.; Brown, J.H.; Crowther, R.L.; Park, S.J.; Skehel, J.J.; Wiley, D.C. Binding of Influenza-Virus Hemagglutinin to Analogs of Its Cell-Surface Receptor, Sialic-Acid—Analysis by Proton Nuclear-Magnetic-Resonance Spectroscopy and X-Ray Crystallography. Biochemistry 1992, 31, 9609–9621. [Google Scholar] [CrossRef]
- Reyes-Barrera, K.L.; Soria-Guerra, R.E.; López-Martínez, R.; Huerta, L.; Salinas-Jazmín, N.; Cabello-Gutiérrez, C.; Alpuche-Solís, A.G. The Entry Blocker Peptide Produced in Inhibits Influenza Viral Replication. Front. Plant Sci. 2021, 12, 641420. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, M.; Jena, L.; Rath, S.N.; Kumar, S. Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking. Genom. Inform. 2016, 14, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; He, D.; Wang, Z.C.; Ou, S.D.; Yuan, R.; Li, S.J. Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity. Viruses 2016, 8, 119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Hu, D.; Wu, Y.L.; Ying, T.L. Recent advances in “universal” influenza virus antibodies: The rise of a hidden trimeric interface in hemagglutinin globular head. Front. Med. 2020, 14, 149–159. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.Y.; Lee, H.W.; Shin, J.S.; Kim, P.; Jung, Y.S.; Jeong, H.S.; Hyun, J.K.; Lee, C.K. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antivir. Res. 2013, 100, 460–472. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, D.; Duan, Y. Progress in the Research of NS1 Protein from Avian Influenza Virus H5N1 Subtype. J. Mirobiol. 2013, 33, 1–4. [Google Scholar]
- Cho, E.J.; Xia, S.L.; Ma, L.C.; Robertus, J.; Krug, R.M.; Anslyn, E.V.; Montelione, G.T.; Ellington, A.D. Identification of Influenza Virus Inhibitors Targeting NS1A Utilizing Fluorescence Polarization-Based High-Throughput Assay. J. Biomol. Screen. 2012, 17, 448–459. [Google Scholar] [CrossRef]
- You, L.; Cho, E.J.; Leavitt, J.; Ma, L.C.; Montelione, G.T.; Anslyn, E.V.; Krug, R.M.; Ellington, A.; Robertus, J.D. Synthesis and evaluation of quinoxaline derivatives as potential influenza NS1A protein inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 3007–3011. [Google Scholar] [CrossRef]
- Mou, Q.J.; Jiang, Y.; Zhu, L.L.; Zhu, Z.X.; Ren, T.T. EGCG induces β-defensin 3 against influenza A virus H1N1 by the MAPK signaling pathway. Exp. Ther. Med. 2020, 20, 3017–3024. [Google Scholar] [CrossRef]
- Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antivir. Res. 2005, 68, 66–74. [Google Scholar] [CrossRef]
- Huang, J.; Yan, C.; Liu, X.; Zuo, H.; Zhou, M.; Pei, X. Current Progress on the Anti-influenza Effect of Epigallocatechin-3-gallate. Chin. J. Virol. 2018, 34, 259–263. [Google Scholar]
- Ling, J.X.; Wei, F.; Li, N.; Li, J.L.; Chen, L.J.; Liu, Y.Y.; Luo, F.; Xiong, H.R.; Hou, W.; Yang, Z.Q. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol. Sin. 2012, 33, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, Y.N.; Youn, H.N.; Lee, D.H.; Kwak, J.H.; Seong, B.L.; Lee, J.B.; Park, S.Y.; Choi, I.S.; Song, C.S. Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poultry Sci. 2012, 91, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Yamada, H.; Matsushita, K.; Kaji, S.; Goto, T.; Okada, Y.; Kosuge, K.; Kitagawa, T. Green Tea Consumption Is Inversely Associated with the Incidence of Influenza Infection among Schoolchildren in a Tea Plantation Area of Japan. J. Nutr. 2011, 141, 1862–1870. [Google Scholar] [CrossRef]
- Rowe, C.A.; Nantz, M.P.; Bukowski, J.F.; Percival, S.S. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma, delta T cell function: A randomized, double-blind, placebo-controlled study. J. Am. Coll. Nutr. 2007, 26, 445–452. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yamada, H.; Takuma, N.; Niino, H.; Sagesaka, Y.M. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: A randomized controlled trial. BMC Complement. Altern. Med. 2011, 11, 15. [Google Scholar] [CrossRef]
- Iwata, M.; Toda, M.; Nakayama, M.; Tsujiyama, H.; Endo, W.; Takahashi, O.; Hara, Y.; Shimamura, T. Prophylactic effect of black tea extract as gargle against influenza. Kansenshogaku Zasshi. J. Jpn. Assoc. Infect. Dis. 1997, 71, 487–494. [Google Scholar] [CrossRef]
- Bishop, R.F.; Davidson, G.P. Virus-Particles in Epithelial-Cells of Duodenal Mucosa from Children with Acute Non-Bacterial Gastroenteritis. Lancet 1973, 2, 1281–1283. [Google Scholar] [CrossRef]
- Dallar, Y.; Bostanci, I.; Bozdayi, G.; Dogan, B.; Basbay, Y.; Battaloglu, N.O.; Rota, S.; Nishizono, A.; Ahmed, K. Rotavirus-associated intussusception followed by spontaneous resolution. Turk. J. Gastroenterol. 2009, 20, 209–213. [Google Scholar] [CrossRef]
- Kurugöl, Z.; Geylani, S.; Karaca, Y.; Umay, F.; Erensoy, S.; Vardar, F.; Bak, M.; Yaprak, I.; Özkinay, F.; Özkinay, C. Rotavirus gastroenteritis among children under five years-of age in Izmir, Turkey. Turk. J. Pediatr. 2003, 45, 290–294. [Google Scholar] [PubMed]
- Graham, K.L.; Halasz, P.; Tan, Y.; Hewish, M.J.; Takada, Y.; Mackow, E.R.; Robinson, M.K.; Coulson, B.S. Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αXβ2 and αVβ3 by using VP7 during cell entry. J. Virol. 2003, 77, 9969–9978. [Google Scholar] [CrossRef] [PubMed]
- Matson, D.O.; Szabo, S.; Afflerbach, C.; Campos, F.; Pickering, L.K.; Ruiz-Palacios, G. Sequence differences of rotavirus (RV) NSP4 gene sequences between human symptomatic and asymptomatic first infections. Clin. Infect. Dis. 2001, 33, 1139. [Google Scholar]
- Mukoyama, A.; Ushijima, H.; Nishimura, S.; Koike, H.; Toda, M.; Hara, Y.; Shimamura, T. Inhibition of rotavirus and enterovirus infections by tea extracts. Jpn. J. Med. Sci. Biol. 1991, 44, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.H.; Gu, Q.J.; Kodama, H.; Mueller, W.E.; Ushijima, H. Development of antirotavirus agents in Asia. Pediatr. Int. 2000, 42, 440–447. [Google Scholar] [CrossRef]
- Lipson, S.M.; Karalis, G.; Karthikeyan, L.; Ozen, F.S.; Gordon, R.E.; Ponnala, S.; Bao, J.; Samarrai, W.; Wolfe, E. Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical. Food Environ. Virol. 2017, 9, 434–443. [Google Scholar] [CrossRef]
- Luganini, A.; Terlizzi, M.E.; Catucci, G.; Gilardi, G.; Maffei, M.E.; Gribaudo, G. The Cranberry Extract Oximacro((R)) Exerts in vitro Virucidal Activity Against Influenza Virus by Interfering With Hemagglutinin. Front. Microbiol. 2018, 9, 1826. [Google Scholar] [CrossRef]
- Clark, K.J.; Grant, P.G.; Sarr, A.B.; Belakere, J.R.; Swaggerty, C.L.; Phillips, T.D.; Woode, G.N. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet. Microbiol. 1998, 63, 147–157. [Google Scholar] [CrossRef]
- Ma, J.T.; Ding, X.Q.; Yin, Y.L.; Huang, P.F. Peptide inhibitors of chloride channels for treating secretory diarrhea. Front. Biosci. Landmark 2018, 23, 1780–1788. [Google Scholar]
- Huang, H.H.; Liao, D.; Zhou, G.H.; Zhu, Z.; Cui, Y.J.; Pu, R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine 2020, 77, 153230. [Google Scholar] [CrossRef]
- Shieh, W.J. Human adenovirus infections in pediatric population—An update on clinico-pathologic correlation. Biomed. J. 2022, 45, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, P.; Ip, W.H.; Dobner, T.; Gonzalez, R.A. The biology of the adenovirus E1B 55K protein. FEBS Lett. 2019, 593, 3504–3517. [Google Scholar] [CrossRef] [PubMed]
- Engel, D.A.; Hardy, S.; Shenk, T. Camp Acts in Synergy with E1a Protein to Activate Transcription of the Adenovirus Early Gene-E4 and Gene-E1a. Gene Dev. 1988, 2, 1517–1528. [Google Scholar] [CrossRef]
- Buhre, J.S.; Pongracz, T.; Künsting, I.; Lixenfeld, A.S.; Wang, W.J.; Nouta, J.; Lehrian, S.; Schmelter, F.; Lunding, H.B.; Dühring, L.; et al. mRNA vaccines against SARS-CoV-2 induce comparably low long-term IgG Fc galactosylation and sialylation levels but increasing long-term IgG4 responses compared to an adenovirus-based vaccine. Front. Immunol. 2023, 13, 1020844. [Google Scholar] [CrossRef]
- Weber, J.M.; Ruzindana-Umunyana, A.; Imbeault, L.; Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antivir. Res. 2003, 58, 167–173. [Google Scholar] [CrossRef]
- Xiran, H.; Bo, G.; Lei, Z.; Sidong, X. Green Tea Polyphenol Epigallocatechin-3-gallate-Alleviated Coxsackievirus B3-induced Myocarditis Through Inhibiting Viral Replication but Not Through Inhibiting Inflammatory Responses. J. Cardiovasc. Pharmacol. 2017, 69, 41–47. [Google Scholar]
- Karimi, A.; Moradi, M.-T.; Alidadi, S.; Hashemi, L. Anti-adenovirus activity, antioxidant potential, and phenolic content of black tea (Camellia sinensis Kuntze) extract. J. Complement. Integr. Med. 2016, 13, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Zhang, S.; Liu, Y.; Ma, J.; Chen, W.; Yin, T.; Li, T.B.; Liang, B.; Tao, L. Knockdown of HSP110 attenuates hypoxia-induced pulmonary hypertension in mice through suppression of YAP/TAZ-TEAD4 pathway. Resp. Res. 2022, 23, 209. [Google Scholar] [CrossRef]
- Deeks, S.G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV infection. Nat. Rev. Dis. Primers 2015, 1, 1–22. [Google Scholar] [CrossRef]
- Faria, N.R.; Rambaut, A.; Suchard, M.A.; Baele, G.; Bedford, T.; Ward, M.J.; Tatem, A.J.; Sousa, J.D.; Arinaminpathy, N.; Pépin, J.; et al. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014, 346, 56–61. [Google Scholar] [CrossRef]
- Tebas, P.; Stein, D.; Tang, W.W.; Frank, I.; Wang, S.Q.; Lee, G.; Spratt, S.K.; Surosky, R.T.; Giedlin, M.A.; Nichol, G.; et al. Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV. N. Engl. J. Med. 2014, 370, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Abdul-Jawad, S.; McCoy, L.E.; Mok, H.P.; Peppa, D.; Salgado, M.; Martinez-Picado, J.; Nijhuis, M.; Wensing, A.M.J.; Lee, H.; et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 2019, 568, 244–248. [Google Scholar] [CrossRef]
- Gantner, P.; Buranapraditkun, S.; Pagliuzza, A.; Dufour, C.; Pardons, M.; Mitchell, J.L.; Kroon, E.; Sacdalan, C.; Tulmethakaan, N.; Pinyakorn, S.; et al. HIV rapidly targets a diverse pool of CD4+T cells to establish productive and latent infections. Immunity 2023, 56, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hattori, T.; Kodama, E.N. Epigallocatechin gallate inhibits the HIV reverse transcription step. Antivir. Chem. Chemother. 2011, 21, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lu, H.; Zhao, Q.; He, Y.; Niu, J.; Debnath, A.K.; Wu, S.; Jiang, S. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim. Biophys. Acta 2005, 1723, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, L.; Tan, S.; Jin, H.; Qiu, J.; Mao, Q.; Li, R.; Xia, C.; Jiang, Z.H.; Jiang, S.; et al. A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: Potential applications for preventing HIV-1 infection. Fitoterapia 2012, 83, 348–355. [Google Scholar] [CrossRef]
- Hauber, I.; Hohenberg, H.; Holstermann, B.; Hunstein, W.; Hauber, J. The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection. Proc. Natl. Acad. Sci. USA 2009, 106, 9033–9038. [Google Scholar] [CrossRef]
- Hartjen, P.; Frerk, S.; Hauber, I.; Matzat, V.; Thomssen, A.; Holstermann, B.; Hohenberg, H.; Schulze, W.; zur Wiesch, J.S.; van Lunzen, J. Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG. Aids Res. Ther. 2012, 9, 1–9. [Google Scholar] [CrossRef]
- Popovych, N.; Brender, J.R.; Soong, R.; Vivekanandan, S.; Hartman, K.; Basrur, V.; Macdonald, P.M.; Ramamoorthy, A. Site Specific Interaction of the Polyphenol EGCG with the SEVI Amyloid Precursor Peptide PAP(248–286). J. Phys. Chem. B 2012, 116, 3650–3658. [Google Scholar] [CrossRef]
- Kharisma, V.D.; Widyananda, M.H.; Ansori, A.N.M.; Nege, A.S.; Naw, S.W.; Nugraha, A.P. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J. Pharm. Pharmacogn. R. 2021, 9, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Yang, L.M.; Li, X.L.; Zheng, C.B.; Wang, R.R.; Yang, Y.P.; Zheng, Y.T. Anti-HIV activities of extracts from Pu-erh tea. Chin. J. Nat. Med. 2012, 10, 347–352. [Google Scholar] [CrossRef]
- Egawa, N.; Egawa, K.; Griffin, H.; Doorbar, J. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015, 7, 3863–3890. [Google Scholar] [CrossRef] [PubMed]
- De Sanjose, S.; Serrano, B.; Castellsague, X.; Brotons, M.; Munoz, J.; Bruni, L.; Bosch, F.X. Human papillomavirus (HPV) and related cancers in the Global Alliance for Vaccines and Immunization (GAVI) countries. A WHO/ICO HPV Information Centre Report. Vaccine 2012, 30 (Suppl. 4), D1–D83. [Google Scholar]
- Pinidis, P.; Tsikouras, P.; Iatrakis, G.; Zervoudis, S.; Koukouli, Z.; Bothou, A.; Galazios, G.; Vladareanu, S. Human Papilloma Virus’ Life Cycle and Carcinogenesis. Maedica 2016, 11, 48–54. [Google Scholar] [PubMed]
- Malik, S.; Sah, R.; Muhammad, K.; Waheed, Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts-A Comprehensive Review. Vaccines 2023, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.K. Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2. Viruses 2017, 9, 370. [Google Scholar] [CrossRef]
- Kajitani, N.; Satsuka, A.; Kawate, A.; Sakai, H. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Front. Microbiol. 2012, 3, 152. [Google Scholar] [CrossRef]
- Ahn, W.S.; Yoo, J.; Huh, S.W.; Kim, C.K.; Lee, J.M.; Namkoong, S.E.; Bae, S.M.; Lee, I.P. Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur. J. Cancer Prev. 2003, 12, 383–390. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Q.; Chen, J.Q.; Mo, Z.Y.; Li, H.P.; Peng, L.Q.; Ke, Y.A.; Liang, B.H.; Li, R.X.; Zhu, H.L. Green Tea Polyphenols Cause Apoptosis and Autophagy in HPV-16 Subgene-Immortalized Human Cervical Epithelial Cells via the Activation of the Nrf2 Pathway. Nutr. Cancer 2022, 74, 3769–3778. [Google Scholar] [CrossRef]
- Zou, C.P.; Liu, H.G.; Feugang, J.M.; Hao, Z.P.; Chow, H.H.S.; Garcia, F. Green Tea Compound in Chemoprevention of Cervical Cancer. Int. J. Gynecol. Cancer 2010, 20, 617–624. [Google Scholar] [CrossRef]
- Yokoyama, M.; Noguchi, M.; Nakao, Y.; Pater, A.; Iwasaka, T. The tea polyphenol, (-)-epigallocatechin gallate effects on growth, apoptosis, and telomerase activity in cervical cell lines. Gynecol. Oncol. 2004, 92, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Yap, J.K.W.; Kehoe, S.T.; Woodman, C.B.J.; Dawson, C.W. The Major Constituent of Green Tea, Epigallocatechin-3-Gallate (EGCG), Inhibits the Growth of HPV18-Infected Keratinocytes by Stimulating Proteasomal Turnover of the E6 and E7 Oncoproteins. Pathogens 2021, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, S.; Ganguli, A.; Das, A.; Nag, D.; Chakrabarti, G. Epigallocatechin-3-gallate shows anti-proliferative activity in HeLa cells targeting tubulin-microtubule equilibrium. Chem.-Biol. Interact. 2015, 242, 380–389. [Google Scholar] [CrossRef]
- Sharma, C.; Nusri, Q.E.A.; Begum, S.; Javed, E.; Rizvi, T.A.; Hussain, A. (-)-Epigallocatechin-3-Gallate Induces Apoptosis and Inhibits Invasion and Migration of Human Cervical Cancer Cells. Asian Pac. J. Cancer Prev. 2012, 13, 4815–4822. [Google Scholar] [CrossRef] [PubMed]
- Stockfleth, E.; Meyer, T. The use of sinecatechins (polyphenon E) ointment for treatment of external genital warts. Expert. Opin. Biol. Ther. 2012, 12, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Tatti, S.; Stockfleth, E.; Beutner, K.R.; Tawfik, H.; Elsasser, U.; Weyrauch, P.; Mescheder, A. Polyphenon E®: A new treatment for external anogenital warts. Br. J. Dermatol. 2010, 162, 176–184. [Google Scholar] [CrossRef]
- Date, A.A.; Destache, C.J. Natural polyphenols: Potential in the prevention of sexually transmitted viral infections. Drug Discov. Today 2016, 21, 333–341. [Google Scholar] [CrossRef]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef]
- Mooli, R.G.R.; Mukhi, D.; Ramakrishnan, S.K. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr. Physiol. 2022, 12, 3167–3192. [Google Scholar]
- Abu-Amara, M.; Yang, S.Y.; Seifalian, A.; Davidson, B.; Fuller, B. The nitric oxide pathway—Evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int. 2012, 32, 531–543. [Google Scholar] [CrossRef]
- Su, Y.T.; Chang, M.L.; Liaw, Y.F. Case report: Unusual viral evolutions following antiviral therapies in a patient with concurrent hepatitis B virus and hepatitis C virus infection. Front. Med. 2023, 10, 1136111. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.W.; Liu, W.C.; Chen, C.Y.; Chang, T.T.; Tseng, K.C. Impact of HCV viremia on HBV biomarkers in patients coinfected with HBV and HCV. BMC Infect. Dis. 2022, 22, 351. [Google Scholar] [CrossRef] [PubMed]
- Li, W.T.; Duan, X.Q.; Zhu, C.L.; Liu, X.; Jeyarajan, A.J.; Xu, M.; Tu, Z.; Sheng, Q.J.; Chen, D.; Zhu, C.W.; et al. Hepatitis B and Hepatitis C Virus Infection Promote Liver Fibrogenesis through a TGF-β1-Induced OCT4/Nanog Pathway. J. Immunol. 2022, 208, 672–684. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Deng, F.; Hu, Z.H.; Wang, H.L. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antivir. Res. 2008, 78, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, L.; Zhang, Y. Studies on the effects of tea catechins against hepatitis B virus infection. Zhonghua Yu Fang. Yi Xue Za Zhi 2001, 35, 404–407. [Google Scholar]
- Ye, P.; Zhang, S.L.; Zhao, L.; Dong, J.H.; Jie, S.H.; Pang, R.; Li, S.L. Tea polyphenols exerts anti-hepatitis B virus effects in a stably HBV-transfected cell line. J. Huazhong Univ. Sci. Technol. Med. Sci. 2009, 29, 169–172. [Google Scholar] [CrossRef]
- Xu, J.; Gu, W.Z.; Li, C.Y.; Li, X.; Xing, G.Z.; Li, Y.; Song, Y.H.; Zheng, W.M. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha. J. Nat. Med. 2016, 70, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Peng, B.; He, W.H.; Zhong, G.C.; Qi, Y.H.; Ren, B.J.; Gao, Z.C.; Jing, Z.Y.; Song, M.; Xu, G.W.; et al. Molecular Determinants of Hepatitis B and D Virus Entry Restriction in Mouse Sodium Taurocholate Cotransporting Polypeptide. J. Virol. 2013, 87, 7977–7991. [Google Scholar] [CrossRef]
- Yan, H.; Zhong, G.C.; Xu, G.W.; He, W.H.; Jing, Z.Y.; Gao, Z.C.; Huang, Y.; Qi, Y.H.; Peng, B.; Wang, H.M.; et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012, 1, e00049. [Google Scholar] [CrossRef]
- Lai, Y.H.; Sun, C.P.; Huang, H.C.; Chen, J.C.; Liu, H.K.; Huang, C. Epigallocatechin gallate inhibits hepatitis B virus infection in human liver chimeric mice. BMC Complement. Altern. Med. 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Zuo, G.; Li, Z.; Chen, L.; Xu, X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Res. 2007, 76, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Tao, M.H.; Hung, T.M.; Chen, J.C.; Lin, Z.J.; Huang, C. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res. 2014, 111, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Mekky, R.Y.; El-Ekiaby, N.; El Sobky, S.A.; Elemam, N.M.; Youness, R.A.; El-Sayed, M.; Hamza, M.T.; Esmat, G.; Abdelaziz, A.I. Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models. Arch. Virol. 2019, 164, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Calland, N.; Albecka, A.; Belouzard, S.; Wychowski, C.; Duverlie, G.; Descamps, V.; Hober, D.; Dubuisson, J.; Rouillé, Y.; Séron, K. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012, 55, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.Y.; Siak, P.Y.; Leong, C.O.; Cheah, S.C. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front. Microbiol. 2023, 14, 1116143. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.C.; Du, C.C.; Liu, L.T.; Liang, Y.J.; Tang, L.Q.; Chen, Q.Y.; Mai, H.Q.; Guo, S.S. The Prognostic Role of Plasma Epstein-Barr Virus DNA Levels in the Middle of Intensity Modulated Radiation Therapy to Guide Cisplatin Dose Recommendation in Concurrent Chemoradiation Therapy in Patients with Locally Advanced Nasopharyngeal Carcinoma: A Large Cohort Study. Adv. Radiat. Oncol. 2022, 7, 100908. [Google Scholar]
- Lung, R.W.M.; Hau, T.P.M.; Chak, W.P.; Tong, J.H.M.; Yu, K.H.O.; Tsao, S.W.; Yip, K.Y.L.; To, K.F.; Lo, K.W. The role of Epstein-Barr virus-encoded miRNAs in ATM regulating DNA damage response in nasopharyngeal carcinoma. Cancer Res. 2016, 76, 1118. [Google Scholar] [CrossRef]
- Tsang, C.M.; Tsao, S.W. The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol. Sin. 2015, 30, 107–121. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, X.; Zhang, T.; Ye, Q. EBV-HLH children with reductions in CD4+T cells and excessive activation of CD8+T cells. Pediatr. Res. 2017, 82, 952–957. [Google Scholar] [CrossRef]
- Sebelin-Wulf, K.; Nguyen, T.D.; Oertel, S.; Papp-Vary, M.; Trappe, R.U.; Schulzki, A.; Pezzutto, A.; Riess, H.; Subklewe, M. Quantitative analysis of EBV-specific CD4/CD8 T cell numbers, absolute CD4/CD8 T cell numbers and EBV load in solid organ transplant recipients with PLTD. Transplant. Immunol. 2007, 17, 203–210. [Google Scholar] [CrossRef]
- Piriou, E.R.; van Dort, K.; Nanlohy, N.M.; van Oers, M.H.; Miedema, F.; van Baarle, D. Novel method for detection of virus-specific CD4+ T cells indicates a decreased EBV-specific CD4+ T cell response in untreated HIV-infected subjects. Eur. J. Immunol. 2005, 35, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Chu, C.Y.; Jin, Y.T. Epstein-Barr Virus Latent Membrane Protein-1 Upregulates MIP-1α/1β and IL-13 in Hodgkin Lymphoma Associated with Old Age and Poor Prognosis. Modern Pathol. 2014, 27, 341a. [Google Scholar]
- Morris, M.A.; Dawson, C.W.; Young, L.S. Role of the Epstein-Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma. Future Oncol. 2009, 5, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, L.L.; Hu, D.S.; Deng, X.Y.; Cao, Y. Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell Mol. Immunol. 2007, 4, 185–196. [Google Scholar] [PubMed]
- Zhao, Y.; Tao, Y.G.; Luo, F.J.; Tang, F.Q.; Tang, M.; Cao, Y. Interference effect of epigallocatechin-3-gallate on targets of nuclear factor κB signal transduction pathways activated by EB virus encoded latent membrane protein 1. Int. J. Biochem. Cell B 2004, 36, 1473–1481. [Google Scholar]
- Zhao, Y.; Yang, L.F.; Ye, M.; Gu, H.H.; Cao, Y. Induction of apoptosis by epigallocatechin-3-gallate via mitochondrial signal transduction pathway. Prev. Med. 2004, 39, 1172–1179. [Google Scholar] [CrossRef]
- Ludwig, S.; Zarbock, A. Coronaviruses and SARS-CoV-2: A Brief Overview. Anesth. Analg. 2020, 131, 93–96. [Google Scholar] [CrossRef]
- Artika, I.M.; Dewantari, A.K.; Wiyatno, A. Molecular biology of coronaviruses: Current knowledge. Heliyon 2020, 6, e047432020. [Google Scholar] [CrossRef]
- Liu, T.; Hu, J.; Kang, M.; Lin, L.; Zhong, H.; Xiao, J.; He, G.; Song, T.; Huang, Q.; Rong, Z.; et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). bioRxiv 2020. [Google Scholar] [CrossRef]
- Lukassen, S.; Chua, R.L.; Trefzer, T.; Kahn, N.C.; Schneider, M.A.; Muley, T.; Winter, H.; Meister, M.; Veith, C.; Boots, A.W.; et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. Embo J. 2020, 39, e105114. [Google Scholar] [CrossRef]
- Guo, Y.T.; Jiang, J.B.; Qiao, G.R.; Luo, R.H.; Zhou, X.; Hua, R.; Zheng, C.B.; Liu, Z. Pleiotropy of positive selection in ancient ACE2 suggests an alternative hypothesis for bat- specific adaptations to host coronaviruses. Proc. Natl. Acad. Sci. USA 2024, 121, e2321619121. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol. 2013, 168, 1059–1073. [Google Scholar] [CrossRef] [PubMed]
- Fassina, G.; Buffa, A.; Benelli, R.; Varnier, O.E.; Noonan, D.M.; Albini, A. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent. Aids 2002, 16, 939–941. [Google Scholar] [CrossRef] [PubMed]
- Park, R.; Jang, M.; Park, Y.I.; Park, Y.; Jung, W.; Park, J.; Park, J. Epigallocatechin Gallate (EGCG), a Green Tea Polyphenol, Reduces Coronavirus Replication in a Mouse Model. Viruses 2021, 13, 2533. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.N.; Lin, C.P.C.; Huang, K.K.; Chen, W.C.; Hsieh, H.P.; Liang, P.H.; Hsu, J.T.A. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3′- digallate (TF3). Evid-Based Compl Alt. 2005, 2, 209–215. [Google Scholar] [CrossRef]
- Park, J.; Park, R.; Jang, M.; Park, Y.I. Therapeutic Potential of EGCG, a Green Tea Polyphenol, for Treatment of Coronavirus Diseases. Life 2021, 11, 197. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, J.; Zhou, C.Z.; Wu, Z.G.; Zhong, S.Q.; Liu, J.H.; Luo, W.; Chen, T.; Qin, Q.H.; Deng, P. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Resp. Crit. Care 2005, 171, 850–857. [Google Scholar] [CrossRef]
- Jing, L.; Ying, Z.; Dan, Q.; Chunyan, Y.; Benhao, W.; Huang, J.H.; Jianwen, Y.; Wu, E.; Guoying, Z. An L-theanine derivative targets against SARS-CoV-2 and its Delta and Omicron variants. Heliyon 2022, 8, e09660. [Google Scholar]
- Chen, S.N.; Kang, J.X.; Zhu, H.Q.; Wang, K.X.; Han, Z.Y.; Wang, L.Y.; Liu, J.S.; Wu, Y.Y.; He, P.M.; Tu, Y.Y.; et al. L-Theanine and Immunity: A Review. Molecules 2023, 28, 3846. [Google Scholar] [CrossRef]
- Mohammadi, S.; Heidarizadeh, M.; Entesari, M.; Esmailpour, A.; Esmailpour, M.; Moradi, R.; Sakhaee, N.; Doustkhah, E. In silico Investigation on the Inhibiting Role of Nicotine/Caffeine by Blocking the S Protein of SARS-CoV-2 Versus ACE2 Receptor. Microorganisms 2020, 8, 1600. [Google Scholar] [CrossRef]
- Kamath, A.B.; Wang, L.S.; Das, H.; Li, L.; Reinhold, V.N.; Bukowski, J.F. Antigens in tea-beverage prime human Vγ2Vδ2 T cells and for memory and nonmemory antibacterial cytokine responses. Proc. Natl. Acad. Sci. USA 2003, 100, 6009–6014. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.M. Porcine Reproductive and Respiratory Syndrome. J. Vet. Diagn. Investig. 1993, 5, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.Q. Inhibitory Effects of Proanthocyanidins and EGCG on Porcine Reproductive and Respiratory Syndrome Virus in Marc-145 Cells. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2006. [Google Scholar] [CrossRef]
- Zhao, C.J.; Liu, S.H.; Li, C.Y.; Yang, L.; Zu, Y.G. Evaluation of the Antiviral Activity of the Synthetic Epigallocatechin Gallate Analog-Epigallocatechin Gallate (EGCG) Palmitate against Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2014, 6, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.C.; Baines, J.D. Herpesviruses remodel host membranes for virus egress. Nat. Rev. Microbiol. 2011, 9, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, C.E.; Xu, W.M.; Merz, G.; Hillier, S.; Rohan, L.; Wen, G.Y. Digallate Dimers of (-)- Epigallocatechin Gallate Inactivate Herpes Simplex Virus. Antimicrob. Agents Chemother. 2011, 55, 5646–5653. [Google Scholar] [CrossRef]
- Isaacs, C.E.; Wen, G.Y.; Xu, W.; Jia, J.H.; Rohan, L.; Corbo, C.; Di Maggio, V.; Jenkins, E.C.; Hillier, S. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob. Agents Chemother. 2008, 52, 962–970. [Google Scholar] [CrossRef]
- Colpitts, C.C.; Schang, L.M. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans. J. Virol. 2014, 88, 7806–7817. [Google Scholar] [CrossRef]
- Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule EGCG inhibits Zika virus entry. Virology 2016, 496, 215–218. [Google Scholar] [CrossRef]
- Bansal, S.; Choudhary, S.; Sharma, M.; Kumar, S.S.; Lohan, S.; Bhardwaj, V.; Syan, N.; Jyoti, S. Tea: A native source of antimicrobial agents. Food Res. Int. 2013, 53, 568–584. [Google Scholar] [CrossRef]
- Saric, S.; Notay, M.; Sivamani, R.K. Green Tea and Other Tea Polyphenols: Effects on Sebum Production and Acne Vulgaris. Antioxidants 2017, 6, 2. [Google Scholar] [CrossRef]
Viruses | Tea or Tea Compounds | Mechanisms | References |
---|---|---|---|
Influenza virus | EGCG and theaflavins | Regulation of eight viral gene segments | [20,26,28,31,32] |
Inhibition of viral entry | [30,38] | ||
EGCG | Disruption of viral replication | [43] | |
Reduction of ROS | [44] | ||
Flavonoids | Inhibiting the replication of the HA gene | [31] | |
Rotavirus | Catechins | Interference of virus adsorption | [55] |
EGCG | Arrest of viral and host recognition | [57,58] | |
Theaflavins | Chelation with virus proteins | [59] | |
Black tea | Inhibition of Cl− channel in host cells | [60] | |
Disruption of RV RNA replication | [61] | ||
Adenovirus | Catechins | Disruption of the viral protease adenain | [66,67] |
Theaflavins | Disruption of viral replication | [68] | |
HIV | EGCG | An inhibitor of HIV reverse transcriptase | [75] |
Reduction of viral activity in sperm | [76] | ||
An inhibitor of Prostatic acidic phosphatase (PAP) amino acid segment 248–286 | [78] | ||
Pu-erh tea extracts | Avoid host infection with HIV | [82] | |
Theaflavins | Modulation of cell membrane properties | [76,77] | |
Inhibition of viral entry | |||
HPV | EGCG | Inhibition of viral entry | [85] |
Reducing the expression of the HPV E7 gene | [91,92] | ||
Degradation of HPV E6 and E7 proteins | [93] | ||
Reduction of the levels of VEGF, MMP-2, and MMP-9 | [94,95] | ||
Catechins | Modulation of the Nrf2 pathway | [90] | |
Hepatitis virus | Green tea extract | Inhibition of the expression of HBV-specific antigens and HBV DNA | [105] |
Tea polyphenols | Down-regulate HBV antigen expression and suppress Farnesoid X receptor α | [108] | |
Inducing clathrin-dependent Na+-taurocholate transporter (NTCP) endocytosis in the cell membrane | [109,110] | ||
Reduction of viral DNA replication | [111] | ||
Theaflavins | Stopping HCV replication | [113] | |
Epstein–Barr (EB) virus | EGCG | Modulating the phosphorylation of EB-IκBα | [126] |
Suppressing the expression of NF-κB | [127] | ||
Coronavirus | EGCG | Preventing virus attachment to host cell receptors by binding to the spike protein | [134] |
Improving the fluidity and stability of the cell membrane | [135] | ||
Inhibition of the synthesis of coronavirus RNA | [136] | ||
Inhibiting the activity of 3CLpro | [137] | ||
Theaflavins | Changing the conformation of viral capsid proteins | [137] | |
Enhancing the antiviral response of host cells | [139] | ||
Theanine | Enhancing the activity of natural killer cells and macrophages | [140] | |
Boosting the antiviral immune response of the host | [141] | ||
Caffeine | Inhibiting phosphodiesterase activity, regulating signal transduction in host cells, and suppressing viral replication | [142] | |
Flavonoids | Inhibiting viral enzymes and interfering with viral RNA synthesis | [143] | |
PRRS | EGCG | Inhibition of PRRSV adsorption, internalization, and replication | [144] |
HSV | EGCG | Inhibiting HSV activity under both acidic and alkaline conditions | [146,147] |
Preventing the virus from binding to the host cells | [148,149] | ||
Arboviruses | EGCG | Impeding viral replication | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yu, H.; Sun, P.; Huang, M.; Li, B. Antiviral Effects and Mechanisms of Active Ingredients in Tea. Molecules 2024, 29, 5218. https://doi.org/10.3390/molecules29215218
Zhang X, Yu H, Sun P, Huang M, Li B. Antiviral Effects and Mechanisms of Active Ingredients in Tea. Molecules. 2024; 29(21):5218. https://doi.org/10.3390/molecules29215218
Chicago/Turabian StyleZhang, Xinghai, Haonan Yu, Panjie Sun, Mengxin Huang, and Bo Li. 2024. "Antiviral Effects and Mechanisms of Active Ingredients in Tea" Molecules 29, no. 21: 5218. https://doi.org/10.3390/molecules29215218
APA StyleZhang, X., Yu, H., Sun, P., Huang, M., & Li, B. (2024). Antiviral Effects and Mechanisms of Active Ingredients in Tea. Molecules, 29(21), 5218. https://doi.org/10.3390/molecules29215218