Preparation and Properties of Fe-Based Double Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell
Abstract
:1. Introduction
2. Results and Discussion
3. Experiment
3.1. Preparation
3.2. Single-Cell Fabrication
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, J.; Huang, J.; Wu, X.L.; Xu, Y.W.; Chen, H.C.; Li, X. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review. J. Power Sources 2021, 505, 230058. [Google Scholar] [CrossRef]
- Hanif, B.M.; Motola, M.; Qayyum, S.; Rauf, S.; Khalid, A.; Li, C.J.; Li, C.X. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion. Chem. Eng. J. 2022, 428, 132603–132624. [Google Scholar] [CrossRef]
- Ndubuisi, A.; Abouali, S.; Singh, K.; Thangadurai, V. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes. J. Mater. Chem. A 2022, 10, 2196–2227. [Google Scholar] [CrossRef]
- Yu, X.D.; Wang, Z.H.; Ren, R.Z.; Ma, M.J.; Xu, C.M.; Qiao, J.S.; Sun, W.; Sun, K.N. In Situ Self-Reconstructed Nanoheterostructure Catalysts for Promoting Oxygen Reduction Reaction. ACS Energy Lett. 2022, 7, 2961–2969. [Google Scholar] [CrossRef]
- Zhang, S.W.; Wan, Y.H.; Xu, Z.Q.; Xue, S.S.; Zhang, L.J.; Zhang, B.Z.; Xia, C.R. Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3-δ perovskite as a novel redox-stable efficient anode for solid oxide fuel cells. J. Mater. Chem. A 2022, 8, 11553–11563. [Google Scholar] [CrossRef]
- Kim, J.H.; Manthiram, A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective. J. Mater. Chem. A 2015, 3, 24195–24210. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, L.; Wang, Y.; Du, Z.H.; Zhang, B.; Ciucci, F.; Zhao, H.L. Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo2O5+δ/Gd0.1Ce1.9O2−δ coherent interface. J. Mater. Chem. A 2022, 10, 3495–3505. [Google Scholar] [CrossRef]
- Wang, S.L.; Zan, J.N.; Qiu, W.W.; Zheng, D.S.; Li, F.S.; Chen, W.M.; Pei, Q.M.; Jiang, L. Evaluation of perovskite oxides LnBaCo2O5+δ (Ln=La, Pr, Nd and Sm) as cathode materials for IT-SOFC. Electroanal. Chem. 2021, 886, 115–144. [Google Scholar] [CrossRef]
- Su, M.S.; Huan, D.M.; Hu, X.Y.; Zhu, K.; Peng, R.R.; Xia, C.R. Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells. J. Power Sources 2022, 521, 2309–2317. [Google Scholar] [CrossRef]
- Zhang, L.; Huan, D.; Zhu, K.; Dai, P.Q.; Peng, R.R.; Xia, C.R. Tuning the Phase Transition of SrFeO3-δ by Mn toward Enhanced Catalytic Activity and CO2 Resistance for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2022, 14, 17358–17368. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, Q.; Chen, Z.J.; Zhou, J.; Zhu, X.F.; Wang, N.; Zhou, D.F. Novel cobalt and strontium-free perovskite Pr0.5Ba0.5Fe1-xNixO3-δ (x=0 and 0.2) as cathode for intermediate-temperature solid oxide fuel cells. Ionics 2021, 27, 3951–3965. [Google Scholar] [CrossRef]
- Song, J.; Kim, S.D.; Raju, K.; Byun, S.; Woo, S.K.; Han, M.H.; Kim, T.W. Doping Effects of Pentavalent Metal Ions (Nb5+ or Ta5+) on the Redox Stability and Electrochemical Properties of La0.6Sr0.4FeO3-δ for Use as Interconnectors in Solid Oxide Fuel Cells. Bull. Korean Chem. Soc. 2020, 41, 793–798. [Google Scholar] [CrossRef]
- Han, Z.Y.; Bai, J.H.; Chen, X.; Zhu, X.F.; Zhou, D.F. Novel cobalt-free Pr2Ni1-xNbxO4+δ (x = 0, 0.05, 0.10, and 0.15) perovskite as the cathode material for IT-SOFC. Int. J. Hydrogen Energy 2021, 46, 11894–11907. [Google Scholar] [CrossRef]
- Yao, C.G.; Zhang, H.X.; Dong, Y.J.; Zhang, R.Y.; Meng, J.; Meng, F.Z. Characterization of Ta/W co-doped SrFeO3-δ perovskite as cathode for solid oxide fuel cells. J. Alloy Compd. 2019, 797, 205–212. [Google Scholar] [CrossRef]
- Xiao, G.L.; Liu, Q.; Wang, S.W.; Komvokis, V.G.; Amirdis, M.D.; Heyden, A.; Ma, S.G.; Chen, F.L. Synthesis and characterization of Mo-doped SrFeO3-δ as cathode materials for solid oxide fuel cells. J. Power Sources 2012, 202, 63–69. [Google Scholar] [CrossRef]
- Aguadero, A.; Pérez-Coll, D.; Alonso, J.A.; Skinner, S.J.; Kilner, J. A New Family of Mo-Doped SrCoO3-δ Perovskites for Application in Reversible Solid State Electrochemical Cells. J. Chem. Mater. 2012, 24, 2655–2663. [Google Scholar] [CrossRef]
- Li, H.; Wei, B.; Su, C.X.; Wang, C.Q.; Lv, Z. Novel cobalt-free layered perovskite LaBaFe2-xNbxO6-δ (x=0-0.1) as cathode for solid oxide fuel cells. J. Power Sources 2020, 453, 2275–2278. [Google Scholar] [CrossRef]
- Xu, J.H.; Cai, H.D.; Hao, G.D.; Zhang, L.L.; Song, Z.Y. Characterization of high-valence Mo-doped PrBaCo2O5+δ cathodes for IT-SOFCs. J. Alloy Compd. 2020, 842, 1556–1560. [Google Scholar] [CrossRef]
- Zhang, H.X.; Yang, X.; Wang, P.F.; Yao, C.G.; Yu, X.D.; Shi, F.N. Novel cobalt-free perovskite PrBaFe1.9Mo0.1O5+δ as a cathode material for solid oxide fuel cells. Solid State Ion. 2023, 391, 116–144. [Google Scholar] [CrossRef]
- Wu, B.; Qian, X.; Guan, W.B.; Liu, Z.J.; Wang, F.; Zhang, Q.J. A first-principles study of doping effect on enhancing ORR performance of Sr-Ni-Nb co-doped LaFeO3 perovskite. Int. J. Hydrogen Energy 2023, 1, 360–366. [Google Scholar]
- Chen, G.; Hu, Z.W.; Zhu, Y.P.; Chen, Z.G.; Zhong, Y.J.; Lin, H.J.; Chen, C.T.; Hao, L.; Tjeng, L.H.; Zhou, W. Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 9854–9859. [Google Scholar] [CrossRef]
- Chatterjee, S.; Barman, A.; Barman, S.; Chabri, T.; Sohini, K.N.; Anuja, D.; Devajyoti, M. Role of oxygen vacancies on the low-temperature dielectric relaxor behavior in epitaxial Ba0.85Ca0.15Ti0.9Zr0.1O3 thin films. Phys. Rev. Mater. 2021, 5, 064415. [Google Scholar] [CrossRef]
- Jia, W.H.; Huang, Z.N.; Sun, W.; Wu, L.; Zheng, L.; Wang, Y.Q.; Huang, J.B.; Yang, X.; Lv, M.; Ge, L. Flexible A-site doping La0.6-xMxSr0.4Co0.2Fe0.8O3 (M=Ca, Ba, Bi; x=0, 0.1, 0.2) as novel cathode material for intermediate-temperature solid oxide fuel cells: A first-principles study and experimental exploration. J. Power Sources 2021, 490, 22956–22964. [Google Scholar] [CrossRef]
- Ortiz-Vitoriano, N.; Larramendi, I.; Larramendi, J.I.; Arriortua, M.I.; Rojo, T. Synthesis and electrochemical performance of La0.6Ca0.4Fe1-xNixO3 (x=0.1, 0.2, 0.3) material for solid oxide fuel cell cathode. J. Power Sources 2009, 192, 63–69. [Google Scholar] [CrossRef]
- Lim, C.; Yang, Y.J.; Sin, Y.W.; Choi, S.; Kim, G. Ca and Ni-Doped Pr0.5Ba0.5FeO3-δ as a Highly Active and Robust Cathode for High-Temperature Solid Oxide Fuel Cell. Energy Fuel 2020, 34, 11458–11463. [Google Scholar] [CrossRef]
- Jin, F.J.; Xu, H.W.; Long, W.; Shen, Y.; He, T.M. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln=Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. J. Power Sources 2013, 243, 10–18. [Google Scholar] [CrossRef]
- Jibri, K.P.M.; Archana, J.; Navaneethan, M.; Harish, S. Small polaron hopping conduction mechanism and enhanced thermoelectric power factor in the perovskite LaCoO3 ceramic. Phys. Chem. Chem. Phys. 2023, 25, 12914–12922. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Pang, S.G.; Shen, X.Q.; Jiang, X.N.; Wang, W.Z. Evaluation of Ba-deficient PrBa1-xFe2O5+δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells. RSC Adv. 2016, 6, 13829–13836. [Google Scholar] [CrossRef]
- Wu, M.; Cai, H.D.; Jin, F.J.; Sun, N.; Jin, F.J.; Xu, J.H.; Zhang, L.L.; Han, X.; Wang, S.B.; Sun, X.G. Assessment of cobalt–free ferrite–based perovskite Ln0.5Sr0.5Fe0.9Mo0.1O3-δ (Ln = lanthanide) as cathodes for IT-SOFCs. Eur. Ceram. Soc. 2021, 41, 2682–2690. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Li, Q.S.; Chen, T.; Xu, C.; Wang, W.G. Quantitative contribution of resistance sources of components to stack performance for solid oxide electrolysis cells. J. Power Sources 2015, 274, 736–740. [Google Scholar] [CrossRef]
- He, S.F.; Le, S.R.; Guan, L.L.; Liu, T.; Sun, K.N. Bismuth and niobium co-doped barium cobalt oxide as a promising cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 2015, 295, 33–40. [Google Scholar] [CrossRef]
- Yang, C.H.; Zhao, F.; Chen, F.L.; Liu, M.L. Investigation of A-site deficient Ba0.9Co0.7Fe0.2Nb0.1O3-δ cathode for proton conducting electrolyte based solid oxide fuel cells. Int. J. Hydrogen Energy 2014, 39, 8431–8436. [Google Scholar] [CrossRef]
- Li, G.D.; Gou, Y.J.; Cheng, X.J.; Bai, Z.; Ren, R.Z.; Xu, C.M.; Qiao, J.S.; Sun, W.; Wang, Z.H.; Sun, K.N. Enhanced Electrochemical Performance of the Fe-Based Layered Perovskite Oxygen Electrode for Reversible Solid Oxide Cells. ACS Appl. Mater. Interfaces 2021, 13, 34282–34291. [Google Scholar] [CrossRef]
- Ren, R.Z.; Wang, Z.H.; Meng, X.G.; Xu, C.M.; Qiao, J.S.; Sun, W.; Sun, K.N. Boosting the Electrochemical Performance of Fe-Based Layered Double Perovskite Cathodes by Zn2+ Doping for Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2020, 12, 23959–23967. [Google Scholar] [CrossRef]
- Yu, X.D.; Sui, C.; Ren, R.Z.; Qiao, J.S.; Sun, W.; Wang, Z.H.; Sun, K.N. Construction of Heterointerfaces with Enhanced Oxygen Reduction Kinetics for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Appl. Energy Mater. 2020, 3, 447–455. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Wang, Y.L.; Chen, F.G.; Xia, C.G. Bismuth Doped Lanthanum Ferrite Perovskites as Novel Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2014, 6, 11286–11294. [Google Scholar] [CrossRef]
- Li, P.; Liu, F.; Yang, B.B.; Wei, W.; Ma, X.Y.; Yan, F.; Gan, T.; Fu, D. Enhanced electrochemical redox kinetics of La0.6Sr0.4Co0.2Fe0.8O3 in reversible solid oxide cells. Electrochim. Acta 2023, 446, 14206–14209. [Google Scholar] [CrossRef]
- Sun, C.Z.; Kong, Y.; Shao, L.; Zhang, Q.; Zhang, N.Q.; Sun, K.N. Significant Zirconium Substitution Effect on the Oxygen Reduction Activity of the Cathode Material NdBaCo2O5+δ for Solid Oxide Fuel Cells. ACS Sustain. Chem. Eng. 2019, 7, 11603–11611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Li, S.; An, S.; Li, N.; Ma, H.; Li, M. Preparation and Properties of Fe-Based Double Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell. Molecules 2024, 29, 5299. https://doi.org/10.3390/molecules29225299
Xue L, Li S, An S, Li N, Ma H, Li M. Preparation and Properties of Fe-Based Double Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell. Molecules. 2024; 29(22):5299. https://doi.org/10.3390/molecules29225299
Chicago/Turabian StyleXue, Liangmei, Songbo Li, Shengli An, Ning Li, Huipu Ma, and Mengxin Li. 2024. "Preparation and Properties of Fe-Based Double Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell" Molecules 29, no. 22: 5299. https://doi.org/10.3390/molecules29225299
APA StyleXue, L., Li, S., An, S., Li, N., Ma, H., & Li, M. (2024). Preparation and Properties of Fe-Based Double Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell. Molecules, 29(22), 5299. https://doi.org/10.3390/molecules29225299