Enhancing Cannabinoid Bioavailability in Pain Management: The Role of Cyclodextrins
Abstract
:1. Introduction
2. Formation of Host–Guest Inclusion Complexes with Cyclodextrins
2.1. Technological Advantages: Stability, Solubility, and Bioavailability
2.2. Overview of Inclusion Complex Preparation Methods
2.3. Role in Pain Management
2.3.1. Cannabinoids: THC, CBD, and Their Acidic Precursors
2.3.2. Enhancing Cannabinoid Bioavailability with Cyclodextrins
2.3.3. Limonene: A Monoterpene with Analgesic Potential
2.3.4. Beta-Caryophyllene (BCP): A Potent Anti-Inflammatory Terpene
2.3.5. Gamma-Terpinene (γ-TPN): Cancer Pain Management
2.3.6. Structural and Physicochemical Properties: Cannabinoid and Terpene Inclusion Complexes
2.4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dueñas, M.; De Sola, H.; Salazar, A.; Esquivia, A.; Rubio, S.; Failde, I. Prevalence and Epidemiological Characteristics of Chronic Pain in the Spanish Population. Results from the Pain Barometer. Eur. J. Pain, 2024; ahead of print. [Google Scholar] [PubMed]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The Revised International Association for the Study of Pain Definition of Pain: Concepts, Challenges, and Compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.; Pereira, R.M.; Afonso, V.; Tinoco, R. Prevalence and Characteristics of Chronic Pain Among Patients in Portuguese Primary Care Units. Pain Ther. 2021, 10, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic Pain: An Update on Burden, Best Practices, and New Advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, R.S.; Wegryn-Jones, R.; Klida, C.; Kurtz, V.; Thomas, L.; Williams, D.A.; Clauw, D.J.; Kidwell, K.M.; Bohnert, A.S.B.; Boehnke, K.F. Protocol for a Pragmatic Trial of Cannabidiol (CBD) to Improve Chronic Pain Symptoms among United States Veterans. BMC Complement. Med. Ther. 2024, 24, 250. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, S.; Radbruch, L.; Caraceni, A.; Cherny, N.; Kaasa, S.; Nauck, F.; Ripamonti, C.; De Conno, F. Episodic (Breakthrough) Pain. Cancer 2002, 94, 832–839. [Google Scholar] [CrossRef]
- Mercadante, S.; Grassi, Y.; Gebbia, V. Cancer Survivors: Long-Term Opioid Therapy–the Challenge. BMJ Support. Palliat. Care 2024, 14, 65–67. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis Sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation. Antioxidants 2022, 11, 660. [Google Scholar] [CrossRef]
- Mechoulam, R.; Peters, M.; Murillo-Rodriguez, E.; Hanuš, L.O. Cannabidiol–Recent Advances. Chem. Biodivers. 2007, 4, 1678–1692. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential Cannabis Synergy and Phytocannabinoid-terpenoid Entourage Effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Ribeiro, A.; Alsayyed, R.; Oliveira, D.; Loureiro, R.; Cabral-Marques, H. Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens. Future Pharmacol. 2024, 4, 590–625. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, E.M.M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, F.; Singh, V.; Guo, T.; Ren, X.; Yin, X.; Shao, Q.; York, P.; Patterson, L.H.; Zhang, J. Host-Guest Kinetic Interactions between HP-β-Cyclodextrin and Drugs for Prediction of Bitter Taste Masking. J. Pharm. Biomed. Anal. 2017, 140, 232–238. [Google Scholar] [CrossRef]
- Adamkiewicz, L.; Szeleszczuk, Ł. Review of Applications of Cyclodextrins as Taste-Masking Excipients for Pharmaceutical Purposes. Molecules 2023, 28, 6964. [Google Scholar] [CrossRef]
- Puskás, I.; Szente, L.; Szőcs, L.; Fenyvesi, É. Recent List of Cyclodextrin-Containing Drug Products. Period. Polytech. Chem. Eng. 2023, 67, 11–17. [Google Scholar] [CrossRef]
- Singh, P.; Mahar, R. Cyclodextrin in Drug Delivery: Exploring Scaffolds, Properties, and Cutting-Edge Applications. Int. J. Pharm. 2024, 662, 124485. [Google Scholar] [CrossRef]
- Shieh, W.J.; Hedges, A.R. Properties and Applications of Cyclodextrins. J. Macromol. Sci. 1996, 33, 673–683. [Google Scholar] [CrossRef]
- Pyrak, B.; Rogacka-Pyrak, K.; Gubica, T.; Szeleszczuk, Ł. Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics. Int. J. Mol. Sci. 2024, 25, 3527. [Google Scholar] [CrossRef]
- Rajamohan, R.; Kamaraj, E.; Muthuraja, P.; Murugavel, K.; Govindasamy, C.; Prabakaran, D.S.; Malik, T.; Lee, Y.R. Enhancing Ketoprofen’s Solubility and Anti-Inflammatory Efficacy with Safe Methyl-β-Cyclodextrin Complexation. Sci. Rep. 2024, 14, 21516. [Google Scholar] [CrossRef]
- Braga, S.S.; Lysenko, K.; El-Saleh, F.; Paz, F.A.A. Cyclodextrin-Efavirenz Complexes Investigated by Solid State and Solubility Studies. Proceedings 2021, 78, 15. [Google Scholar]
- Otero-Espinar, F.J.; Torres-Labandeira, J.J.; Alvarez-Lorenzo, C.; Blanco-Méndez, J. Cyclodextrins in Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2010, 20, 289–301. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, J.; Qiu, N. Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers 2023, 15, 1400. [Google Scholar] [CrossRef]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Marques, H. The Pharmacist and the Research and Development of the Medicinal Product. In A Profissão Farmacêutica; Conceição, J., Ramalhinho, I., Barata, P., Eds.; Universidade do Algarve–Faculdade de Ciências e Tecnologia: Faro, Portugal, 2024; pp. 417–451. [Google Scholar]
- Liu, Y.; Liang, Y.; Yuhong, J.; Xin, P.; Han, J.L.; Du, Y.; Yu, X.; Zhu, R.; Zhang, M.; Chen, W.; et al. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des. Devel Ther. 2024, 18, 1469–1495. [Google Scholar] [CrossRef]
- Dave, R.A.; Morris, M.E. Novel High/Low Solubility Classification Methods for New Molecular Entities. Int. J. Pharm. 2016, 511, 111–126. [Google Scholar] [CrossRef]
- Chow, S. Bioavailability and Bioequivalence in Drug Development. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 304–312. [Google Scholar] [CrossRef]
- Elikottil, M.J.; Gupta, M.P.; Gupta, P.K. The Analgesic Potential of Cannabinoids. J. Opioid Manag. 2018, 5, 341–357. [Google Scholar] [CrossRef]
- Przybyla, M.A.; Yilmaz, G.; Becer, C.R. Natural Cyclodextrins and Their Derivatives for Polymer Synthesis. Polym. Chem. 2020, 11, 7582–7602. [Google Scholar] [CrossRef]
- Dos Passos Menezes, P.; de Araujo Andrade, T.; Frank, L.A.; de Souza, E.P.B.S.S.; das Gracas Gomes Trindade, G.; Trindade, I.A.S.; Serafini, M.R.; Guterres, S.S.; de Souza Araújo, A.A. Advances of Nanosystems Containing Cyclodextrins and Their Applications in Pharmaceuticals. Int. J. Pharm. 2019, 559, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Cheirsilp, B.; Rakmai, J. Inclusion Complex Formation of Cyclodextrin with Its Guest and Their Applications. Biol. Eng. Med. 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in Drug Delivery: An Updated Review. AAPS PharmSciTech 2005, 6, E329–E357. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Zhang, X.; Tian, B.R. Selective Modifications at the Different Positions of Cyclodextrins: A Review Ofstrategies. Turk. J. Chem. 2020, 44, 261–278. [Google Scholar] [CrossRef]
- Roy, A.; Manna, K.; Dey, S.; Pal, S. Chemical Modification of β-Cyclodextrin towards Hydrogel Formation. Carbohydr. Polym. 2023, 306, 120576. [Google Scholar] [CrossRef]
- Hu, X.; Chen, S.; Gong, X.; Gao, Z.; Wang, X.; Chen, P. Synthesis and Preparation of Biocompatible and PH-Responsive Cyclodextrin-Based Nanoparticle. J. Nanopart. Res. 2017, 19, 109. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchene, D. Cyclodextrins and Their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-Based Pharmaceutics: Past, Present and Future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł.; Bethanis, K.; Christoforides, E.; Dudek, M.K.; Zielińska-Pisklak, M.; Pisklak, D.M. 17-β-Estradiol—β-Cyclodextrin Complex as Solid: Synthesis, Structural and Physicochemical Characterization. Molecules 2023, 28, 3747. [Google Scholar] [CrossRef]
- Lv, P.; Zhang, D.; Guo, M.; Liu, J.; Chen, X.; Guo, R.; Xu, Y.; Zhang, Q.; Liu, Y.; Guo, H.; et al. Structural Analysis and Cytotoxicity of Host-Guest Inclusion Complexes of Cannabidiol with Three Native Cyclodextrins. J. Drug Deliv. Sci. Technol. 2019, 51, 337–344. [Google Scholar] [CrossRef]
- Reddy, T.S.; Zomer, R.; Mantri, N. Nanoformulations as a Strategy to Overcome the Delivery Limitations of Cannabinoids. Phytother. Res. 2023, 37, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins Inclusion Complex: Preparation Methods, Analytical Techniques and Food Industry Applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Reddy, B.B.K.; Karunakar, A. Biopharmaceutics Classification System: A Regulatory Approach. Dissolution Technol. 2011, 18, 31–37. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and Drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.C.; Martins, T.E.A.; Veiga, F.; Ferraz, H.G. Cyclodextrins and Ternary Complexes: Technology to Improve Solubility of Poorly Soluble Drugs. Braz. J. Pharm. Sci. 2011, 47, 665–681. [Google Scholar] [CrossRef]
- Waleczek, K. Phase Solubility Studies of Pure (−)-α-Bisabolol and Camomile Essential Oil with β-Cyclodextrin. J. Pharm. Biopharm. 2003, 55, 247–251. [Google Scholar] [CrossRef]
- Junco, S.; Casimiro, T.; Ribeiro, N.; Cabral Marques, H. A Comparative Study of Naproxen–Beta Cyclodextrin Complexes Prepared by Conventional Methods and Using Supercritical Carbon Dioxide. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 117–121. [Google Scholar] [CrossRef]
- Junco, S.; Casimiro, T.; Ribeiro, N.; Nunes Da Ponte, M.; Cabral Marques, H.M. Optimisation of Supercritical Carbon Dioxide Systems for Complexation of Naproxen: Beta-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 69–73. [Google Scholar] [CrossRef]
- Wen, X.; Tan, F.; Jing, Z.; Liu, Z. Preparation and Study the 1:2 Inclusion Complex of Carvedilol with β-Cyclodextrin. J. Pharm. Biomed. Anal. 2004, 34, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, A.A.; Ahmed, F.; Mohammed, A.M.; Alsharidah, M.; Al-Subaiyel, A.; Samman, W.A.; Alhaddad, A.A.; Al-Mijalli, S.H.; Amin, M.A.; Barakat, H.; et al. Recent Advances in the Pharmaceutical and Biomedical Applications of Cyclodextrin-Capped Gold Nanoparticles. Int. J. Nanomed. 2023, 18, 3247–3281. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Marques, H.; Almeida, R. Optimisation of Spray-Drying Process Variables for Dry Powder Inhalation (DPI) Formulations of Corticosteroid/Cyclodextrin Inclusion Complexes. Eur. J. Pharm. Biopharm. 2009, 73, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Sarabia-Vallejo, Á.; del Mar Caja, M.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023, 15, 2345. [Google Scholar] [CrossRef]
- Inaba, K.; Wakuda, T.; Uekama, K. Prostaglandins and Their Cyclodextrin Complexes. J. Incl. Phenom. 1984, 2, 467–474. [Google Scholar] [CrossRef]
- Park, J.; Roh, J.; Pan, J.; Kim, Y.H.; Park, C.-K.; Jo, Y.Y. Role of Resolvins in Inflammatory and Neuropathic Pain. Pharmaceuticals 2023, 16, 1366. [Google Scholar] [CrossRef]
- Schönbeck, C.; Gaardahl, K.; Houston, B. Drug Solubilization by Mixtures of Cyclodextrins: Additive and Synergistic Effects. Mol. Pharm. 2019, 16, 648–654. [Google Scholar] [CrossRef]
- Sharma, G.; Kaur, M.; Raza, K.; Thakur, K.; Katare, O.P. Aceclofenac–β-Cyclodextrin-Vesicles: A Dual Carrier Approach for Skin with Enhanced Stability, Efficacy and Dermatokinetic Profile. RSC Adv. 2016, 6, 20713–20727. [Google Scholar] [CrossRef]
- Hamilton, D.A.; Ernst, C.C.; Kramer, W.G.; Madden, D.; Lang, E.; Liao, E.; Lacouture, P.G.; Ramaiya, A.; Carr, D.B. Pharmacokinetics of Diclofenac and Hydroxypropyl-β-Cyclodextrin (HPβCD) Following Administration of Injectable HPβCD-Diclofenac in Subjects With Mild to Moderate Renal Insufficiency or Mild Hepatic Impairment. Clin. Pharmacol. Drug Dev. 2018, 7, 110–122. [Google Scholar] [CrossRef]
- Shinde, U.A.; Joshi, P.N.; Jain, D.D.; Singh, K. Preparation and Evaluation of N-Trimethyl Chitosan Nanoparticles of Flurbiprofen for Ocular Delivery. Curr. Eye Res. 2019, 44, 575–582. [Google Scholar] [CrossRef]
- Volkova, T.; Surov, A.; Terekhova, I. Metal–Organic Frameworks Based on β-Cyclodextrin: Design and Selective Entrapment of Non-Steroidal Anti-Inflammatory Drugs. J. Mater. Sci. 2020, 55, 13193–13205. [Google Scholar] [CrossRef]
- Rein, S.M.T.; Lwin, W.W.; Tuntarawongsa, S.; Phaechamud, T. Meloxicam-Loaded Solvent Exchange-Induced in Situ Forming Beta-Cyclodextrin Gel and Microparticle for Periodontal Pocket Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111275. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Chawla, V.; Chawla, P. Pectin, Beta-Cyclodextrin, Chitosan and Albumin Based Gastroprotective Systems for Piroxicam Maleate: Synthesis, Characterization and Biological Evaluation. Int. J. Biol. Macromol. 2019, 122, 127–136. [Google Scholar] [CrossRef]
- Maestrelli, F.; Mura, P.; Cirri, M.; Mennini, N.; Ghelardini, C.; Di Cesare Mannelli, L. Development and Characterization of Fast Dissolving Tablets of Oxaprozin Based on Hybrid Systems of the Drug with Cyclodextrins and Nanoclays. Int. J. Pharm. 2017, 531, 640–649. [Google Scholar] [CrossRef]
- Mechoulam, R. (Ed.) The Pharmacohistory of Cannabis Sativa. In Cannabinoids as Therapeutic Agents, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 1986; pp. 1–20. ISBN 9780429260667. [Google Scholar]
- Britch, S.C.; Wiley, J.L.; Yu, Z.; Clowers, B.H.; Craft, R.M. Cannabidiol-Δ 9 -Tetrahydrocannabinol Interactions on Acute Pain and Locomotor Activity. Drug Alcohol. Depend. 2017, 175, 187–197. [Google Scholar] [CrossRef]
- Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. Cannabinoids and Cannabinoid Receptors: The Story so Far. iScience 2020, 23, 101301. [Google Scholar] [CrossRef]
- Bloomfield, M.A.P.; Ashok, A.H.; Volkow, N.D.; Howes, O.D. The Effects of Δ9-Tetrahydrocannabinol on the Dopamine System. Nature 2016, 539, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, M.R.B.; Joshaghani, N.; Villa, N.; Badla, O.; Goit, R.; Saddik, S.E.; Dawood, S.N.; Rabih, A.M.; Niaj, A.; Raman, A.; et al. Efficacy, Safety, and Regulation of Cannabidiol on Chronic Pain: A Systematic Review. Cureus 2022, 14, e26913. [Google Scholar] [CrossRef]
- Mlost, J.; Bryk, M.; Starowicz, K. Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. Int. J. Mol. Sci. 2020, 21, 8870. [Google Scholar] [CrossRef]
- Pokkalath, A.S.; Sawant, A.; Sawarkar, S.P. Herbal Medicine for Ocular Diseases: An Age Old Therapy and Its Future Perspective. J. Drug Deliv. Sci. Technol. 2022, 68, 102979. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy-Tomczyk, M.; Typek, R. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as Antioxidant Agents and Their Intervention Abilities in Antioxidant Action. Fitoterapia 2021, 152, 104915. [Google Scholar] [CrossRef] [PubMed]
- Hacke, A.C.M.; Lima, D.; de Costa, F.; Deshmukh, K.; Li, N.; Chow, A.M.; Marques, J.A.; Pereira, R.P.; Kerman, K. Probing the Antioxidant Activity of Δ 9 -Tetrahydrocannabinol and Cannabidiol in Cannabis sativa Extracts. Analyst 2019, 144, 4952–4961. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, S.-L.; Chang, T.-R.; You, Y.; Wang, X.-D.; Wang, L.-W.; Yuan, X.-F.; Tan, M.-H.; Wang, P.-D.; Xu, P.-W.; et al. Inclusion Complexes of Cannabidiol with β-Cyclodextrin and Its Derivative: Physicochemical Properties, Water Solubility, and Antioxidant Activity. J. Mol. Liq. 2021, 334, 116070. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Vellani, V.; Schiano-Moriello, A.; Marini, P.; Magherini, P.C.; Orlando, P.; Di Marzo, V. Plant-Derived Cannabinoids Modulate the Activity of Transient Receptor Potential Channels of Ankyrin Type-1 and Melastatin Type-8. J. Pharmacol. Exp. Ther. 2008, 325, 1007–1015. [Google Scholar] [CrossRef]
- Takeda, S.; Misawa, K.; Yamamoto, I.; Watanabe, K. Cannabidiolic Acid as a Selective Cyclooxygenase-2 Inhibitory Component in Cannabis. Drug Metab. Dispos. 2008, 36, 1917–1921. [Google Scholar] [CrossRef]
- Park, C.; Zuo, J.; Gil, M.-C.; Löbenberg, R.; Lee, B.-J. Investigation of Cannabinoid Acid/Cyclodextrin Inclusion Complex for Improving Physicochemical and Biological Performance. Pharmaceutics 2023, 15, 2533. [Google Scholar] [CrossRef] [PubMed]
- Mannila, J.; Järvinen, T.; Järvinen, K.; Tarvainen, M.; Jarho, P. Effects of RM-β-CD on Sublingual Bioavailability of Δ9-Tetrahydrocannabinol in Rabbits. Eur. J. Pharm. Sci. 2005, 26, 71–77. [Google Scholar] [CrossRef]
- Agabio, R.; Sanna, F.; Lobina, C.; Monduzzi, M.; Nairi, V.; Cugia, F.; Mameli, S.; Pisanu, G.M.; Gessa, G.L.; Melis, M.R. Is 2-Hydroxypropyl-β-cyclodextrin a Suitable Carrier for Central Administration of Δ9 -Tetrahydrocannabinol? Preclinical Evidence. Drug Dev. Res. 2017, 78, 411–419. [Google Scholar] [CrossRef]
- da Silva, A.J.; dos Santos, E.S. Energetic and Thermodynamical Aspects of the Cyclodextrins-Cannabidiol Complex in Aqueous Solution: A Molecular-Dynamics Study. Eur. Biophys. J. 2020, 49, 571–589. [Google Scholar] [CrossRef]
- Jarho, P.; Pate, D.W.; Brenneisen, R.; Järvinen, T. Hydroxypropyl-β-Cyclodextrin and Its Combination with Hydroxypropyl-Methylcellulose Increases Aqueous Solubility of Δ9-Tetrahydrocannabinol. Life Sci. 1998, 63, PL381–PL384. [Google Scholar] [CrossRef]
- Hatziagapiou, K.; Bethanis, K.; Koniari, E.; Christoforides, E.; Nikola, O.; Andreou, A.; Mantzou, A.; Chrousos, G.P.; Kanaka-Gantenbein, C.; Lambrou, G.I. Biophysical Studies and In Vitro Effects of Tumor Cell Lines of Cannabidiol and Its Cyclodextrin Inclusion Complexes. Pharmaceutics 2022, 14, 706. [Google Scholar] [CrossRef] [PubMed]
- Grijó, D.R.; da Rocha, E.M.T.; de Cinque Almeida, V.; Amado, C.A.B.; Olivo, J.E.; da Motta Lima, O.C. Experimental Acute Anti-Inflammatory Activity of Preparations with Complexed Cannabidiol in Carriers. Braz. J. Pharm. Sci. 2023, 59, e221000. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.; Sánchez-Martín, M.-J.; López-Patarroyo, O.; Valiente, M. Novel Cannabinoid Release System: Encapsulation of a Cannabidiol Precursor into γ-Cyclodextrin Metal-Organic Frameworks. J. Drug Deliv. Sci. Technol. 2023, 79, 104085. [Google Scholar] [CrossRef]
- De Medeiros Ramalho, Í.M.; Pereira, D.T.; Galvão, G.B.L.; Freire, D.T.; Amaral-Machado, L.; do Nascimento Alencar, É.; do Egito, E.S.T. Current Trends on Cannabidiol Delivery Systems: Where Are We and Where Are We Going? Expert Opin. Drug Deliv. 2021, 18, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
- Mannila, J.; Järvinen, T.; Järvinen, K.; Jarho, P. Precipitation Complexation Method Produces Cannabidiol/β-Cyclodextrin Inclusion Complex Suitable for Sublingual Administration of Cannabidiol. J. Pharm. Sci. 2007, 96, 312–319. [Google Scholar] [CrossRef]
- Chen, L.; Yang, W.; Gao, C.; Liao, X.; Yang, J.; Yang, B. The Complexes of Cannabidiol Mediated by Bridged Cyclodextrins Dimers with High Solubilization, in Vitro Antioxidant Activity and Cytotoxicity. J. Mol. Liq. 2022, 345, 117017. [Google Scholar] [CrossRef]
- Hossain, K.R.; Alghalayini, A.; Valenzuela, S.M. Current Challenges and Opportunities for Improved Cannabidiol Solubility. Int. J. Mol. Sci. 2023, 24, 14514. [Google Scholar] [CrossRef]
- Astruc-Diaz, F.; Mcdaniel, S.W.; Xu, J.J.; Parola, S.; Brown, D.L.; Naguib, M.; Diaz, P. In Vivo Efficacy of Enabling Formulations Based on Hydroxypropyl-β-Cyclodextrins, Micellar Preparation, and Liposomes for the Lipophilic Cannabinoid CB2 Agonist, MDA7. J. Pharm. Sci. 2013, 102, 352–364. [Google Scholar] [CrossRef]
- Araújo-Filho, H.G.; Pereira, E.W.M.; Rezende, M.M.; Menezes, P.P.; Araújo, A.A.S.; Barreto, R.S.S.; Martins, A.O.B.P.B.; Albuquerque, T.R.; Silva, B.A.F.; Alcantara, I.S.; et al. D-Limonene Exhibits Superior Antihyperalgesic Effects in a β-Cyclodextrin-Complexed Form in Chronic Musculoskeletal Pain Reducing Fos Protein Expression on Spinal Cord in Mice. Neuroscience 2017, 358, 158–169. [Google Scholar] [CrossRef]
- Sut, S.; Maggi, F.; Nicoletti, M.; Baldan, V.; Dall’Acqua, S. New Drugs from Old Natural Compounds: Scarcely Investigated Sesquiterpenes as New Possible Therapeutic Agents. Curr. Med. Chem. 2018, 25, 1241–1258. [Google Scholar] [CrossRef]
- Quintans-Júnior, L.J.; Araújo, A.A.S.; Brito, R.G.; Santos, P.L.; Quintans, J.S.S.; Menezes, P.P.; Serafini, M.R.; Silva, G.F.; Carvalho, F.M.S.; Brogden, N.K.; et al. β-Caryophyllene, a Dietary Cannabinoid, Complexed with β-Cyclodextrin Produced Anti-Hyperalgesic Effect Involving the Inhibition of Fos Expression in Superficial Dorsal Horn. Life Sci. 2016, 149, 34–41. [Google Scholar] [CrossRef]
- Santos, P.S.; Oliveira, T.C.; Júnior, L.M.R.; Figueiras, A.; Nunes, L.C.C. β-Caryophyllene Delivery Systems: Enhancing the Oral Pharmacokinetic and Stability. Curr. Pharm. Des. 2018, 24, 3440–3453. [Google Scholar] [CrossRef]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef]
- Eeswara, A.; Pacheco-Spiewak, A.; Jergova, S.; Sagen, J. Combined Non-Psychoactive Cannabis Components Cannabidiol and β-Caryophyllene Reduce Chronic Pain via CB1 Interaction in a Rat Spinal Cord Injury Model. PLoS ONE 2023, 18, e0282920. [Google Scholar] [CrossRef]
- Ahmad, Z.; Jain, S.K.; Mishra, S.K. Beta-caryophyllene Attenuates Experimental Hepatocellular Carcinoma through Downregulation of Oxidative Stress and Inflammation. J. Biochem. Mol. Toxicol. 2024, 38, e23850. [Google Scholar] [CrossRef]
- Espinosa-Juárez, J.V.; Arrieta, J.; Briones-Aranda, A.; Cruz-Antonio, L.; López-Lorenzo, Y.; Sánchez-Mendoza, M.E. Synergistic Antinociceptive Effect of β-Caryophyllene Oxide in Combination with Paracetamol, and the Corresponding Gastroprotective Activity. Biomedicines 2024, 12, 1037. [Google Scholar] [CrossRef]
- Pina, L.T.S.; Rabelo, T.K.; Trindade, G.G.G.; Almeida, I.K.S.; Oliveira, M.A.; dos Santos, P.L.; Souza, D.S.; de Menezes-Filho, J.E.R.; de Vasconcelos, C.M.L.; Santos, S.L.; et al. γ-Terpinene Complexed with β-Cyclodextrin Attenuates Spinal Neuroactivity in Animals with Cancer Pain by Ca2+ Channel Block. J. Pharm. Pharmacol. 2022, 74, 1629–1639. [Google Scholar] [CrossRef]
- Pina, L.T.S.; Rabelo, T.K.; Borges, L.P.; Gonçalves, V.S.; Silva, A.S.; Oliveira, M.A.; Quintans, J.S.; Quintans Júnior, L.J.; Scotti, L.; Scotti, M.T.; et al. Antihyperalgesic Effect of γ-Terpinene Complexed in β-Cyclodextrin on Neuropathic Pain Model Induced by Tumor Cells. Int. J. Pharm. 2024, 662, 124538. [Google Scholar] [CrossRef]
- Hazekamp, A.; Verpoorte, R. Structure Elucidation of the Tetrahydrocannabinol Complex with Randomly Methylated β-Cyclodextrin. Eur. J. Pharm. Sci. 2006, 29, 340–347. [Google Scholar] [CrossRef]
- Dhiman, P.; Bhatia, M. Pharmaceutical Applications of Cyclodextrins and Their Derivatives. J. Incl. Phenom. Macrocycl. Chem. 2020, 98, 171–186. [Google Scholar] [CrossRef]
Modified CD | Key Properties | Common Applications | Regulatory Status | Ref. |
---|---|---|---|---|
HP-β-CD |
|
|
| [35] |
RM-β-CD |
|
|
| [36] |
SBE-β-CD |
|
|
| [35] |
CM-β-CD |
|
|
| [37] |
Ac-β-CD |
|
|
| [38] |
Class | Solubility | Permeability | Oral Absorption Pattern | Limitation in Oral Absorption |
---|---|---|---|---|
I | High | High | Good absorption | Gastric emptying |
II | Low | High | Variable | Dissolution |
III | High | Low | Variable | Permeability |
IV | Low | Low | Low absorption | Case-by-case |
Method | Description | Advantages | Applications | Ref. |
---|---|---|---|---|
Co-precipitation |
|
|
| [27,50] |
Kneading |
|
|
| [27,50] |
Supercritical Carbon Dioxide |
|
|
| [51,52] |
Grinding |
|
|
| [53,54] |
Microwave Irradiation |
|
|
| [53,54] |
Spray Drying |
|
|
| [51,55] |
Freeze Drying |
|
|
| [27,51] |
CD Type | APIs | Formulation | Therapeutic Class | Ref. |
---|---|---|---|---|
ᾳ-CD | PGE1 | Intravenous | Pain Mediator | [17,18] |
β-CD | Aceclofenac | Oral | NSAID | [17,60] |
β-CD | Dexamethasone | Oral | Corticosteroid | [17,18] |
β-CD | Diclofenac | Parental, ocular | NSAID | [17,61] |
β-CD | Flurbiprofen | Buccal | NSAID | [17,62] |
β-CD | Ibuprofen | Oral | NSAID | [17,63] |
β-CD | Meloxicam | Oral, rectal | NSAID | [17,64] |
β-CD | Methyl salicylate | Dermal | Analgesic; AI | [17,18] |
β-CD | Nimesulide | Oral | NSAID | [17,18] |
β-CD | Paracetamol | Oral, buccal | Analgesic; AP | [17,18] |
β-CD | PGE2 | Sublingual | Pain Mediator | [17,18] |
β-CD | Piroxicam | Oral | NSAID | [17,65] |
β-CD | Rofecoxib | Oral | NSAID | [17,18] |
β-CD | Tiaprofenic acid | Oral | NSAID | [17,18] |
γ-CD | Curcumin extract | Oral | NAI | [17,18] |
HP-β-CD | Diclofenac | Parenteral, ocular | NSAID | [17,18] |
HP-β-CD | Flurbiprofen | Buccal | NSAID | [17,18] |
HP-β-CD | Indomethacin | Ocular | NSAID | [17,18] |
HP-β-CD | Paracetamol | Parenteral, buccal | Analgesic; AP | [17,18] |
HP-γ-CD | Diclofenac | Ocular | NSAID | [17,18] |
Inclusion Complex | Characterization Method | Experimental Model | Potential Formulation | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
DSC | TGA | FTIR | XRD | SEM | NMR | MD | ||||
β-CD/CBD | ✓ | ✓ | ✓ | ✓ | ✓ |
| Oral | [85] | ||
β-CD/BCP | ✓ | ✓ | ✓ | ✓ | ✓ |
| Oral | [94] | ||
β-CD/γ-TPN | ✓ |
| Oral | [100] | ||||||
γ-CD/MOFs | ✓ | ✓ | ✓ | ✓ | ✓ |
| Oral | [86] | ||
RM-β-CD/THC | ✓ | ✓ |
| Oral | [102] | |||||
RM-β-CD/THC |
| Sublingual | [80] | |||||||
M-β-CD/THCA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Oral | [79] | |
M-β-CD/CBDA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Oral | [79] | |
HP-β-CD/CBD | ✓ | ✓ | ✓ | ✓ | ✓ |
| Oral | [84] | ||
HP-β-CD/THC | ✓ |
| Intracerebroventricular | [81] | ||||||
HP-β-CD/MDA7 | ✓ | ✓ | ✓ |
| Intravenous | [91] | ||||
HP-β-CD/LIM | ✓ | ✓ | ✓ |
| Oral | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.; Loureiro, R.; Cabral-Marques, H. Enhancing Cannabinoid Bioavailability in Pain Management: The Role of Cyclodextrins. Molecules 2024, 29, 5340. https://doi.org/10.3390/molecules29225340
Ribeiro A, Loureiro R, Cabral-Marques H. Enhancing Cannabinoid Bioavailability in Pain Management: The Role of Cyclodextrins. Molecules. 2024; 29(22):5340. https://doi.org/10.3390/molecules29225340
Chicago/Turabian StyleRibeiro, Adriana, Rui Loureiro, and Helena Cabral-Marques. 2024. "Enhancing Cannabinoid Bioavailability in Pain Management: The Role of Cyclodextrins" Molecules 29, no. 22: 5340. https://doi.org/10.3390/molecules29225340
APA StyleRibeiro, A., Loureiro, R., & Cabral-Marques, H. (2024). Enhancing Cannabinoid Bioavailability in Pain Management: The Role of Cyclodextrins. Molecules, 29(22), 5340. https://doi.org/10.3390/molecules29225340