Ti3+ Self-Doping of TiO2 Boosts Its Photocatalytic Performance: A Synergistic Mechanism
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Experiment
3.1. Materials
3.2. Synthesis of TiO2
3.3. Synthesis of B-TiO2
3.4. Analytical Test Method
3.5. Photocatalytic Performance Test
3.6. Theoretical Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, D.S.; Yi, H.; Lai, C.; Liu, X.G.; Huo, X.Q.; An, Z.W.; Li, L.; Fu, Y.K.; Li, B.S.; Zhang, M.M.; et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef] [PubMed]
- Al-Tohamy, R.; Ali, S.S.; Li, F.H.; Okasha, K.M.; Mahmoud, Y.A.; Elsamahy, T.; Jiao, H.X.; Fu, Y.Y.; Sun, J.Z. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhou, C.Y.; Ma, Z.B.; Yang, X.M. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Ejraei, A.; Aroon, M.A.; Saravani, A.Z. Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes. J. Water Process Eng. 2019, 28, 45–53. [Google Scholar] [CrossRef]
- Nam, Y.; Lim, J.H.; Ko, K.C.; Lee, J.Y. Photocatalytic activity of TiO2 nanoparticles: A theoretical aspect. J. Mater. Chem. A 2019, 7, 13833–13859. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Aziz, A.A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.D. Performance evaluation of dye wastewater treatment technologies: A review. JECE 2023, 11, 2213–3437. [Google Scholar] [CrossRef]
- Liu, H.X.; Zhang, L.N.; Li, T.D. A Study of Controllable Synthesis and Formation Mechanism on Flower-Like TiO2 with Spherical Structure. Crystals 2018, 8, 466. [Google Scholar] [CrossRef]
- Anand, A.; Aneggi, E.; Boaretti, C.; Lorenzetti, A.; Trovarelli, A.; Modesti, M.; Roso, M. Boosting the photocatalytic performance of PAN-TiO2 nanostructured membranes by mechanosynthesis. JECE 2024, 12, 111595. [Google Scholar] [CrossRef]
- Singh, N.; Song, Y.; Gutiérrez, O.Y.; Camaioni, D.M.; Campbell, C.T.; Lercher, J.A. Electrocatalytic Hydrogenation of Phenol over Platinum and Rhodium: Unexpected Temperature Effects Resolved. ACS Catal. 2016, 6, 7466–7470. [Google Scholar] [CrossRef]
- Saensook, S.; Sirisuk, A. A factorial experimental design approach to obtain defect-rich black TiO2 for photocatalytic dye degradation. JWPE 2022, 45, 102495. [Google Scholar] [CrossRef]
- Yamagishi, T.; Leite, J.; Ueda, S.; Yamaguchi, F.; Suwa, Y. Simultaneous Removal of phenol and Ammonia by an activated sludge process with cross-flow filtration. Water Res. 2001, 35, 3089–3096. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Yu, S.; Liu, J.P.; Zhang, Y.M.; Wang, Y.C.; Yu, J.Y.; Yuan, M.; Zhang, P.C.; Liu, W.; Zhang, J.X. C, F co-doping Ag/TiO2 with visible light photocatalytic performance toward degrading Rhodamine B. Environ. Res. 2023, 232, 116311. [Google Scholar] [CrossRef] [PubMed]
- Armaković, S.J.; Savanović, M.M.; Armaković, S. Spray-Deposited TiO2 Layers on Aluminum Foil for Sustainable Water Remediation. Crystals 2024, 14, 875. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.H.; Lee, C.S. Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification. Appl. Catal. B 2020, 269, 118735. [Google Scholar] [CrossRef]
- Pol, R.; Guerrero, M.; Lecina, E.G.; Altube, A.; Rossinyol, E.; Garroni, S.; Baró, M.D.; Pons, J.; Sort, J.; Pellicer, E. Pt- and (Ni/Pt)-doped TiO2 nanophotocatalysts: A smart approach for sustainable degradation of Rhodamine B dye. Appl. Catal. B 2016, 181, 270–278. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- Huang, W.H.; Su, W.N.; Chen, C.L.; Lin, C.J.; Haw, S.C.; Lee, J.F.; Hwang, B.J. Structural evolution and Au nanoparticles enhanced photocatalytic activity of sea-urchin-like TiO2 microspheres: An X-ray absorption spectroscopy study. Appl. Surf. Sci. 2021, 562, 150127. [Google Scholar] [CrossRef]
- Mao, C.Y.; Zuo, F.; Hou, Y.; Bu, X.H.; Feng, P.Y. In Situ Preparation of a Ti3+ Self-Doped TiO2 Film with Enhanced Activity as Photoanode by N2H4 Reduction. Angew. Chem. Int. Ed. 2014, 53, 10485. [Google Scholar] [CrossRef]
- Liu, R.J.; Yang, F.; Xie, Y.L.; Yu, Y. Visible-light responsive boron and nitrogen codoped anatase TiO2 with exposed {0 0 1} facet: Calculation and experiment. Appl. Surf. Sci. 2019, 466, 568–577. [Google Scholar] [CrossRef]
- Shafiee, A.; Aibaghi, B.; Carrier, A.J.; Ehsan, M.F.; Nganou, C.; Zhang, X.; Oakes, K.D. Rapid photodegradation mechanism enabled by broad-spectrum absorbing black anatase and reduced graphene oxide nanocomposites. Appl. Surf. Sci. 2022, 575, 151718. [Google Scholar] [CrossRef]
- Rajaraman, T.S.; Parikh, S.P.; Gandhi, V.G. Black TiO2: A review of its properties and conflicting trends. Chem. Eng. J. 2020, 389, 1385–8947. [Google Scholar] [CrossRef]
- Huang, H.M.; Zhang, T.T.; Cai, X.N.; Guo, Z.J.; Fan, S.L.; Zhang, Y.J.; Lin, C.W.; Gan, T.; Hu, H.Y.; Huang, Z.Q. In Situ One-Pot Synthesis of C-Decorated and Cl-Doped Sea-Urchin-like Rutile Titanium Dioxide with Highly Efficient Visible-Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 2021, 13, 60337–60350. [Google Scholar] [CrossRef] [PubMed]
- Andronic, L.; Enesca, A. Black TiO2 Synthesis by Chemical Reduction Methods for Photocatalysis Applications. Front. Chem. 2020, 8, 2296–2646. [Google Scholar] [CrossRef] [PubMed]
- Selcuk, S.; Zhao, X.H.; Selloni, A. Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nat. Mater. 2018, 17, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, S.W.; Yu, Y.G.; Tian, H.R.; Zhao, Y.L.; Ren, J.C.; Huang, C.; Bian, H.D.; Huang, M.Y.; An, L.; et al. Hydrogen-Location-Sensitive Modulation of the Redox Reactivity for Oxygen-Deficient TiO2. J. Am. Chem. Soc. 2019, 141, 8407–8411. [Google Scholar] [CrossRef]
- Liccardo, L.; Bordin, M.; Sheverdyaeva, P.M.; Belli, M.; Moras, P.; Vomiero, A.; Moretti, E. Surface Defect Engineering in Colored TiO2 Hollow Spheres Toward Efficient Photocatalysis. Adv. Funct. Mater. 2023, 33, 2212486. [Google Scholar] [CrossRef]
- Kim, S.; Cho, Y.; Rhee, R.; Park, J.H. Black TiO2: What are exact functions of disorder layer. Carbon Energy 2020, 2, 44–53. [Google Scholar] [CrossRef]
- Ren, R.; Wen, Z.H.; Cui, S.M.; Hou, Y.; Guo, X.R.; Chen, J.H. Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2. Sci. Rep. 2015, 5, 10714. [Google Scholar] [CrossRef]
- Xia, T.; Chen, X.B. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 2013, 1, 2983–2989. [Google Scholar] [CrossRef]
- Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C.L.; Psaro, R.; Santo, V.D. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603. [Google Scholar] [CrossRef]
- Yin, H.Y.; Wang, X.L.; Wang, L.; QLin, N.; Zhao, H.T. Self-doped TiO2 hierarchical hollow spheres with enhanced visible-light photocatalytic activity. J. Alloys Compd. 2015, 640, 68–74. [Google Scholar] [CrossRef]
- Wang, G.M.; Wang, H.Y.; Ling, Y.C.; Tang, Y.C.; Yang, X.Y.; Fitzmorris, R.C.; Wang, C.C.; Zhang, J.Z.; Li, Y. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11, 3026–3033. [Google Scholar] [CrossRef]
- Li, J.; Wu, E.H.; Hou, J.; Huang, P.; Xu, Z.; Jiang, Y.; Liu, Q.S.; Zhong, Y.Q. A facile method for the preparation of black TiO2 by Al reduction of TiO2 and their visible light photocatalytic activity. RSC Adv. 2020, 10, 34775–34780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Liu, Q.R.; He, H.; Shi, F.; Huang, G.X.; Xing, B.L.; Jia, J.B.; Zhang, C.X. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B. Carbon 2019, 152, 284–294. [Google Scholar] [CrossRef]
- Wu, Y.C.; Liu, Z.M.; Li, Y.; Chen, J.T.; Zhu, X.X.; Na, P. Construction of 2D-2D TiO2 nanosheet/layered WS2 heterojunctions with enhanced visible-light-responsive photocatalytic activity. Chin. J. Catal. 2019, 40, 60–69. [Google Scholar] [CrossRef]
- Hu, L.M.; Yan, J.T.; Wang, C.L.; Chai, B.; Li, J.F. Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chin. J. Catal. 2019, 40, 458–469. [Google Scholar] [CrossRef]
- Phongamwong, T.; Barrabés, N.; Donphai, W.; Witoon, T.; Rupprechter, G.; Chareonpanich, M. Chlorophyll-modified Au25(SR)18-functionalized TiO2 for photocatalytic degradation of rhodamine B. Appl. Catal. B Environ. 2023, 325, 122336. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, Y.; Yu, H.; Yu, K.; Yu, H.B. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance. J. Mater. Sci. Technol. 2022, 106, 139–146. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, L.H.; Tan, X.Y.; Li, X.; Chen, X.B. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 2017, 62, 431–441. [Google Scholar] [CrossRef]
- Wu, C.Y.; Gao, Z.G.; Gao, S.M.; Wang, Q.Y.; Xu, H.; Wang, Z.Y.; Huang, B.B. Ying Dai, Ti3+ self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation. J. Energy Chem. 2016, 25, 726–733. [Google Scholar] [CrossRef]
- Bi, Q.Y.; Song, E.H.; Chen, J.C.; Riaz, M.S.; Zhu, M.H.; Liu, J.J.; Han, Y.F.; Huang, F.Q. Nano gold coupled black titania composites with enhanced surface plasma properties for efficient photocatalytic alkyne reduction. Appl. Catal. B 2022, 309, 121222. [Google Scholar] [CrossRef]
- Yin, G.H.; Huang, X.Y.; Chen, T.Y.; Zhao, W.; Bi, Q.Y.; Xu, J.; Han, Y.F.; Huang, F.Q. Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions: Preparation, Characterization, and Reaction Mechanism of CO2 Reduction. ACS Catal. 2018, 8, 1009–1017. [Google Scholar] [CrossRef]
- Lü, X.J.; Chen, A.P.; Luo, Y.K.; Lu, P.; Dai, Y.M.; Enriquez, E.; Dowden, P.; Xu, H.W.; Kotula, P.G.; Azad, A.K.; et al. Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2. Nano Lett. 2016, 16, 5751–5755. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Wang, R.C.; Wei, Q.L.; Wang, Y.X.; Hong, A.; Feng, P.Y.; Zhao, D.Y. Stable Ti3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angew. Chem. Int. Ed. 2020, 32, 17829–17836. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
Samples | a = b | c | α = β = γ | FWHM (2θ) |
---|---|---|---|---|
TiO2 | 3.778 | 9.495 | 90° | 0.620 |
B-TiO2-200 | 3.782 | 9.498 | 90° | 0.628 |
B-TiO2-300 | 3.783 | 9.499 | 90° | 0.636 |
B-TiO2-400 | 3.781 | 9.503 | 90° | 0.697 |
B-TiO2-500 | 3.783 | 9.504 | 90° | 0.711 |
Specimens | BET (m2/g) | Photocatalytic Degradation | Efficiency | Literatures | |
---|---|---|---|---|---|
1 | B-TiO2-300 | 69.9 | RhB (20 mg/L) | 20 mg catalyst, 20 min, 98.6% | this text |
2 | P25 | 46.7 | RhB (20 mg/L) | 20 mg catalyst, 20 min, 68.6% | this text |
3 | The reduced TiO2 nanoparticles | 35.3 | RhB (20 mg/L) | 100 mg catalyst, 300 min, Approximately 80% | [31] |
4 | Ti3+-doped TiO2 | 49.4 | MB (10 mg/L) | 30 mg catalyst, 20 min, 97.2% | [21] |
5 | Black TiO2 | 42.4 | MB (10 mg/L) | 400 mg catalyst, 20 min, 82.2% | [23] |
6 | Ti3+ self-doped TiO2 | 37.7 | RhB (10 mg/L) | 50 mg catalyst, 30 min RhB catalyst 100% | [32] |
7 | Ti3+ self-doped TiO2 | 54.4 | RhB (10 mg/L) | 70 mg catalyst, Approximately 99% | [33] |
8 | CTP/TiO2 | 49.4 | RhB (10 mg/L) | 100 mg catalyst, 6 h 87.7% | [34] |
9 | TNS/WS2-0.10 | 76.1 | RhB (20 mg/L) | 20 mg catalyst, 90 min 100% | [35] |
10 | TiO2/g-C3N4/RGO-2 | 74.05 | RhB (10 mg/L) | 50 mg catalyst, 60 min 99.1% | [36] |
11 | Chl-Au25/P25 (uc) | - | RhB (30 mg/L) | 30 mg catalyst, 50 min 100% | [37] |
12 | Ti/TiO2(1/10) | - | RhB(50 mg/L) | 50 mg catalyst, 180 min 100% | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, M.; Han, K.; Liang, Y.; Zhao, X.; Han, L.; Wang, J.; Wang, S.; Li, Y. Ti3+ Self-Doping of TiO2 Boosts Its Photocatalytic Performance: A Synergistic Mechanism. Molecules 2024, 29, 5385. https://doi.org/10.3390/molecules29225385
Zhang M, Liu M, Han K, Liang Y, Zhao X, Han L, Wang J, Wang S, Li Y. Ti3+ Self-Doping of TiO2 Boosts Its Photocatalytic Performance: A Synergistic Mechanism. Molecules. 2024; 29(22):5385. https://doi.org/10.3390/molecules29225385
Chicago/Turabian StyleZhang, Mingqing, Manyu Liu, Keyi Han, Yingbin Liang, Xinyu Zhao, Lin Han, Jinnong Wang, Shifeng Wang, and Yong Li. 2024. "Ti3+ Self-Doping of TiO2 Boosts Its Photocatalytic Performance: A Synergistic Mechanism" Molecules 29, no. 22: 5385. https://doi.org/10.3390/molecules29225385
APA StyleZhang, M., Liu, M., Han, K., Liang, Y., Zhao, X., Han, L., Wang, J., Wang, S., & Li, Y. (2024). Ti3+ Self-Doping of TiO2 Boosts Its Photocatalytic Performance: A Synergistic Mechanism. Molecules, 29(22), 5385. https://doi.org/10.3390/molecules29225385