Enhanced and Sustainable Removal of Indoor Formaldehyde by Naturally Porous Bamboo Activated Carbon Supported with MnOx: Synergistic Effect of Adsorption and Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. XPS
2.3. Redox Properties
2.4. Evaluation of Performance in HCHO Removal
2.4.1. Adsorption Capacity
2.4.2. Catalytic Oxidation Performance
2.5. Mechanism of HCHO Oxidation
3. Materials and Methods
3.1. Materials
3.2. Catalyst Synthesis
3.3. Catalyst Characterization
3.4. Catalytic Activity and Adsorption Performance for HCHO Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nie, L.; Yu, J.; Jaroniec, M.; Tao, F. Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 2016, 6, 3649–3669. [Google Scholar] [CrossRef]
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef]
- Na, C.-J.; Yoo, M.-J.; Tsang, D.C.W.; Kim, H.W.; Kim, K.-H. High-performance materials for effective sorptive removal of formaldehyde in air. J. Hazard. Mater. 2019, 366, 452–465. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Huang, M.; Tang, H.; Zhang, J.; Wang, G.; Wang, R. Metal organic frameworks derived manganese dioxide catalyst with abundant chemisorbed oxygen and defects for the efficient removal of gaseous formaldehyde at room temperature. Appl. Surf. Sci. 2021, 565, 150445. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, X.; Qin, R.; Zeng, Y.; Qu, R.; Zheng, C.; Tu, X. Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Appl. Catal. B 2015, 170, 293–300. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Wang, L.; Zhao, X.; Hua, Z.; Chen, Y.; Li, X.; Gu, X. Enhanced catalytic decomposition of formaldehyde in low temperature and dry environment over silicate-decorated titania supported sodium-stabilized platinum catalyst. Appl. Catal. B 2020, 277, 119216. [Google Scholar] [CrossRef]
- Panyametheekul, S.; Rattanapun, T.; Morris, J.; Ongwandee, M. Foliage houseplant responses to low formaldehyde levels. Build. Environ. 2019, 147, 67–76. [Google Scholar] [CrossRef]
- Rong, S.; He, T.; Zhang, P. Self-assembly of MnO2 nanostructures into high purity three-dimensional framework for high efficiency formaldehyde mineralization. Appl. Catal. B 2020, 267, 118375. [Google Scholar] [CrossRef]
- GB/T 18883-2022; Standards for Indoor Air Quality. Standardization Administration of the People’s Republic of China: Beijing, China, 2022.
- Su, C.; Liu, K.; Zhu, J.; Chen, H.; Li, H.; Zeng, Z.; Li, L. Adsorption effect of nitrogen, sulfur or phosphorus surface functional group on formaldehyde at ambient temperature: Experiments associated with calculations. Chem. Eng. J. 2020, 393, 124729. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sust. Energ. Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Zheng, T.; Li, N.; Wang, P.; Abulikemu, G. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Appl. Surf. Sci. 2010, 256, 3309–3315. [Google Scholar] [CrossRef]
- Ge, L.; Zhao, C.; Zuo, M.; Tang, J.; Ye, W.; Wang, X.; Zhang, Y.; Xu, C. Review on the preparation of high value-added carbon materials from biomass. J. Anal. Appl. Pyrol. 2022, 168, 105747. [Google Scholar] [CrossRef]
- Deng, Z.; Deng, Q.; Wang, L.; Xiang, P.; Lin, J.; Murugadoss, V.; Song, G. Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas. Adv. Compos. Hybrid Mater. 2021, 4, 751–760. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.-H.; Kwon, E.E.; Boukhvalov, D.W. Reactive adsorption and catalytic oxidation of gaseous formaldehyde at room temperature by a synergistic copper-magnesium bimetal oxide biochar composite. Chem. Eng. J. 2022, 433, 133497. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Xu, H.; Yan, N.; Qu, Z.; Liu, W.; Mei, J.; Huang, W.; Zhao, S. Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: A critical review. Environ. Sci. Technol. 2017, 51, 8879–8892. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Li, J.; Zhang, M.; Li, K.; Zheng, Y.; Ji, H. Mn/HZSM-5 catalyst with high content of Mn4+ and surface hydroxyls for formaldehyde oxidation at room temperature. Appl. Surf. Sci. 2023, 637, 157917. [Google Scholar] [CrossRef]
- Tian, H.; He, J.; Liu, L.; Wang, D.; Hao, Z.; Ma, C. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous Mesoporous Mater. 2012, 151, 397–402. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313. [Google Scholar] [CrossRef]
- Peng, S.; Yang, X.; Strong, J.; Sarkar, B.; Jiang, Q.; Peng, F.; Liu, D.; Wang, H. MnO2-decorated N-doped carbon nanotube with boosted activity for low-temperature oxidation of formaldehyde. J. Hazard. Mater. 2020, 396, 122750. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhou, X.; Guo, Y.; Li, Y.; Yan, C.; Han, Q.; Zhang, L.; Zhang, W. Designing of 3D MnO2-Graphene Catalyst on Sponge for Abatement Temperature Removal of Formaldehyde. J. Hazard. Mater. 2023, 441, 129836. [Google Scholar] [CrossRef]
- Liao, P.; Yuan, S.; Xie, W.; Zhang, W.; Tong, M.; Wang, K. Adsorption of nitrogen-heterocyclic compounds on bamboo charcoal: Kinetics, thermodynamics, and microwave regeneration. J. Colloid Interface Sci. 2013, 390, 189–195. [Google Scholar] [CrossRef]
- Hu, X.; Dai, L.; Ma, Q.; Xu, J.; Ma, J.; Liu, X. One-pot synthesis of iron oxides decorated bamboo hydrochar for lead and copper flash removal. Ind. Crop. Prod. 2022, 187, 115396. [Google Scholar] [CrossRef]
- Jing, W.; Yang, C.; Luo, S.; Lin, X.; Tang, M.; Zheng, R.; Lian, D.; Luo, X. One-pot method to synthesize silver nanoparticle-modified bamboo-based carbon aerogels for formaldehyde removal. Polymers 2022, 14, 860. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Feng, X.; Cao, C.; Xue, H.; Luo, Y.; Qian, Q.; Zeng, L.; Huang, B.; Yang, S.; Chen, Q. Novel bamboo-mediated biosynthesis of MnOx for efficient low-temperature propane oxidation. ACS Sustain. Chem. Eng. 2020, 8, 11446–11455. [Google Scholar] [CrossRef]
- Gong, X.L.; Zhao, R.; Peng, M.Q.; Wang, D. Experimental study on NO removal by surface activated bamboo charcoal. Atmos. Pollut. Res. 2019, 10, 474–479. [Google Scholar] [CrossRef]
- Li, J.; Ma, R.; Lu, Y.; Wu, Z.; Liu, R.; Su, M.; Jin, X.; Zhang, R.; Bao, Y.; Chen, Y.; et al. Bamboo-inspired design of a stable and high-efficiency catalytic capillary microreactor for nitroaromatics reduction. Appl. Catal. B 2022, 310, 121297. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Wang, W.; Chen, M.; Li, H.; Lee, S.-c.; Ho, W.; Huang, T.; Cao, J. Oxygen vacancy–engineered δ-MnO/activated carbon for room-temperature catalytic oxidation of formaldehyde. Appl. Catal. B 2020, 278, 119294. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, C.; You, W.; Yu, J. Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J. Mater. Chem. A 2017, 5, 8635–8643. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Zhang, P. Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity. J. Mater. Chem. A 2017, 5, 5719–5725. [Google Scholar] [CrossRef]
- Gao, X.; Liu, S.; Zhang, Y.; Luo, Z.; Cen, K. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO. J. Hazard. Mater. 2011, 188, 58–66. [Google Scholar] [CrossRef]
- Julien, C. Raman spectra of birnessite manganese dioxides. Solid State Ion. 2003, 159, 345–356. [Google Scholar] [CrossRef]
- Shi, M.-M.; Bao, D.; Li, S.-J.; Wulan, B.-R.; Yan, J.-M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124. [Google Scholar] [CrossRef]
- Lee, A.; Yang, K.; Anh, N.; Park, C.; Lee, S.; Lee, T.; Jeong, M. Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 2021, 536, 147990. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; He, J.; Hu, Y.; Tian, H. Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation. Mater. Res. Bull. 2011, 46, 1714–1722. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Jiang, C.; Zhou, P.; Zhang, P.; Yu, J. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl. Catal. B 2017, 204, 147–155. [Google Scholar] [CrossRef]
- Yang, R.; Guo, Z.; Cai, L.; Zhu, R.; Fan, Y.; Zhang, Y.; Han, P.; Zhang, W.; Zhu, X.; Zhao, Q.; et al. Investigation into the phase-activity relationship of MnO2 nanomaterials toward ozone-assisted catalytic oxidation of toluene. Small 2021, 17, 2103052. [Google Scholar] [CrossRef]
- Jeguirim, M.; Belhachemi, M.; Limousy, L.; Bennici, S. Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry—A review. Chem. Eng. J. 2018, 347, 493–504. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.; Li, S.; Wang, Y.; Zhang, J.; Wang, T.; Zeng, G. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst. Appl. Catal. B 2016, 198, 420–430. [Google Scholar] [CrossRef]
- Pan, Y.; You, Y.; Xin, S.; Li, Y.; Fu, G.; Cui, Z.; Men, Y.; Cao, F.; Yu, S.; Goodenough, J.B. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 2017, 139, 4123–4129. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, B.; Yang, J.; Gang, D. Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal. Carbon 2009, 47, 2014–2025. [Google Scholar] [CrossRef]
- Wu, S.; Liu, H.; Huang, Z.; Xu, H.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B 2022, 312, 121387. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, W.; Wang, X.; Zheng, Z.; Zhang, Y.; Wang, H.; Yan, H.; Song, X.; Han, C. Electric-enhanced hydrothermal synthesis of manganese dioxide for the synergistic catalytic of indoor low-concentration formaldehyde at room temperature. Chem. Eng. J. 2020, 401, 125790. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone. Catal. Sci. Technol. 2016, 6, 5841–5847. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Zheng, H.; Fu, T.; Ju, Y.; Wang, Y. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol. Appl. Catal. B 2015, 179, 95–105. [Google Scholar] [CrossRef]
- Cui, D.; Gao, K.; Lu, P.; Yang, H.; Liu, Y.; Xue, D. Mild solution route to mixed-phase MnO2 with enhanced electrochemical capacitance. Funct. Mater. Lett. 2011, 4, 57–60. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, S.; Jiang, H.; Qu, F.; Wu, X. Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 5722–5729. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Wang, S.; Deng, S.; Wang, B.; Yu, G. Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves. Appl. Catal. B 2013, 142, 568–578. [Google Scholar] [CrossRef]
- Li, D.; Yang, G.; Li, P.; Wang, J.; Zhang, P. Promotion of formaldehyde oxidation over Ag catalyst by Fe doped MnOx support at room temperature. Catal. Today 2016, 277, 257–265. [Google Scholar] [CrossRef]
- Du, X.; Li, C.; Zhao, L.; Zhang, J.; Gao, L.; Sheng, J.; Yi, Y.; Chen, J.; Zeng, G. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke. Appl. Catal. B 2018, 232, 37–48. [Google Scholar] [CrossRef]
- Liu, F.; Rong, S.; Zhang, P.; Gao, L. One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature. Appl. Catal. B 2018, 235, 158–167. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Wang, J.; Wang, M. Birnessite-Type Manganese Oxide on Granular Activated Carbon for Formaldehyde Removal at Room Temperature. J. Phys. Chem. C 2016, 120, 24121–24129. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Rong, S.; Wang, H.; Zhang, P. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Appl. Catal. B 2017, 211, 212–221. [Google Scholar] [CrossRef]
- Wang, J.; Yunus, R.; Li, J.; Li, P.; Zhang, P.; Kim, J. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature. Appl. Surf. Sci. 2015, 357, 787–794. [Google Scholar] [CrossRef]
- Cao, X.; Tarr, M.A. Aldehyde and ketone photoproducts from solar-irradiated crude oil–seawater systems determined by electrospray ionization–tandem mass spectrometry. Environ. Sci. Technol. 2017, 51, 11858–11866. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Li, J.; Jiang, C.; Yunus, R.; Kim, J. Room-temperature oxidation of formaldehyde by layered manganese oxide: Effect of water. Environ. Sci. Technol. 2015, 49, 12372–12379. [Google Scholar] [CrossRef]
- Fang, R.; Huang, H.; Ji, J.; He, M.; Feng, Q.; Zhan, Y.; Leung, D.Y.C. Efficient MnOx supported on coconut shell activated carbon for catalytic oxidation of indoor formaldehyde at room temperature. Chem. Eng. J. 2018, 334, 2050–2057. [Google Scholar] [CrossRef]
- Yoon, Y.; Nelson, J. Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life. Am. Ind. Hyg. Assoc. J. 1984, 45, 509–516. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; He, Z.; Wang, P.; Yan, Y.; Ran, J. Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition. Sep. Purif. Technol. 2020, 239, 116517. [Google Scholar] [CrossRef]
- Liu, H.; Yang, B.; Xue, N. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume. J. Hazard. Mater. 2016, 318, 425–432. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Smicro (m2/g) | Smeso (m2/g) | Vt (cm3/g) | Vmicro (cm3/g) | Vmicro/Vt (%) | Dav (nm) |
---|---|---|---|---|---|---|---|
BAC | 1061 | 985 | 41 | 0.48 | 0.39 | 82.1 | — |
BAC@MnOx-1 | 879 | 814 | 47 | 0.42 | 0.33 | 78.5 | 1.00 |
BAC@MnOx-2 | 774 | 701 | 39 | 0.37 | 0.28 | 76.3 | 1.00 |
BAC@MnOx-3 | 760 | 702 | 41 | 0.35 | 0.28 | 79.6 | 0.92 |
BAC@MnOx-4 | 783 | 733 | 36 | 0.35 | 0.29 | 82.6 | 0.89 |
BAC@MnOx-5 | 696 | 632 | 45 | 0.35 | 0.25 | 74.0 | 1.01 |
Sample | Mn 2p3/2 | O 1s | Mn 3s | |||||
---|---|---|---|---|---|---|---|---|
Mn4+ | Mn3+ | Mn3+/Mn4+ a | O’ | Oads | Olatt | Oads/Olatt a | AOS b | |
BAC@MnOx-1 | 46.06 | 53.94 | 1.17 | 24.63 | 48.45 | 26.92 | 1.80 | 3.26 |
BAC@MnOx-2 | 40.74 | 59.26 | 1.45 | 30.43 | 43.53 | 26.04 | 1.67 | 3.35 |
BAC@MnOx-3 | 36.52 | 63.48 | 1.74 | 25.53 | 46.91 | 27.55 | 1.70 | 3.26 |
BAC@MnOx-4 | 23.44 | 76.56 | 3.27 | 30.05 | 46.92 | 23.03 | 2.04 | 3.16 |
BAC@MnOx-5 | 32.97 | 67.03 | 2.03 | 26.03 | 47.95 | 26.01 | 1.84 | 3.35 |
Catalyst | RH (%) | GHSV | Flow Rate (mL/min) | Mc (g) | C0 (mg/m3) | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|
BAC@MnOx-4 | 0 | 60 L/g·h | 200 | 0.2 | 1.4 | η: 97% η17h: 97% | This work |
25 | 60 L/g·h | 200 | 0.2 | 1.4 | η: 98% η25h: 97% | ||
75 | 60 L/g·h | 200 | 0.2 | 1.4 | η: 88% η14h: 83% | ||
40%MnO2/NCNT | 0 | 30 L/g·h | - | 0.2 | 100 ppm | η: 95% | [21] |
3D-MnO2 | 65 | 90 L/g·h | 150 | 0.1 | 110 ppm | η: 50% | [8] |
GLC-MnO2 | 55 | 600 L/g·h | 1000 | 0.1 | 0.5 | η: 92% η10h: 92% | [52] |
MnO2/AC | 45 ± 5% | 120 L/g·h | 1000 | 0.5 | 0.5 | η: 90% η20h: 80% | [53] |
Ce-MnO2 | 58 | 600 L/g·h | 1000 | 0.1 | 500 | η: 52% η6h: 51% | [54] |
MnOx/PET | 0 | 17000·h−1 | 1000 | 0.5 | 0.6 | η: 100% η10h: 65% | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, Y.; Li, S.; Ma, J.; Ma, Q.; Wang, Z.; Wang, J.; Long, K.; Liu, X. Enhanced and Sustainable Removal of Indoor Formaldehyde by Naturally Porous Bamboo Activated Carbon Supported with MnOx: Synergistic Effect of Adsorption and Oxidation. Molecules 2024, 29, 663. https://doi.org/10.3390/molecules29030663
Li Z, Li Y, Li S, Ma J, Ma Q, Wang Z, Wang J, Long K, Liu X. Enhanced and Sustainable Removal of Indoor Formaldehyde by Naturally Porous Bamboo Activated Carbon Supported with MnOx: Synergistic Effect of Adsorption and Oxidation. Molecules. 2024; 29(3):663. https://doi.org/10.3390/molecules29030663
Chicago/Turabian StyleLi, Zhenrui, Yujun Li, Shijie Li, Jianfeng Ma, Qianli Ma, Zhihui Wang, Jiajun Wang, Keying Long, and Xing’e Liu. 2024. "Enhanced and Sustainable Removal of Indoor Formaldehyde by Naturally Porous Bamboo Activated Carbon Supported with MnOx: Synergistic Effect of Adsorption and Oxidation" Molecules 29, no. 3: 663. https://doi.org/10.3390/molecules29030663
APA StyleLi, Z., Li, Y., Li, S., Ma, J., Ma, Q., Wang, Z., Wang, J., Long, K., & Liu, X. (2024). Enhanced and Sustainable Removal of Indoor Formaldehyde by Naturally Porous Bamboo Activated Carbon Supported with MnOx: Synergistic Effect of Adsorption and Oxidation. Molecules, 29(3), 663. https://doi.org/10.3390/molecules29030663