Wheat Bread Enriched with House Cricket Powder (Acheta domesticus L.) as an Alternative Protein Source
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Cricket Powder and Whole Wheat Flour
2.2. Assessment of Quality Parameters of Designed Cricket Bread
2.2.1. Physicochemical Properties
2.2.2. Nutritional Value
2.2.3. Sensory Evaluation
2.2.4. Microbiological Evaluation
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Functional Properties of Cricket Powder and Whole Wheat Flour
pH Measurement
Water Activity (aw) Measurement
Water Holding Capacity (WHC) Measurement
Fat Absorption Capacity (FAC) Measurement
The Colour Measurement
Chemical Composition
- The water content was determined using the gravimetric method;
- The fat content was determined using the Soxhlet method (extraction-weighing method);
- The amino acids profile was determined using LC-MS/MS;
- The protein content was calculated based on the analysis of the content of individual amino acids;
- The fibre content was determined by the enzymatic-weighing method;
- The fatty acids profile was determined using gas chromatography with flame ionisation detection (GC-FID).
3.2.2. Development of the Composition of Bread with the Addition of Cricket Preparation
3.2.3. Physical Parameters of Designed Breads
Density Measurement of Prepared Breads
Hardness Measurement of Prepared Breads
3.2.4. Nutritional Value Assessment of Prepared Breads
3.2.5. The Microbiological Evaluation of Prepared Breads
3.2.6. Sensory Evaluation
3.2.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO Forestry Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 5, 802–823. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef]
- Sogari, G.; Bogueva, D.; Marinova, D. Australian consumers’ response to insects as food. Agriculture 2019, 9, 108. [Google Scholar] [CrossRef]
- Jongema, Y. Worldwide List of Recorded Edible Insects; Department of Entomology, Wageningen University & Research: Wageningen, The Netherlands, 2017; Available online: https://www.wur.nl/upload_mm/8/a/6/0fdfc700-3929-4a74-8b69-f02fd35a1696_Worldwide%20list%20of%20edible%20insects%202017.pdf (accessed on 28 August 2023).
- Orkusz, A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Abro, Z.; Kassie, M.; Tanga, C.; Beesigamukama, D.; Diiro, G. Socio-economic and environmental implications of replacing conventional poultry feed with insect-based feed in Kenya. J. Clean. Prod. 2020, 265, 121871. [Google Scholar] [CrossRef]
- Finke, M.D.; Oonincx, D.G.A.B. Nutrient content of insects. In Insects as Food and Feed: From Production to Consumption; Van Huis, A., Tomberlin, J.K., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; pp. 290–317. [Google Scholar]
- Oonincx, D.G.A.B.; Dierenfeld, E.S. An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 2012, 31, 40–54. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Van der Poel, A.F. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2011, 30, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Cruz-López, S.O.; Escalona-Buendía, H.B.; Román-Guerrero, A.; Domínguez-Soberanes, J.; Alvarez-Cisneros, Y.M. Charactezation of cooked meat models using grasshopper (Sphenarium purpurascens) soluble protein extracted by alkalisation and ultrasound as meat-extender. Food Sci. Anim. Resour. 2022, 42, 536–555. [Google Scholar] [CrossRef] [PubMed]
- van Huis, A.; Rumpold, B.; Maya, C.; Roos, N. Nutritional qualities and enhancement of edible insects. Annu. Rev. Nutr. 2021, 41, 551–576. [Google Scholar] [CrossRef]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the development of edible insect-based foods in Europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2021/882. Available online: https://eur-lex.europa.eu/eli/reg_impl/2021/882/oj (accessed on 20 July 2023).
- Regulation (EU) 2021/1975. Available online: https://eur-lex.europa.eu/eli/reg_impl/2021/1975/oj (accessed on 20 July 2023).
- Regulation (EU) 2022/169. Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/169/oj (accessed on 20 July 2023).
- Regulation (EU) 2022/188. Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/188/oj (accessed on 20 July 2023).
- Regulation (EU) 2023/58. Available online: https://eur-lex.europa.eu/eli/reg_impl/2023/58/oj (accessed on 20 July 2023).
- Fernandez-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vagsholm, I. The house cricket (Acheta domesticus) as a novel food: A risk profile. J. Insects Food Feed. 2019, 5, 137–157. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Kouřimská, L.; Kotrbová, V.; Kulma, M.; Adámková, A.; Mlček, J.; Sabolová, M.; Homolková, D. Attitude of assessors in the Czech Republic to the consumption of house cricket Acheta domestica L.—A Prelim. Study. Czech J. Food Sci. 2020, 38, 72–76. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Fischer, A.R.; Tinchan, P.; Stieger, M.; Steenbekkers, L.P.A.; van Trijp, H.C. Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Qual. Prefer. 2015, 42, 78–89. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Insects as food: Perception and acceptance. Findings from current research. Ernahr. Umsch. 2017, 64, 44–50. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; da Silva Lucas, A.J.; Cadaval, C.L.; Mellado, M.S. Bread enriched with flour from cinereous cockroach (Nauphoeta cinerea). Innov. Food Sci. Emerg. Technol. 2017, 44, 30–35. [Google Scholar] [CrossRef]
- Lucas-González, R.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Effect of drying processes in the chemical, physico-chemical, techno-functional and antioxidant properties of flours obtained from house cricket (Acheta domesticus). Eur. Food Res. Technol. 2019, 245, 1451–1458. [Google Scholar] [CrossRef]
- Mafu, A.; Ketnawa, S.; Phongthai, S.; Schönlechner, R.; Rawdkuen, S. Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods 2022, 11, 2142. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Tiwari, A.; Jha, S.N. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks—An overview. Int. J. Food Stud. 2017, 6, 113–128. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; To, K.V.; Schilling, M.W. Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat Muscle Biol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Gantner, M.; Król, K.; Piotrowska, A.; Sionek, B.; Sadowska, A.; Kulik, K.; Wiącek, M. Adding Mealworm (Tenebrio molitor L.) Powder to Wheat Bread: Effects on Physicochemical, Sensory and Microbiological Qualities of the End-Product. Molecules 2022, 27, 6155. [Google Scholar] [CrossRef]
- Khuenpet, K.; Pakasap, C.; Vatthanakul, S.; Kitthawee, S. Effect of larval-stage mealworm (Tenebrio molitor) powder on qualities of bread. Int. J. Agric. Technol. 2020, 16, 283–296. [Google Scholar]
- Bartkiene, E.; Starkute, V.; Katuskevicius, K.; Laukyte, N.; Fomkinas, M.; Vysniauskas, E.; Kasciukaityte, P.; Radvilavicius, E.; Rokaite, S.; Medonas, D.; et al. The contribution of edible cricket flour to quality parameters and sensory characteristics of wheat bread. Food Sci. Nutr. 2022, 10, 4319–4330. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Bellary, A.N.; Indiramma, A.R.; Prakash, M.; Baskaran, R.; Rastogi, N.K. Anthocyanin infused watermelon rind and its stability during storage. Innov. Food Sci. Emerg. Technol. 2016, 33, 554–562. [Google Scholar] [CrossRef]
- Villarino, C.B.; Jayaena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Crit. Rev. Food Sci. Nutr. 2016, 56, 835–857. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Consumer Acceptance of Bread Enriched with Alternative Proteins. Foods 2020, 9, 933. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, Y.; Zhou, W. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility. Food Chem. 2016, 196, 910–916. [Google Scholar] [CrossRef]
- Ruszkowska, M.; Tańska, M.; Kowalczewski, P.Ł. Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability 2022, 14, 16578. [Google Scholar] [CrossRef]
- Regulation (EU) No. 1924/2006 of the European Parliament and of the Council of 20 December 2011 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:404:0009:0025:En:PDF (accessed on 10 January 2021).
- Wieczorek, M.N.; Kowalczewski, P.Ł.; Drabińska, N.; Różańska, M.B.; Jeleń, H.H. Effect of Cricket Powder Incorporation on the Profile of Volatile Organic Compounds, Free Amino Acids and Sensory Properties of Gluten-Free Bread. Pol. J. Food Nutr. Sci. 2022, 72, 431–442. [Google Scholar] [CrossRef]
- Nowakowski, A.C.; Miller, A.C.; Miller, M.E.; Xiao, H.; Wu, X. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 2022, 62, 3499–3508. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Cruz-Monterrosa, R.G.; Liceaga, A.M. Beyond Human Nutrition of Edible Insects: Health Benefits and Safety Aspects. Insects 2022, 13, 1007. [Google Scholar] [CrossRef]
- Kipkoech, C. Beyond Proteins—Edible Insects as a Source of Dietary Fiber. Polysaccharides 2023, 4, 116–128. [Google Scholar] [CrossRef]
- Borges, M.M.; da Costa, D.V.; Trombete, F.M.; Câmara, A.K.F.I. Edible insects as a sustainable alternative to food products: An insight into quality aspects of reformulated bakery and meat products. Curr. Opin. Food Sci. 2022, 46, 100864. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Malomo, O.; Ogunmoyela, O.A.B.; Oluwajoba, S.O.; Dudu, O.E. Microbiological and nutritional quality of warankashi enriched bread. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 42–68. [Google Scholar]
- Garcia, M.W.; Bregão, A.S.; Parussolo, G.; Bernardi, A.O.; Stefanello, A.; Copetti, M.V. Incidence of spoilage fungi in the air of bakeries with different hygienic status. Int. J. Food Microbiol. 2019, 290, 254–261. [Google Scholar] [CrossRef]
- Deschuyffeleer, N.; Audenaert, K.; Samapundo, S.; Ameye, S.; Eeckhout, M.; Devlieghere, F. Identification and characterization of yeasts causing chalk mould defects on par-baked bread. Food Microbiol. 2011, 28, 1019–1027. [Google Scholar] [CrossRef]
- Belz, M.C.; Mairinger, R.; Zannini, E.; Ryan, L.A.; Cashman, K.D.; Arendt, E.K. The effect of sourdough and calcium propionate on the microbial shelf-life of salt reduced bread. Appl. Microbiol. Biotechnol. 2012, 96, 493–501. [Google Scholar] [CrossRef]
- Garofalo, C.; Zannini, E.; Aquilanti, L.; Silvestri, G.; Fierro, O.; Picariello, G.; Clementi, F. Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. J. Agric. Food Chem. 2012, 60, 7719–7728. [Google Scholar] [CrossRef]
- Dagnas, S.; Membré, J.-M. Predicting and Preventing Mold Spoilage of Food Products. J. Food Prot. 2013, 76, 538–551. [Google Scholar] [CrossRef]
- Giannone, V.; Pitino, I.; Pecorino, B.; Todaro, A.; Spina, A.; Lauro, M.R.; Tomaselli, F.; Restuccia, C. Effects of innovative and conventional sanitizing treatments on the reduction of Saccharomycopsis fibuligera defects on industrial durum wheat bread. Int. J. Food Microbiol. 2016, 235, 71–76. [Google Scholar] [CrossRef]
- Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martis, A.; Córdoba, M.G. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef]
- Quattrini, M.; Liang, N.; Fortin, M.G.; Xiang, S.; Curtis, J.M.; Gänzle, M. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol. 2019, 302, 8–14. [Google Scholar] [CrossRef]
- El Houssni, I.; Khedid, K.; Zahidi, A.; Hassikou, R. The inhibitory effects of lactic acid bacteria isolated from sourdough on the mycotoxigenic fungi growth and mycotoxins from wheat bread. Biocatal. Agric. Biotechnol. 2023, 2023, 102702. [Google Scholar] [CrossRef]
- Dymchenko, A.; Geršl, M.; Gregor, T. Trends in bread waste utilization. Trends Food Sci. Technol. 2023, 132, 93–102. [Google Scholar] [CrossRef]
- Garcia, M.W.; Bernardi, A.O.; Copetti, M.V. The fungal problem in bread production: Insights of causes, consequences, and control methods. Curr. Opin. Food Sci. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Dos Santos, J.L.P.; Bernardi, A.O.; Pozza Morassi, L.L.; Silva, B.S.; Copetti, M.V.; Sant’Ana, A.S. Incidence, populations and diversity of fungi from raw materials, final products and air of processing environment of multigrain whole meal bread. Food Res. Int. 2016, 87, 103–108. [Google Scholar] [CrossRef]
- Caro, I.; Portales, S.; Gómez, M. Microbial characterization of discarded breads. LWT 2023, 173, 114291. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele Składu i Wartości Odżywczej Żywności; PZWL: Warszawa, Poland, 2023. [Google Scholar]
- ISO 4833-1:2013-12/A1:2022-06; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/53728.html (accessed on 5 August 2022).
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/38275.html (accessed on 5 August 2022).
- EN ISO 4121:2003; Sensory Analysis. Guidelines for the Use of Quantitative Response Scales. ISO: Geneva, Switzerland, 2003.
- EN ISO 8586:2012; Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- EN ISO 8589:2010; Sensory Analysis. General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2010.
Nutrients Content | Cricket Protein Powder | Whole Wheat Flour |
---|---|---|
Fat [g/100 g] | 16.29 ± 3.10 | 1.16 ± 0.23 |
Protein [g/100 g] | 63.00 ± 7.56 | 13.5 ± 1.62 |
Carbohydrates [g/100 g] | 9.83 ± 0.95 | 66.04 ± 1.43 |
Fibre [g/100 g] | 7.80 ± 1.20 | 9.5 ± 1.5 |
Physicochemical Properties | Cricket Powder | Whole Wheat Flour |
---|---|---|
pH | 6.90 ± 0.02 | 6.77 ± 0.13 |
Fat absorption capacity [g oil/g powder] | 0.14 ± 0.12 | 0.27 ± 0.05 |
Water holding capacity [g water/g powder] | 2.52 ± 0.54 b | 1.52 ± 0.14 a |
aw | 0.18 ± 0.00 a | 0.43 ± 0.00 b |
L* | 35.14 ± 0.53 a | 81.58 ± 1.34 b |
a* | 4.56 ± 0.10 a | 4.74 ± 0.48 b |
b* | 25.22 ± 0.09 b | 21.57 ± 0.98 a |
Fatty Acid Profile | Cricket Protein Powder | Whole Wheat Flour |
---|---|---|
Saturated fatty acids [g/100 g of fat content] | ||
(C14:0) myristic acid | 0.50 ± 0.20 * | 0.06 ± 0.03 |
(C15:0) pentadecanoic acid | 0.08 ± 0.04 | 0.06 ± 0.03 |
(C16:0) palmitic acid | 23.98 ± 4.80 | 14.80 ± 2.96 |
(C17:0) margaric acid | 0.15 ± 0.06 | 0.07 ± 0.03 |
(C18:0) stearic acid | 9.66 ± 1.94 | 0.97 ± 0.30 |
(C20:0) arachidic acid | 0.29 ± 0.12 | 0.12 ± 0.05 |
(C22:0) behenic acid | <0.05 | 0.17 ± 0.07 |
(C24:0) lignoceric acid | <0.05 | 0.14 ± 0.06 |
Monounsaturated fatty acids [g/100 g of fat content] | ||
(C16:1w7) palmitoleic acid | 0.67 ± 0.21 | 0.12 ± 0.05 |
(C18:1w9) oleic acid | 24.64 ± 4.93 | 12.99 ± 2.60 |
(C18:1w7) cis-11-vaccenic acid | 0.60 ± 0.18 | 1.03 ± 0.21 |
(C18:1w9t) trans elaidic acid | 0.12 ± 0.05 | <0.05 |
Polyunsaturated fatty acids [g/100 g of fat content] | ||
(C18:2w6) linoleic acid (LA) | 32.10 ± 6.42 | 60.53 ± 12.11 |
(C18:2 ct) cis-9, trans-12 octadecadienoic acid | 0.58 ± 0.18 | <0.05 |
(C18:2w6t) trans linolelaidic acid | 0.13 ± 0.06 | <0.05 |
(C18:2 tc) trans-9, cis-12 octadecadienoic acid | 0.68 ± 0.21 | <0.05 |
(C18:3w3) cis-9, 12,15 alpha-linolenic acid (ALA) | 0.99 ± 0.30 | 3.64 ± 0.73 |
(C20:2) cis-11,14-eicosadienoic acid | 0.43 ± 0.18 | 0.08 ± 0.04 |
Contribution of individual fatty acid groups [g/100 g of fat content] | ||
Saturated fatty acids | 34.66 ± 6.94 | 16.39 ± 3.28 |
Monounsaturated fatty acids | 25.91 ± 5.19 | 14.30 ± 2.86 |
Polyunsaturated fatty acids | 33.52 ± 6.71 | 64.25 ± 12.85 |
Trans fatty acids | 1.51 ± 0.31 | <0.55 ± 0.17 |
Omega 3 fatty acids (ALA, EPA, DHA, ETE, DPA) ** | 0.99 ± 0.30 | 3.64 ± 0.73 |
Omega 6 fatty acids (LA, GLA, ARA, DGLA) *** | 32.10 ± 6.42 | 60.53 ± 12.11 |
Amino acid Profile | Cricket Protein Powder | Whole Wheat Flour |
---|---|---|
Aspartic acid | 5.31 ± 0.02 * | 0.64 ± 0.02 |
Threonine | 2.37 ± 0.02 | 0.36 ± 0.02 |
Serine | 2.69 ± 0.02 | 0.63 ± 0.02 |
Glutamic acid | 6.98 ± 0.02 | 3.91 ± 0.02 |
Proline | 3.66 ± 0.02 | 1.31 ± 0.02 |
Glycine | 3.01 ± 0.02 | 0.51 ± 0.02 |
Alanine | 5.32 ± 0.02 | 0.45 ± 0.02 |
Valine | 3.57 ± 0.02 | 0.54 ± 0.02 |
Methionine ** | 1.08 ± 0.02 | 0.19 ± 0.02 |
Isoleucine | 2.43 ± 0.02 | 0.43 ± 0.02 |
Leucine | 4.69 ± 0.02 | 0.89 ± 0.02 |
Tyrosine | 3.66 ± 0.02 | 0.37 ± 0.02 |
Phenylalanine | 2.38 ± 0.02 | 0.61 ± 0.02 |
Lysine | 3.57 ± 0.02 | 0.34 ± 0.02 |
Histidine | 1.41 ± 0.02 | 0.30 ± 0.02 |
Arginine | 3.90 ± 0.02 | 0.63 ± 0.02 |
Taurine | 0.22 ± 0.02 | <0.02 |
Hydroxyproline | 0.04 ± 0.02 | <0.02 |
Cyst(e)ine, calc. from cysteic acid | 0.65 ± 0.02 | 0.29 ± 0.02 |
Physicochemical Properties | C | CR5 | CR10 | CR15 |
---|---|---|---|---|
L* | 45.07 ± 0.22 b | 44.24 ± 0.68 b | 40.42 ± 0.68 a | 40.65 ± 0.56 a |
a* | 6.20 ± 0.07 c | 5.78 ± 0.12 b | 5.11 ± 0.06 a | 5.88 ± 0.12 b |
b* | 27.89 ± 0.01 c | 27.11 ± 0.09 b | 25.11 ± 0.52 a | 26.78 ± 0.10 b |
ΔE | - | 1.03 | 6.27 | 4.15 |
Density [g/cm3] | 0.44 ± 0.03 | 0.45 ± 0.03 | 0.39 ± 0.06 | 0.42 ± 0.08 |
aw | 0.96 ± 0.05 | 0.95 ± 0.03 | 0.96 ± 0.00 | 0.96 ± 0.00 |
Hardness [N] | 30.08 ± 2.17 a | 31.03 ± 1.99 a | 35.89 ± 3.31 b | 38.94 ± 2.41 b |
Nutritional Value | C | CR5 | CR10 | CR15 |
---|---|---|---|---|
Energy value (kJ/kcal) | 877/211 | 890/213 | 904/216 | 916/219 |
Fat (g) | 0.7 | 1.1 | 1.6 | 2.0 |
Carbohydrates (g) | 39.8 | 38.1 | 36.5 | 34.8 |
Fibre (g) | 5.8 | 5.7 | 5.7 | 5.6 |
Protein (g) | 8.2 | 9.7 | 11.2 | 12.6 |
% energy from protein | 15.7 | 18.2 | 20.7 | 23.0 |
Samples | Days | TVC [log CFU g−1] | Y&M [log CFU g−1] |
---|---|---|---|
C | 0 | 3.71 ± 0.28 a | nd |
2 | 7.10 ± 0.01 b | 3.67 ± 0.02 a | |
7 | 8.39 ± 0.31 c | 4.33 ± 0.07 b | |
CR5 | 0 | 4.30 ± 0.06 d | nd |
2 | 6.49 ± 0.39 e | nd | |
7 | 7.37 ± 0.34 b | 4.34 ± 0.08 b | |
CR10 | 0 | 4.52 ± 0.16 d | nd |
2 | 7.19 ± 0.20 b | 3.43 ± 0.02 a | |
7 | 8.53 ± 0.20 c | 4.40 ± 0.11 b | |
CR15 | 0 | 4.32 ± 0.12 d | nd |
2 | 7.17 ± 0.19 b | nd | |
7 | 9.44 ± 0.29 f | 4.29 ± 0.08 b |
Samples | Wholemeal Wheat Flour | Cricket Powder | Dried Yeasts | Sugar | Salt | Water |
---|---|---|---|---|---|---|
C | 58.7 | 0.0 | 0.8 | 0.7 | 0.7 | 39.2 |
CR5 | 55.8 | 2.9 | 0.8 | 0.7 | 0.7 | 39.2 |
CR10 | 52.9 | 5.9 | 0.8 | 0.7 | 0.7 | 39.2 |
CR15 | 49.9 | 8.8 | 0.8 | 0.7 | 0.7 | 39.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gantner, M.; Sadowska, A.; Piotrowska, A.; Kulik, K.; Sionek, B.; Kostyra, E. Wheat Bread Enriched with House Cricket Powder (Acheta domesticus L.) as an Alternative Protein Source. Molecules 2024, 29, 711. https://doi.org/10.3390/molecules29030711
Gantner M, Sadowska A, Piotrowska A, Kulik K, Sionek B, Kostyra E. Wheat Bread Enriched with House Cricket Powder (Acheta domesticus L.) as an Alternative Protein Source. Molecules. 2024; 29(3):711. https://doi.org/10.3390/molecules29030711
Chicago/Turabian StyleGantner, Magdalena, Anna Sadowska, Anna Piotrowska, Klaudia Kulik, Barbara Sionek, and Eliza Kostyra. 2024. "Wheat Bread Enriched with House Cricket Powder (Acheta domesticus L.) as an Alternative Protein Source" Molecules 29, no. 3: 711. https://doi.org/10.3390/molecules29030711
APA StyleGantner, M., Sadowska, A., Piotrowska, A., Kulik, K., Sionek, B., & Kostyra, E. (2024). Wheat Bread Enriched with House Cricket Powder (Acheta domesticus L.) as an Alternative Protein Source. Molecules, 29(3), 711. https://doi.org/10.3390/molecules29030711