Impact of the Post-Harvest Period on the Chemical and Sensorial Properties of planifolia and pompona Vanillas
Abstract
:1. Introduction
2. Results
2.1. Chemical Aspect
2.1.1. Chemical Analysis
2.1.2. Statistical Analysis
2.2. Sensory Aspect
2.2.1. Olfactory Results
Flavor Perception Based on Descriptors Frequencies
Generation of Terms
Statistical Classification of the Vanilla Samples
2.2.2. Taste Results
Flavor Perception Based on Descriptor Frequencies
Generation of Terms
Statistical Classification of the Vanilla Samples
3. Discussion
4. Materials and Methods
4.1. Raw Materials
4.2. Chemical Aspects
4.2.1. HS-SPME/GC-MS Analysis
4.2.2. GC-MS Statistical Analysis
4.3. Sensory Analysis
4.3.1. Free Term Generation Methodology
4.3.2. Sample Preparation
4.4. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhu, J.; Yu, J.; Chen, X.; Zhang, S.; Cai, Y.; Li, L. A new functionality study of vanillin as the inhibitor for α-glucosidase and its inhibition kinetic mechanism. Food Chem. 2021, 353, 129448. [Google Scholar] [CrossRef] [PubMed]
- Brunschwig, C.; Senger-Emonnot, P.; Aubanel, M.L.; Pierrat, A.; George, G.; Rochard, S.; Raharivelomanana, P. Odor-active compounds of Tahitian vanilla flavor. Food Res. Int. 2012, 46, 148–157. [Google Scholar] [CrossRef]
- Pérez-Silva, A.; Odoux, E.; Brat, P.; Ribeyre, F.; Rodriguez-Jimenes, G.; Robles-Olvera, V.; García-Alvarado, M.A.; Günata, Z. GC–MS and GC–olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans. Food Chem. 2006, 99, 728–735. [Google Scholar] [CrossRef]
- Paula Dionísio, A.; Molina, G.; Souza de Carvalho, D.; dos Santos, R.; Bicas, J.L.; Pastore, G.M. Natural flavourings from biotechnology for foods and beverages. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 231–259. [Google Scholar]
- Januszewska, R.; Giret, E.; Clement, F.; Van Leuven, I.; Goncalves, C.; Vladislavleva, E.; Pradal, P.; Nåbo, R.; Landuyt, A.; D’Heer, G.; et al. Impact of vanilla origins on sensory characteristics of chocolate. Food Res. Int. 2020, 137, 109313. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, E.; Degot, P.; Touraud, D.; König, B.; Kunz, W. Novel green production of natural-like vanilla extract from curcuminoids. Food Chem. 2023, 417, 135944. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.E.; Lin, Y.S.; Lo, H.C.; Hsu, T.H. Structural Characterization with Laser Scanning Microscopy and an Analysis of Volatile Components Using GC-MS in Vanilla Pods Coated with Edible Microorganisms. Fermentation 2023, 9, 724. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chen, K.Y.; Chou, C.Y.; Liao, H.Y.; Chen, H.C. New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan. Molecules 2021, 26, 3608. [Google Scholar] [CrossRef] [PubMed]
- Hartman, T.G.; Karmas, K.; Chen, J.; Shevade, A.; Deagro, M.; Hwang, H.I. Determination of Vanillin, Other Phenolic Compounds, and Flavors in Vanilla Beans: Direct Thermal Desorption—Gas Chromatography and —Gas Chromatography—Mass Spectrometry Analysis; ACS Publications: Washington, DC, USA, 1992. [Google Scholar]
- Da Costa, N.C.; Pantini, M. The analysis of volatiles in Tahitian vanilla (Vanilla tahitensis) including novel compounds. In Developments in Food Science; Bredie, W.L.P., Petersen, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 43, pp. 161–164. [Google Scholar]
- Langford, V.; Padayachee, D.; McEwan, M.; Barringer, S. Comprehensive odorant analysis for on-line applications using selected ion flow tube mass spectrometry (SIFT-MS). Flavour Fragr. J. 2019, 34, 393–410. [Google Scholar] [CrossRef]
- Pitman, C.N.; LaCourse, W.R. Rapid characterization of vanilla with Molecular Ionization Desorption Analysis Source (MIDAS) for mass spectrometry. Int. J. Mass Spectrom. 2022, 479, 116888. [Google Scholar] [CrossRef]
- Van Dyk, S.; Holford, P.; Subedi, P.; Walsh, K.; Williams, M.; McGlasson, W.B. Determining the harvest maturity of vanilla beans. Sci. Hortic. 2014, 168, 249–257. [Google Scholar] [CrossRef]
- Khoyratty, S.; Kodja, H.; Verpoorte, R. Vanilla flavor production methods: A review. Ind. Crops Prod. 2018, 125, 433–442. [Google Scholar] [CrossRef]
- Poojari, S.; Vemulapati, B.M. Chapter 32—Vanilla. In Viral Diseases of Field and Horticultural Crops; Awasthi, L.P., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 259–366. [Google Scholar]
- Arya, S.; Rookes, J.; Cahill, D.; Lenka, S. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Tradit. Med. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Röling, W.F.; Kerler, J.; Braster, M.; Apriyantono, A.; Stam, H.; van Verseveld, H.W. Microorganisms with a taste for vanilla: Microbial ecology of traditional Indonesian vanilla curing. Appl. Environ. Microbiol. 2001, 67, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Baqueiro-Peña, I.; Guerrero-Beltrán, J.A. Vanilla (Vanilla planifolia Andr.), its residues and other industrial by-products for recovering high value flavor molecules: A review. J. Appl. Res. Med. Aromat. Plants 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Pérez-Silva, A.; Nicolás García, M.; Petit, T.; Dijoux, J.; Vivar-Vera, M.; Besse, P.; Grisoni, M. Quantification of the aromatic potential of ripe fruit of Vanilla planifolia (Orchidaceae) and several of its closely and distantly related species and hybrids. Eur. Food Res. Technol. 2021, 247, 1489–1499. [Google Scholar] [CrossRef]
- Om, H.; Shyamala, B.N.; Prakash, M.; Bhat, K.K. Vanilla flavor evaluation by sensory and electronic nose techniques. J. Sens. Stud. 2006, 21, 228–239. [Google Scholar]
- Banerjee, G.; Chattopadhyay, P. Vanillin biotechnology: The perspectives and future. J. Sci. Food Agric. 2019, 99, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Teoh, E. Orchids as Aphrodisiac, Medicine or Food; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gallage, N.; Møller, B. Vanilla: The most popular flavour. In Biotechnology of Natural Products; Springer: Cham, Switzerland, 2018; pp. 3–24. [Google Scholar]
- Bezerra, D.P.; Soares, A.K.; de Sousa, D.P. Overview of the role of vanillin on redox status and cancer development. Oxidative Med. Cell. Longev. 2016, 2016, 9734816. [Google Scholar] [CrossRef] [PubMed]
Chemical Class | Retention Times (min) | CAS | Compound | Qualitative Score (%) | Experimental RI | Theorical RI | 1st Refining Time | 2nd Refining Time | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Planifolia Scalded | Planifolia Scarified | Pompona | Planifolia Scalded | Planifolia Scarified | Pompona | |||||||
Alkenes | 11.61 | 1002-33-1 | 1,3-Octadiene | 97 | 979 | - | - | - | - | 60,270,295 | 65,029,884 | 7,245,927 |
Alcohols | 7.05 | 513-85-9 | 2,3-butane diol | 91 | 789 | 782 | - | 33,137,879 | - | 136,358,838 | 25,306,4021 | 23,827,908 |
11.68 | 3391-86-4 | 1-Octen-3-ol | 90 | 981 | 982 | 36,565,519 | 13,219,404 | - | - | - | - | |
13.24 | 100-51-6 | Benzyl alcohol | 96 | 1042 | 1041 | - | - | 500,967,212 | 107,315,093 | 73,052,932 | 218,0745,554 | |
15.22 | 60-12-8 | Phenyl ethyl alcohol | 97 | 1120 | 1119 | - | - | 16,340,937 | 9,382,813 | 14,692,848 | 68,511,032 | |
19.36 | 105-13-5 | Para-anisyl alcohol | 98 | 1292 | 1293 | 20,738,109 | 6,400,360 | 1,907,265,470 | 158,966,452 | 16,159,242 | 4,001,937,982 | |
Aldehydes | 7.39 | 66-25-1 | Hexanal | 96 | 806 | 805 | 35,032,094 | 23,017,525 | - | - | - | - |
8.02 | 98-01-1 | Furfural | 91 | 833 | 836 | - | - | - | 58,204,606 | 83,405,157 | 13,965,141 | |
11.14 | 18829-55-5 | (E)-2-heptenal | 95 | 960 | 960 | 13,434,318 | - | 11,298,503 | - | - | - | |
11.32 | 100-52-7 | Benzaldehyde | 96 | 967 | 969 | - | - | 19,515,496 | 26,820,409 | 21,599,693 | 54,071,058 | |
14.84 | 124-19-6 | Nonanal | 91 | 1104 | 1106 | 4,710,052 | 3,593,206 | 4,634,984 | 10,853,957 | 9,782,297 | 9,011,181 | |
18.79 | 123-11-5 | Para-anisaldehyde | 97 | 1268 | 1264 | 36,238,748 | 24,790,274 | 259,945,096 | 417,431,889 | 134,123,512 | 966,387,258 | |
23.55 | 120-14-9 | veratraldehyde | 98 | 1485 | 1486 | - | - | 4,875,837 | 8,086,468 | - | 19,579,042 | |
Aliphatic acids | 4.59 | 64-19-7 | Acetic acid | 91 | 623 | 630 | - | - | - | 353,318,529 | 503,543,733 | 286,679,209 |
Ketone | 5.69 | 513-86-0 | Acetoin | 90 | 714 | 714 | - | - | - | 17,547,670 | 166,297,003 | |
18.44 | 99-49-0 | Carvone | 97 | 1253 | 1252 | - | - | - | 10,516,637 | 18,420,228 | ||
Esters | 12.8 | 104-93-8 | Para-methyl anisole | 98 | 1025 | 1026 | 11,360,911 | 6,723,591 | 18,794,801 | - | 10,986,433 | 82,849,459 |
14.24 | 104-57-4 | Benzyl formate | 98 | 1081 | 1079 | - | - | - | 7,338,858 | 5,629,327 | 6,210,826 | |
16.34 | 140-11-4 | Benzyl acetate | 96 | 1165 | 1167 | - | - | 3,210,346 | 8,150,143 | - | 27,753,414 | |
17.23 | 119-36-8 | Methyl salicylate | 97 | 1201 | 1201 | 6,013,489 | 4,829,471 | 24,056,752 | 18,274,367 | 17,768,206 | 49,218,129 | |
20.44 | 122-91-8 | Para-anisyl formate | 96 | 1340 | - | - | - | 12,713,380 | - | - | 10,463,838 | |
21.37 | 121-98-2 | Methyl para-anisate | 97 | 1382 | - | - | - | 4,713,165 | 5,709,997 | 5,230,866 | 16,129,396 | |
Furane | 5.48 | 3208-16-0 | 2-ethyl furan | 95 | 702 | 700 | - | - | - | 30,458,152 | 9,167,432 | - |
9.36 | 4466-24-4 | 2-n-Butyl furan | 91 | 890 | 885 | - | - | - | 8,495,781 | 6,761,053 | - | |
11.92 | 3777-69-3 | 2-pentyl furan | 95 | 991 | 992 | 11,281,928 | 17,262,631 | - | 257,807,804 | 72,649,944 | - | |
Lactone | 13.67 | 695-06-7 | γ-hexalactone | 90 | 1059 | 1058 | - | - | 6,872,802 | - | - | 25,753,310 |
Monoterpenes | 13.03 | 5989-27-5 | Limonene | 98 | 1034 | 1033 | 29957192 | - | - | - | 5,261,748 | 6,377,838 |
Phenols | 14.07 | 106-44-5 | p-cresol | 95 | 1074 | 1080 | - | - | - | 56,990,171 | 47,756,312 | - |
14.5 | 90-05-1 | o-guaiacol | 95 | 1091 | 1093 | - | 20,819,785 | - | 174,563,068 | 264,653,834 | 38,901,742 | |
17.07 | 93-51-6 | 4-methyl guaiacol | 97 | 1195 | 1093 | - | 9,975,733 | 20,071,774 | 45,669,218 | 42,934,133 | 41,218,136 | |
22.14 | 121-33-5 | Vanillin | 97 | 1413 | 1405 | 280,008,221 | 746,086,769 | 100,522,953 | 4,663,674,388 | 5,795,730,873 | 425,044,157 |
All Vanilla | Scalded Vanilla planifolia | Scarified Vanilla planifolia | Scarified Vanilla pompona | |
---|---|---|---|---|
First | ||||
Number of all generated terms | 634 | 182 | 236 | 216 |
Number of different terms | 171 | 42 | 55 | 74 |
Second | ||||
Number of all generated terms | 491 | 150 | 176 | 165 |
Number of different terms | 187 | 53 | 62 | 72 |
All Vanilla | Scalded Vanilla planifolia | Scarified Vanilla planifolia | Scarified Vanilla pompona | |
---|---|---|---|---|
1st | ||||
Number of all generated terms | 772 | 236 | 281 | 255 |
Number of different terms | 209 | 65 | 78 | 66 |
2nd | ||||
Number of all generated terms | 595 | 196 | 201 | 198 |
Number of different terms | 239 | 82 | 79 | 78 |
CAS | Compound | Odors | Flavors |
---|---|---|---|
105-13-5 | Para-anisyl alcohol | sweet, powdery, hawthorn, lilac, rose, floral, hyacinth | cherry, vanilla, creamy nuances, cocoa, licorice, anise |
124-19-6 | Nonanal | waxy, aldehydic, rose, fresh, orris, orange peel, fatty, peely | creamy, powdery, vanilla, and spicy with a typical marshmallow flavor |
123-11-5 | Para-anisaldehyde | sweet, powdery, mimosa, floral, hawthorn, balsam | creamy, powdery, vanilla, and spicy with a typical marshmallow flavor |
119-36-8 | Methyl salicylate | wintergreen mint | sweet, salicylate, and root beer, with aromatic and balsamic nuances |
121-33-5 | Vanillin | sweet, vanilla, creamy, chocolate | vanilla, vanillin, sweet, creamy, spicy, phenolic, and milky |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravier, A.; Chalut, P.; Belarbi, S.; Santerre, C.; Vallet, N.; Nhouchi, Z. Impact of the Post-Harvest Period on the Chemical and Sensorial Properties of planifolia and pompona Vanillas. Molecules 2024, 29, 839. https://doi.org/10.3390/molecules29040839
Ravier A, Chalut P, Belarbi S, Santerre C, Vallet N, Nhouchi Z. Impact of the Post-Harvest Period on the Chemical and Sensorial Properties of planifolia and pompona Vanillas. Molecules. 2024; 29(4):839. https://doi.org/10.3390/molecules29040839
Chicago/Turabian StyleRavier, Anaïck, Pauline Chalut, Saida Belarbi, Cyrille Santerre, Nadine Vallet, and Zeineb Nhouchi. 2024. "Impact of the Post-Harvest Period on the Chemical and Sensorial Properties of planifolia and pompona Vanillas" Molecules 29, no. 4: 839. https://doi.org/10.3390/molecules29040839
APA StyleRavier, A., Chalut, P., Belarbi, S., Santerre, C., Vallet, N., & Nhouchi, Z. (2024). Impact of the Post-Harvest Period on the Chemical and Sensorial Properties of planifolia and pompona Vanillas. Molecules, 29(4), 839. https://doi.org/10.3390/molecules29040839