Alkylammonium Halides for Phase Regulation and Luminescence Modulation of Cesium Copper Iodide Nanocrystals for Light-Emitting Diodes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, H.R.; Jain, A.; Voznyy, O.; Lan, X.Z.; de Arquer, F.P.G.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.J.; Zhang, B.; Zhao, Y.C.; et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.W.; Jung, H.S.; Shin, H.; Park, N.G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.-P.; et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Wei, Z.; Liao, W.-Q.; Tang, Y.-Y.; Li, P.-F.; Shi, P.-P.; Cai, H.; Xiong, R.-G. Discovery of an Antiperovskite Ferroelectric in [(CH3)3NH]3(MnBr3)(MnBr4). J. Am. Chem. Soc. 2018, 140, 8110–8113. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Hoang, M.T.; Wang, H. Low-Dimensional-Networked Perovskites with A-Site-Cation Engineering for Optoelectronic Devices. Small Methods 2021, 5, 2001147. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zeng, S.; Chen, Q.; Yang, L.; Wei, C.; Chen, B.; Yu, H.; Li, H.; Zhang, J.; Huang, X. One-step synthesis of epitaxial 3D/2D metal halide perovskite heterostructures. Chem. Commun. 2022, 58, 13775–13778. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.; Xia, Y.; Li, B.; Xing, G.; Chen, Y.; Huang, W. Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. Chem 2019, 5, 995–1006. [Google Scholar] [CrossRef]
- Gogoi, H.J.; Bajpai, K.; Mallajosyula, A.T.; Solanki, A. Advances in Flexible Memristors with Hybrid Perovskites. J. Phys. Chem. Lett. 2021, 12, 8798–8825. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Ma, S.; Kim, J.-Y.; Kyhm, J.; Yang, W.; Lim, J.A.; Kotov, N.A.; Moon, J. Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. J. Am. Chem. Soc. 2020, 142, 4206–4212. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, W.; Wang, S.; Zhang, X.; Li, L.; Yao, Y.; Peng, Y.; Luo, J. A one-dimensional dual emissive hybrid perovskite with flexibly tunable white-light emission. J. Mater. Chem. C 2020, 8, 6710–6714. [Google Scholar] [CrossRef]
- Brandt, R.E.; Stevanović, V.; Ginley, D.S.; Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 2015, 5, 265–275. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Fang, Y.; Zhou, Y.; Ni, Z.; Xiao, X.; Chen, S.; Huang, J. Ligand assisted growth of perovskite single crystals with low defect density. Nat. Commun. 2021, 12, 1686. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Yang, Z.; Li, D.; Niu, Y.; Hu, L. Dodecylamine assisted perovskite growth for high-performance perovskite solar cells with low defect density. Mater. Lett. 2022, 309, 131365. [Google Scholar] [CrossRef]
- Li, L.; Shang, X.; Wang, S.; Dong, N.; Ji, C.; Chen, X.; Zhao, S.; Wang, J.; Sun, Z.; Hong, M.; et al. Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption. J. Am. Chem. Soc. 2018, 140, 6806–6809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Bi, C.; Xia, Y.; Sun, X.; Wang, X.; Liu, A.; Tian, S.; Liu, X.; de Leeuw, N.H.; Tian, J. Water-Driven Synthesis of Deep-Blue Perovskite Colloidal Quantum Wells for Electroluminescent Devices. Angew. Chem. Int. Ed. 2023, 62, e202300149. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, P.; Wang, R.; Yuan, H.; Xin, Y.; Ren, X.; Chen, Q.; Yin, H. Stable MAPbBr3@PbBr(OH) composites with high photoluminescence quantum yield: Synthesis, optical properties, formation mechanism, and catalytic application. Appl. Surf. Sci. 2023, 616, 156442. [Google Scholar] [CrossRef]
- Fan, M.; Huang, J.; Turyanska, L.; Bian, Z.; Wang, L.; Xu, C.; Liu, N.; Li, H.; Zhang, X.; Zhang, C.; et al. Efficient All-Perovskite White Light-Emitting Diodes Made of In Situ Grown Perovskite-Mesoporous Silica Nanocomposites. Adv. Funct. Mater. 2023, 33, 2215032. [Google Scholar] [CrossRef]
- Chen, S.; Lin, J.; Zheng, S.; Zheng, Y.; Chen, D. Efficient and Stable Perovskite White Light-Emitting Diodes for Backlit Display. Adv. Funct. Mater. 2023, 33, 2213442. [Google Scholar] [CrossRef]
- Zi, L.; Xu, W.; Song, Z.; Sun, R.; Liu, S.; Xie, T.; Zhu, J.; Lu, S.; Song, H. Highly efficient and stable Cs2TeCl6:Cr3+ perovskite microcrystals for white light emitting diodes. J. Mater. Chem. C 2023, 11, 2695–2702. [Google Scholar] [CrossRef]
- Pan, Q.; Fu, J.; Liu, S.; Zhou, J.; Ma, B.; Chen, S.; Qiu, Y.; Lin, Y.; Hu, Y.; Yang, D.; et al. Perovskite super-particles for commercial displays. Cell Rep. Phys. Sci. 2023, 4, 101275. [Google Scholar] [CrossRef]
- Lee, W.; Lee, J.; Yun, H.; Kim, J.; Park, J.; Choi, C.; Kim, D.C.; Seo, H.; Lee, H.; Yu, J.W.; et al. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array. Adv. Mater. 2017, 29, 1702902. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.-Y.; Wang, J.; Zhang, X.; Liang, F.-X.; Lin, D.-H.; Shi, X.-F.; Fang, Q.-L.; Luo, L.-B. A Simple-Structured Perovskite Wavelength Sensor for Full-Color Imaging Application. Nano Lett. 2023, 23, 533–540. [Google Scholar] [CrossRef]
- Liu, P.; Yu, B.; Cai, W.; Yao, X.; Chang, K.; Zhao, X.; Si, Z.; Deng, W.; Zhou, Y.; Zhou, G.; et al. Air-stable high-PLQY cesium lead halide perovskites for laser-patterned displays. J. Mater. Chem. C 2023, 11, 2282–2290. [Google Scholar] [CrossRef]
- Yu, W.; Li, F.; Yu, L.; Niazi, M.R.; Zou, Y.; Corzo, D.; Basu, A.; Ma, C.; Dey, S.; Tietze, M.L.; et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 2018, 9, 5354. [Google Scholar] [CrossRef]
- Hu, Y.; Schlipf, J.; Wussler, M.; Petrus, M.L.; Jaegermann, W.; Bein, T.; Müller-Buschbaum, P.; Docampo, P. Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano 2016, 10, 5999–6007. [Google Scholar] [CrossRef] [PubMed]
- Rahmany, S.; Etgar, L. Semitransparent Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 1519–1531. [Google Scholar] [CrossRef]
- Deng, J.; Li, J.; Yang, Z.; Wang, M. All-inorganic lead halide perovskites: A promising choice for photovoltaics and detectors. J. Mater. Chem. C 2019, 7, 12415–12440. [Google Scholar] [CrossRef]
- Mao, X.; Wang, Z.; Zhang, F.; Yin, H.; Xu, X.; Chen, J.; Chen, Z.; Luo, J.; Han, K.; Zhang, R. All-Inorganic Zero-Dimensional Sb3+-Doped Rb2ScCl5(H2O) Perovskite Single Crystals: Efficient Self-Trapped Exciton Emission and X-ray Detection. J. Phys. Chem. Lett. 2023, 14, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Verhaeghe, D.; Weng, B.; Ghosh, B.; Zhang, H.; Hofkens, J.; Steele, J.A.; Roeffaers, M.B.J. Metal Halide Perovskite Based Heterojunction Photocatalysts. Angew. Chem. Int. Ed. 2022, 61, e202203261. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bai, Y.; Wang, S.; Lyu, M.; Yun, J.-H.; Wang, L. In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1706923. [Google Scholar] [CrossRef]
- Chowdhury, T.H.; Reo, Y.; Yusoff, A.R.B.M.; Noh, Y.-Y. Sn-Based Perovskite Halides for Electronic Devices. Adv. Sci. 2022, 9, 2203749. [Google Scholar] [CrossRef]
- Raj, A.; Kumar, M.; Anshul, A. Recent Progress in Cesium-Based Lead-Free Halide Double Perovskite Materials for Photovoltaic Applications. Phys. Status Solidi 2022, 219, 2200425. [Google Scholar] [CrossRef]
- Long, N.; Lin, C.; Chen, F.; Jiao, Q.; Liu, X.; Nie, Q. Nanocrystallization of lead-free Cs3Sb2Br9 perovskites in chalcogenide glass. J. Am. Ceram. Soc. 2020, 103, 6106–6111. [Google Scholar] [CrossRef]
- Miyasaka, T.; Kulkarni, A.; Kim, G.M.; Öz, S.; Jena, A.K. Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free? Adv. Energy Mater. 2020, 10, 1902500. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Liu, H.; Xia, Y.; Cui, J.; Shi, Y.; Chen, R.; Shi, T.; Wang, H.-L. Organic-Free and Lead-Free Perovskite Solar Cells with Efficiency over 11%. Adv. Energy Mater. 2022, 12, 2202491. [Google Scholar] [CrossRef]
- Lei, H.; Hardy, D.; Gao, F. Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives. Adv. Funct. Mater. 2021, 31, 2105898. [Google Scholar] [CrossRef]
- Zhuang, W.; Liu, H.; Chen, Y.; Xu, W.; Gao, H.; Tian, Y.; Yao, D.; Zhang, H. Lead-free double perovskite Rb+, Sb3+-codoped Cs2NaInCl6 nanocrystals with highly efficient and tunable photoluminescence. Ceram. Int. 2023, 49, 15761–15770. [Google Scholar] [CrossRef]
- El Ajjouri, Y.; Locardi, F.; Gélvez-Rueda, M.C.; Prato, M.; Sessolo, M.; Ferretti, M.; Grozema, F.C.; Palazon, F.; Bolink, H.J. Mechanochemical Synthesis of Sn(II) and Sn(IV) Iodide Perovskites and Study of Their Structural, Chemical, Thermal, Optical, and Electrical Properties. Energy Technol. 2020, 8, 1900788. [Google Scholar] [CrossRef]
- Idrissi, S.; Ziti, S.; Labrim, H.; Bahmad, L. Band gaps of the solar perovskites photovoltaic CsXCl3 (X = Sn, Pb or Ge). Mater. Sci. Semicond. Process. 2021, 122, 105484. [Google Scholar] [CrossRef]
- Saikia, D.; Alam, M.; Bera, J.; Betal, A.; Gandi, A.N.; Sahu, S. A First-Principles Study on ABBr3 (A = Cs, Rb, K, Na; B = Ge, Sn) Halide Perovskites for Photovoltaic Applications. Adv. Theory Simul. 2022, 5, 2200511. [Google Scholar] [CrossRef]
- Gebhardt, J.; Rappe, A.M. Adding to the Perovskite Universe: Inverse-Hybrid Perovskites. ACS Energy Lett. 2017, 2, 2681–2685. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Xia, M.; Liu, C.; Li, N.; Shi, Z.; Xu, Y.; Zhang, X. Facile Melting-Crystallization Synthesis of Cs2NaxAg1−xInCl6: Bi Double Perovskites for White Light-Emitting Diodes. Inorg. Chem. 2022, 61, 5040–5047. [Google Scholar] [CrossRef]
- Jiao, W.; He, J.; Zhang, L. Fabrication and investigation of a new all-inorganic lead free perovskite Cs3Bi2I6Br3 for ammonia detection at room temperature. J. Alloys Compd. 2022, 895, 162561. [Google Scholar] [CrossRef]
- Igbari, F.; Wang, Z.-K.; Liao, L.-S. Progress of Lead-Free Halide Double Perovskites. Adv. Energy Mater. 2019, 9, 1803150. [Google Scholar] [CrossRef]
- Yang, P.; Liu, G.; Liu, B.; Liu, X.; Lou, Y.; Chen, J.; Zhao, Y. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem. Commun. 2018, 54, 11638–11641. [Google Scholar] [CrossRef]
- Lian, L.; Zheng, M.; Zhang, W.; Yin, L.; Du, X.; Zhang, P.; Zhang, X.; Gao, J.; Zhang, D.; Gao, L.; et al. Efficient and Reabsorption-Free Radioluminescence in Cs3Cu2I5 Nanocrystals with Self-Trapped Excitons. Adv. Sci. 2020, 7, 2000195. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Fan, C.; Qi, Z.; Jiang, S.; Xiao, Q.; Liang, H.; Duan, H.; Zhang, Q. CsCu2I3 Nanoribbons on Various Substrates for UV Photodetectors. ACS Appl. Nano Mater. 2021, 4, 9625–9634. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Fang, F.; Zhao, Z.; Pan, J.; Akram, J.; Shafie, S.B.; Talaighil, R.Z.; Li, Q.; Zhao, Z.; et al. Energy Down-Conversion Cs3Cu2Cl5 Nanocrystals for Boosting the Efficiency of UV Photodetector. Front. Mater. 2021, 8, 682833. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.; Devakumar, B.; Ma, N. One-step low-temperature solid-state synthesis of lead-free cesium copper halide Cs3Cu2Br5 phosphors with bright blue emissions. Mater. Today Chem. 2022, 23, 100678. [Google Scholar] [CrossRef]
- Li, T.; Ma, J.; Chen, X.; Yan, J.; Zhang, M.; Wu, D.; Tian, Y.; Li, X.; Shi, Z. Antisolvent-Processed One-Dimensional Ternary Rubidium Copper Bromine Microwires for Sensitive and Flexible Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 49007–49016. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.-X.; Zhou, Z.; Zhang, J. Phonon-Assisted Upconversion Photoluminescence of a Self-Trapped Exciton in the Rb2CuCl3 Single Crystal. J. Phys. Chem. Lett. 2023, 14, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Yao, S.; Guo, Y.; Zhi, R.; Wang, X.; Ge, F.; Tian, Y.; Wang, J.; Zou, B. Highly Efficient Self-Trapped Exciton Emission of a (MA)4Cu2Br6 Single Crystal. J. Phys. Chem. Lett. 2020, 11, 4703–4710. [Google Scholar] [CrossRef]
- Cheng, P.; Sun, L.; Feng, L.; Yang, S.; Yang, Y.; Zheng, D.; Zhao, Y.; Sang, Y.; Zhang, R.; Wei, D.; et al. Colloidal Synthesis and Optical Properties of All-Inorganic Low-Dimensional Cesium Copper Halide Nanocrystals. Angew. Chem. Int. Ed. 2019, 58, 16087–16091. [Google Scholar] [CrossRef]
- Jun, T.; Handa, T.; Sim, K.; Iimura, S.; Sasase, M.; Kim, J.; Kanemitsu, Y.; Hosono, H. One-step solution synthesis of white-light-emitting films via dimensionality control of the Cs–Cu–I system. APL Mater. 2019, 7, 111113. [Google Scholar] [CrossRef]
- Feng, J.; Wang, J.; Wang, D.; Han, M.; Qian, G.; Wu, F.; Lin, Q.; Hu, Z. Reversible Phase Transitions of all Inorganic Copper-Based Perovskites: Water-Triggered Fluorochromism for Advanced Anticounterfeiting Applications. ACS Appl. Electron. Mater. 2022, 4, 225–232. [Google Scholar] [CrossRef]
- Cui, W.; Zhao, J.; Wang, L.; Lv, P.; Li, X.; Yin, Z.; Yang, C.; Tang, A. Unraveling the Phase Transition and Luminescence Tuning of Pb-Free Cs–Cu–I Perovskites Enabled by Reaction Temperature and Polar Solvent. J. Phys. Chem. Lett. 2022, 13, 4856–4863. [Google Scholar] [CrossRef]
- Ray, A.; De Trizio, L.; Zito, J.; Infante, I.; Manna, L.; Abdelhady, A.L. Light Emission from Low-Dimensional Pb-Free Perovskite-Related Metal Halide Nanocrystals. Adv. Opt. Mater. 2023, 11, 2202005. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Yuan, F.; Zhao, C.; Dong, H.; Jiao, B.; Wu, Z. Vacuum Dual-Source Thermal-Deposited Lead-Free Cs3Cu2I5 Films with High Photoluminescence Quantum Yield for Deep-Blue Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020, 12, 52967–52975. [Google Scholar] [CrossRef]
- Du, P.; Luo, L.; Cheng, W. Neoteric Mn2+-activated Cs3Cu2I5 dazzling yellow-emitting phosphors for white-LED. J. Am. Ceram. Soc. 2020, 103, 1149–1155. [Google Scholar] [CrossRef]
- Li, S.; Weng, F.; Yang, P.; Li, X.; Cheng, X.; Zhang, L.; Wang, H.; Zhang, W.; Zhang, Z.; Yang, K. Anti-solvent polarity engineering for structure, morphology and composition control of cesium copper (I) halide with efficient, stable and adjustable photoluminescence. J. Alloys Compd. 2023, 932, 167590. [Google Scholar] [CrossRef]
- Qu, K.; Lu, Y.B.; Ran, P.; Wang, K.; Zhang, N.; Xia, K.Y.; Zhang, H.Y.; Pi, X.D.; Hu, H.L.; Yang, Y.; et al. Zn (II)-Doped Cesium Copper Halide Nanocrystals with High Quantum Yield and Colloidal Stability for High-Resolution X-ray Imaging. Adv. Opt. Mater. 2023, 11, 2202883. [Google Scholar] [CrossRef]
- Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-Free Highly Efficient Blue-Emitting Cs3Cu2I5 with 0D Electronic Structure. Adv. Mater. 2018, 30, 1804547. [Google Scholar] [CrossRef]
- Jung, Y.-K.; Kim, S.; Kim, Y.C.; Walsh, A. Low Barrier for Exciton Self-Trapping Enables High Photoluminescence Quantum Yield in Cs3Cu2I5. J. Phys. Chem. Lett. 2021, 12, 8447–8452. [Google Scholar] [CrossRef]
- Walker, J.M.; Zaleski, J.M. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis. Nanoscale 2016, 8, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-X.; Cho, S.-B.; Kim, D.-H.; Park, I.-K. Monodisperse Lead-Free Perovskite Cs3Cu2I5 Nanocrystals: Role of the Metal Halide Additive. Chem. Mater. 2022, 34, 6921–6932. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, S.; Luo, M.; Guo, Y.; Zheng, Y.; Lou, Y.; Zhao, Y. All-inorganic lead-free metal halide perovskite quantum dots: Progress and prospects. Chem. Commun. 2021, 57, 7465–7479. [Google Scholar] [CrossRef]
- Wang, S.; Han, X.; Kou, T.; Zhou, Y.; Liang, Y.; Wu, Z.; Huang, J.; Chang, T.; Peng, C.; Wei, Q.; et al. Lead-free MnII-based red-emitting hybrid halide (CH6N3)2MnCl4 toward high performance warm WLEDs. J. Mater. Chem. C 2021, 9, 4895–4902. [Google Scholar] [CrossRef]
- Yao, J.; Xu, L.; Wang, S.; Song, J. Metal halide perovskites-based white light-emitting diodes. J. Phys. Photonics 2022, 4, 042001. [Google Scholar] [CrossRef]
- Huang, X.; Sun, Q.; Devakumar, B. Facile low-temperature solid-state synthesis of efficient blue-emitting Cs3Cu2I5 powder phosphors for solid-state lighting. Mater. Today Chem. 2020, 17, 100288. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, Y.; Sun, Q.; Yang, Y.; Wang, Y.; Yang, Z.; Yin, W.-J. Unique Photoelectric Properties and Defect Tolerance of Lead-Free Perovskite Cs3Cu2I5 with Highly Efficient Blue Emission. J. Phys. Chem. Lett. 2022, 13, 4177–4183. [Google Scholar] [CrossRef] [PubMed]
- Roccanova, R.; Yangui, A.; Seo, G.; Creason, T.D.; Wu, Y.; Kim, D.Y.; Du, M.-H.; Saparov, B. Bright luminescence from nontoxic CsCu2X3 (X= Cl, Br, I). ACS Materials Letters 2019, 1, 459. [Google Scholar] [CrossRef]
- Ma, Z.; Shi, C.; Qin, M.; Cui, D.; Yang, X.; Wang, L.; Wang, X.; Ji, X.; Chen, J.; Sun, D.; et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 2020, 14, 4475. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Wang, Y.; Li, H.; Fang, F.; Jiang, K.; Liu, Z.; Li, H.; Shi, Y. Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity tuning and efficient white light emission. J. Mater. Chem. C 2020, 8, 4895. [Google Scholar] [CrossRef]
- Vashishtha, P.; Nutan, G.V.; Griffith, B.E.; Fang, Y.; Giovanni, D.; Jagadeeswararao, M.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G.; Hanna, J.V.; et al. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chem. Mater. 2019, 31, 9003–9011. [Google Scholar]
- Xing, X.; Tong, T.; Mohebinia, M.; Wang, D.; Ren, Z.; Hadjiev, V.G.; Wang, Z.; Bao, J. Photoluminescence and Raman Spectra of One-Dimensional Lead-free Perovskite CsCu2I3 Single-Crystal Wires. J. Phys. Chem. Lett. 2022, 13, 6447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, B.; Chen, X.; Yu, W.W. Reversible transformation between Cs3Cu2I5 and CsCu2I3 perovskite derivatives and its anticounterfeiting application. Inorg. Chem. 2022, 61, 399. [Google Scholar] [CrossRef]
- Du, P.; Cai, P.; Li, W.; Luo, L.; Hou, Y.; Liu, Z. Ratiometric optical thermometer based on the use of manganese (II)-doped Cs 3 Cu 2 I 5 thermochromic and fluorescent halides. Microchim. Acta 2019, 186, 730. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, D.; Zi, L.; Sun, R.; Liu, S.; Liu, B.; Shi, Z.; Liu, D.; Song, H. Interfacial Modification Engineering with Cs3Cu2I5 Nanocrystals for Efficient and Stable Perovskite Solar Cells. Solar RRL 2022, 6, 2200025. [Google Scholar] [CrossRef]
- Li, J.; Inoshita, T.; Ying, T.; Ooishi, A.; Kim, J.; Hosono, H. A Highly Efficient and Stable Blue-Emitting Cs5Cu3Cl6I2 with a 1D Chain Structure. Adv. Mater. 2020, 32, 2002945. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, W.; Wang, C.; Xu, G.; Luo, G.; Deng, Z. Alkylammonium Halides for Phase Regulation and Luminescence Modulation of Cesium Copper Iodide Nanocrystals for Light-Emitting Diodes. Molecules 2024, 29, 1162. https://doi.org/10.3390/molecules29051162
Meng W, Wang C, Xu G, Luo G, Deng Z. Alkylammonium Halides for Phase Regulation and Luminescence Modulation of Cesium Copper Iodide Nanocrystals for Light-Emitting Diodes. Molecules. 2024; 29(5):1162. https://doi.org/10.3390/molecules29051162
Chicago/Turabian StyleMeng, Wen, Chuying Wang, Guangyong Xu, Guigen Luo, and Zhengtao Deng. 2024. "Alkylammonium Halides for Phase Regulation and Luminescence Modulation of Cesium Copper Iodide Nanocrystals for Light-Emitting Diodes" Molecules 29, no. 5: 1162. https://doi.org/10.3390/molecules29051162
APA StyleMeng, W., Wang, C., Xu, G., Luo, G., & Deng, Z. (2024). Alkylammonium Halides for Phase Regulation and Luminescence Modulation of Cesium Copper Iodide Nanocrystals for Light-Emitting Diodes. Molecules, 29(5), 1162. https://doi.org/10.3390/molecules29051162