Effects of Four Highland Barley Proteins on the Pasting Properties and Short-Term Retrogradation of Highland Barley Starch
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pasting Properties
2.2. Dynamic Viscoelastic Properties
2.3. Thermal Properties
2.4. LF-NMR Analysis
2.5. Gels’ Hardness
2.6. Long-Range Ordered Structure
2.7. Short-Range Ordered Structure
2.8. SEM
3. Materials and Methods
3.1. Materials
3.2. Extraction of Highland Barley Starch
3.3. Extraction of Highland Barley Proteins
3.4. Rapid Viscosity Analysis (RVA)
3.5. Dynamic Viscoelastic Measurements
3.6. Differential Scanning Calorimetry (DSC)
3.7. Low-Field Nuclear Magnetic Resonance (LF-NMR)
3.8. Hardness Analysis
3.9. X-ray Diffraction (XRD)
3.10. Fourier-Transform Infrared Spectroscopy (FTIR)
3.11. Scanning Electron Microscope Analysis (SEM)
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obadi, M.; Qi, Y.; Xu, B. Highland barley starch (Qingke): Structures, properties, modifications, and applications. Int. J. Biol. Macromol. 2021, 185, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lin, S.; Lu, M.; Gong, J.D.B.; Wang, L.; Zhang, Q.; Lin, D.R.; Qin, W.; Wu, D.T. Characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of beta-glucans from different Qingke (Tibetan hulless barley) cultivars. Int. J. Biol. Macromol. 2018, 120 Pt B, 2517–2522. [Google Scholar] [CrossRef]
- Asare, E.K.; Jaiswal, S.; Maley, J.; Baga, M.; Sammynaiken, R.; Rossnagel, B.G.; Chibbar, R.N. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. J. Agric. Food Chem. 2011, 59, 4743–4754. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Kang, H.; Sun, H.; Liu, L.; Li, L. Identification of the main retrogradation-related properties of rice starch. J. Agric. Food Chem. 2015, 63, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.H.; Donner, E.; Yada, R.Y.; Liu, Q. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends. Carbohydr. Polym. 2016, 154, 214–222. [Google Scholar] [CrossRef]
- Anbarani, N.M.; Razavi, S.M.A.; Taghizadeh, M. Impact of sage seed gum and whey protein concentrate on the functional properties and retrogradation behavior of native wheat starch gel. Food Hydrocoll. 2021, 111, 106261. [Google Scholar] [CrossRef]
- Bravo-Nunez, A.; Garzon, R.; Rosell, C.M.; Gomez, M. Evaluation of Starch(-)Protein Interactions as A Function of pH. Foods 2019, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Chen, Y.; Chen, Y. Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation. Food Hydrocoll. 2019, 91, 136–142. [Google Scholar] [CrossRef]
- Zhang, B.; Qiao, D.; Zhao, S.; Lin, Q.; Wang, J.; Xie, F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci. Technol. 2021, 114, 212–231. [Google Scholar] [CrossRef]
- Guo, T.; Horvath, C.; Chen, L.; Chen, J.; Zheng, B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends Food Sci. Technol. 2020, 103, 109–117. [Google Scholar] [CrossRef]
- Kuang, J.; Huang, J.; Ma, W.; Min, C.; Pu, H.; Xiong, Y.L. Influence of reconstituted gluten fractions on the short-term and long-term retrogradation of wheat starch. Food Hydrocoll. 2022, 130, 107716. [Google Scholar] [CrossRef]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Gebruers, K.; Delcour, J.A. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Chen, L.; Ren, F.; Zhang, Z.; Tong, Q.; Rashed, M.M. Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr. Polym. 2015, 115, 415–421. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Y.; Zhang, H.; Zou, F.; Tao, H.; Wang, N.; Guo, L.; Cui, B. Structural, physicochemical and long-term retrogradation properties of wheat starch treated using transglucosidase. Food Chem. 2022, 380, 132226. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zheng, B.; Xiao, G.; Chen, L. Synergistic effect of extrusion and polyphenol molecular interaction on the short/long-term retrogradation properties of chestnut starch. Carbohydr. Polym. 2022, 276, 118731. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Doblado-Maldonado, A.F.; Gomand, S.V.; Goderis, B.; Delcour, J.A. The extent of maize starch crystal melting as a critical factor in the isolation of amylose via aqueous leaching. Food Hydrocoll. 2016, 61, 36–47. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Colombo, A.; Rosell, C.M. Enzymatic modifications of pea protein and its application in protein–cassava and corn starch gels. Food Hydrocoll. 2012, 27, 185–190. [Google Scholar] [CrossRef]
- Baxter, G.; Zhao, J.; Blanchard, C. Albumin Significantly Affects Pasting and Textural Characteristics of Rice Flour. Cereal Chem. J. 2010, 87, 250–255. [Google Scholar] [CrossRef]
- Baxter, G.; Blanchard, C.; Zhao, J. Effects of glutelin and globulin on the physicochemical properties of rice starch and flour. J. Cereal Sci. 2014, 60, 414–420. [Google Scholar] [CrossRef]
- Renzetti, S.; Arendt, E.K. Effect of protease treatment on the baking quality of brown rice bread: From textural and rheological properties to biochemistry and microstructure. J. Cereal Sci. 2009, 50, 22–28. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, Z.; Wang, M.; Wang, Q.; Barba, F.J.; Wan, L.; Wang, X.; Fu, Y. Effects of Laminaria japonica polysaccharides on gelatinization properties and long-term retrogradation of wheat starch. Food Hydrocoll. 2022, 133, 107908. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, C.; Wang, X.; Wang, N.; Zhou, Y. Effect of rice protein hydrolysates on the short-term and long-term retrogradation of wheat starch. Int. J. Biol. Macromol. 2020, 155, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.I. Protein-starch matrix microstructure during rice flour pastes formation. J. Cereal Sci. 2017, 74, 183–186. [Google Scholar] [CrossRef]
- Wan, L.; Wang, X.; Liu, H.; Xiao, S.; Ding, W.; Pan, X.; Fu, Y. Retrogradation inhibition of wheat starch with wheat oligopeptides. Food Chem. 2023, 427, 136723. [Google Scholar] [CrossRef]
- Li, M.; Yue, Q.; Liu, C.; Zheng, X.; Hong, J.; Li, L.; Bian, K. Effect of gliadin/glutenin ratio on pasting, thermal, and structural properties of wheat starch. J. Cereal Sci. 2020, 93, 102973. [Google Scholar] [CrossRef]
- Tarahi, M.; Shahidi, F.; Hedayati, S. Physicochemical, Pasting, and Thermal Properties of Native Corn Starch–Mung Bean Protein Isolate Composites. Gels 2022, 8, 693. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, B.; Li, M.N.; Xie, Y.; Chen, H.Q. Effects of glutenin and gliadin modified by protein-glutaminase on pasting, rheological properties and microstructure of potato starch. Food Chem. 2018, 253, 148–155. [Google Scholar] [CrossRef]
- Yang, H.; Tang, M.; Wu, W.; Ding, W.; Ding, B.; Wang, X. Study on inhibition effects and mechanism of wheat starch retrogradation by polyols. Food Hydrocoll. 2021, 121, 106996. [Google Scholar] [CrossRef]
- Luo, Y.; Niu, L.; Li, D.; Xiao, J. Synergistic effects of plant protein hydrolysates and xanthan gum on the short- and long-term retrogradation of rice starch. Int. J. Biol. Macromol. 2020, 144, 967–977. [Google Scholar] [CrossRef]
- Niu, L.; Wu, L.; Xiao, J. Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates. Carbohydr. Polym. 2017, 175, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Hattori, M.; Yoshida, T.; Watanabe, A.; Sato, R.; Takahashi, K. Regulatory Effect of Amino Acids on the Pasting Behavior of Potato Starch Is Attributable to Its Binding to the Starch Chain. J. Agric. Food Chem. 2006, 54, 10191–10196. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Chen, J.; Luo, S.-J.; Liu, C.-M.; Liu, W. Effect of food additives on starch retrogradation: A review. Starch Stärke 2015, 67, 69–78. [Google Scholar] [CrossRef]
- Liu, S.; Lin, L.; Shen, M.; Wang, W.; Xiao, Y.; Xie, J. Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch. Int. J. Biol. Macromol. 2018, 118, 945–951. [Google Scholar] [CrossRef]
- Wu, C.; Gong, X.; Zhang, J.; Zhang, C.; Qian, J.Y.; Zhu, W. Effect of rice protein on the gelatinization and retrogradation properties of rice starch. Int. J. Biol. Macromol. 2023, 242 Pt 3, 125061. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Wang, H.; Ai, L.; Xiong, W. Insight into protein-starch ratio on the gelatinization and retrogradation characteristics of reconstituted rice flour. Int. J. Biol. Macromol. 2020, 146, 524–529. [Google Scholar] [CrossRef]
- Niu, H.; Han, Q.; Cao, C.; Liu, Q.; Kong, B. Short-term retrogradation behaviour of corn starch is inhibited by the addition of porcine plasma protein hydrolysates. Int. J. Biol. Macromol. 2018, 115, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, C.; Zhang, M.; Zhang, L.; Xiong, H.; Zhao, Q. Inhibition from whey protein hydrolysate on the retrogradation of gelatinized rice starch. Food Hydrocoll. 2020, 108, 105840. [Google Scholar] [CrossRef]
- Jia, Z.; Luo, Y.; Barba, F.J.; Wu, Y.; Ding, W.; Xiao, S.; Lyu, Q.; Wang, X.; Fu, Y. Effect of beta-cyclodextrins on the physical properties and anti-staling mechanisms of corn starch gels during storage. Carbohydr. Polym. 2022, 284, 119187. [Google Scholar] [CrossRef]
- Kunyanee, K.; Luangsakul, N. The effects of ultrasound—Assisted recrystallization followed by chilling to produce the lower glycemic index of rice with different amylose content. Food Chem. 2020, 323, 126843. [Google Scholar] [CrossRef]
- Cui, M.; Fang, L.; Zhou, H.; Yang, H. Effects of amino acids on the physiochemical properties of potato starch. Food Chem. 2014, 151, 162–167. [Google Scholar] [CrossRef]
- Matignon, A.; Tecante, A. Starch retrogradation: From starch components to cereal products. Food Hydrocoll. 2017, 68, 43–52. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, L.; Jia, X.; Ye, Q.; Pei, J.; Song, Q.; Ge, J.; Liu, X.; Duan, X. Multi-scale structural changes and mechanistic analysis of wheat starch gels with common proteins in short-term retrogradation at low temperature. Food Hydrocoll. 2024, 146, 109160. [Google Scholar] [CrossRef]
- Pan, W.; Liu, W.; Li, J.; Chen, Y.; Yu, Q.; Xie, J. The role of guar gum in improving the gel and structural characteristics of germinated highland barley starch. Int. J. Biol. Macromol. 2023, 238, 124052. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pernell, C.; Ferruzzi, M.G. Complexation with phenolic acids affect rheological properties and digestibility of potato starch and maize amylopectin. Food Hydrocoll. 2018, 77, 843–852. [Google Scholar] [CrossRef]
- Nie, M.; Piao, C.; Wang, A.; Xi, H.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Huang, Y.; Wang, F.; et al. Physicochemical properties and in vitro digestibility of highland barley starch with different extraction methods. Carbohydr. Polym. 2023, 303, 120458. [Google Scholar] [CrossRef]
- Tavano, O.L.; Amista, M.J.M.; Del Ciello, G.; Rodrigues, M.C.M.; Bono Nishida, A.M.; Valadares, L.A.; Siqueira, B.M.; Gomes, R.; Parolini, M.T.; Silva Junior, S.I.D. Isolation and evaluation of quinoa (Chenopodium quinoa Willd.) protein fractions. A nutritional and bio-functional approach to the globulin fraction. Curr. Res. Food Sci. 2022, 5, 1028–1037. [Google Scholar] [CrossRef]
- Kuang, J.; Ma, W.; Pu, H.; Huang, J.; Xiong, Y.L. Control of wheat starch rheological properties and gel structure through modulating granule structure change by reconstituted gluten fractions. Int. J. Biol. Macromol. 2021, 193 Pt B, 1707–1715. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.; Guo, Z.; Zheng, B.; Zhang, Y. Long-term retrogradation behavior of lotus seed starch-chlorogenic acid mixtures after microwave treatment. Food Hydrocoll. 2021, 121, 106994. [Google Scholar] [CrossRef]
Samples | PV (cP) | TV (cP) | BD (cP) | FV (cP) | SB (cP) | PT (°C) |
---|---|---|---|---|---|---|
HBS | 3620 ± 86 a | 2273 ± 124 a | 1347 ± 57 a | 4143 ± 107 a | 1870 ± 23 a | 90.85 ± 0.57 b |
HBS + Alb | 2670 ± 13 d | 1540 ± 51 bc | 1130 ± 64 c | 2708 ± 48 c | 1168 ± 3 c | 92.05 ± 1.13 ab |
HBS + Glo | 2562 ± 33 e | 1521 ± 26 c | 1041 ± 7 d | 2569 ± 56 d | 1048 ± 30 d | 92.83 ± 0.04 a |
HBS + Gli | 2806 ± 12 c | 1628 ± 33 bc | 1178 ± 45 b | 3058 ± 29 b | 1430 ± 62 b | 91.25 ± 0.07 ab |
HBS + Glu | 2901 ± 10 b | 1657 ± 30 b | 1244 ± 40 b | 3023 ± 2 b | 1366 ± 32 b | 91.53 ± 0.46 ab |
Samples | TO (°C) | TP (°C) | TC (°C) | ΔHg (J/g) | ΔHr (J/g) | DR% |
---|---|---|---|---|---|---|
HBS | 61.98 ± 0.02 d | 65.48 ± 0.02 d | 68.77 ± 0.01 c | 8.33 ± 0.09 a | 0.47 ± 0.01 a | 5.57 ± 0.06 a |
HBS + Alb | 62.27 ± 0.09 c | 65.81 ± 0.13 c | 68.99 ± 0.16 bc | 7.23 ± 0.11 d | 0.29 ± 0.01 cd | 4.03 ± 0.13 c |
HBS + Glo | 64.83 ± 0.11 a | 68.49 ± 0.13 a | 71.81 ± 0.20 a | 7.67 ± 0.09 b | 0.27 ± 0.01 d | 3.41 ± 0.08 d |
HBS + Gli | 62.23 ± 0.06 c | 65.72 ± 0.12 c | 69.53 ± 0.86 bc | 7.49 ± 0.02 c | 0.37 ± 0.01 b | 4.92 ± 0.16 b |
HBS + Glu | 62.76 ± 0.06 b | 66.32 ± 0.06 b | 69.65 ± 0.11 b | 7.37 ± 0.14 cd | 0.33 ± 0.03 bc | 4.44 ± 0.36 bc |
Time | Samples | T2 (ms) | A2 (%) | ||||
---|---|---|---|---|---|---|---|
T21 | T22 | T23 | A21 | A22 | A23 | ||
0 h | HBS | 2.38 ± 0.41 a | 50.13 ± 5.22 bc | 541.59 ± 0.00 b | 0.85 ± 0.13 ab | 3.14 ± 0.41 c | 96.02 ± 0.47 a |
HBS + Alb | 1.77 ± 0.64 ab | 41.5 ± 0.00 c | 349.10 ± 13.83 d | 0.96 ± 0.03 a | 12.49 ± 2.03 a | 86.54 ± 2.05 b | |
HBS + Glo | 0.63 ± 0.02 b | 52.85 ± 9.35 b | 357.08 ± 0.00 d | 0.68 ± 0.08 ab | 13.82 ± 2.41 a | 85.50 ± 2.47 b | |
HBS + Gli | 1.59 ± 0.01 ab | 67.58 ± 4.69 a | 666.99 ± 0.00 a | 0.57 ± 0.04 b | 5.28 ± 0.29 bc | 94.15 ± 0.33 a | |
HBS + Glu | 1.39 ± 1.38 ab | 74.83 ± 2.61 a | 429.93 ± 17.03 c | 0.60 ± 0.34 b | 5.96 ± 0.62 b | 93.44 ± 0.30 a | |
6 h | HBS | 2.06 ± 0.18 b | 57.42 ± 2.27 a | 554.57 ± 22.48 b | 0.75 ± 0.12 a | 2.98 ± 0.36 c | 96.28 ± 0.48 a |
HBS + Alb | 0.73 ± 0.39 c | 36.21 ± 2.51 b | 333.13 ± 0.00 d | 0.78 ± 0.10 a | 10.95 ± 2.65 b | 88.26 ± 2.75 b | |
HBS + Glo | 0.64 ± 0.00 c | 17.75 ± 9.76 c | 310.79 ± 0.00 e | 0.59 ± 0.07 ab | 13.89 ± 0.78 a | 85.52 ± 0.71 b | |
HBS + Gli | 2.58 ± 0.00 a | 47.69 ± 0.00 a | 666.99 ± 0.00 a | 0.23 ± 0.01 c | 4.01 ± 1.22 c | 95.76 ± 1.22 a | |
HBS + Glu | 0.92 ± 0.28 c | 31.15 ± 6.56 bc | 410.27 ± 0.00 c | 0.41 ± 0.34 bc | 5.16 ± 1.54 c | 94.38 ± 1.72 a | |
12 h | HBS | 2.54 ± 0.39 a | 61.64 ± 5.05 ab | 541.59 ± 0.00 b | 0.65 ± 0.17 ab | 2.35 ± 0.27 c | 97.34 ± 0.20 a |
HBS + Alb | 1.75 ± 0.61 abc | 32.35 ± 8.87 c | 333.13 ± 0.00 d | 0.62 ± 0.02 ab | 7.36 ± 1.79 b | 92.02 ± 1.80 b | |
HBS + Glo | 1.05 ± 0.00 bc | 43.33 ± 18.78 bc | 318.23 ± 12.90 d | 0.04 ± 0.01 c | 11.93 ± 0.74 a | 88.03 ± 0.76 c | |
HBS + Gli | 2.18 ± 1.2 ab | 79.51 ± 6.22 a | 682.98 ± 27.68 a | 0.92 ± 0.07 a | 2.56 ± 0.61 c | 96.52 ± 0.68 a | |
HBS + Glu | 0.90 ± 0.25 c | 59.00 ± 6.83 b | 429.93 ± 17.03 c | 0.56 ± 0.37 b | 3.74 ± 1.83 c | 95.70 ± 1.81 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, R.; Nie, M.; Li, J.; Wang, A.; Gong, X.; Wang, F.; Wang, L.; Liu, L.; Dang, B.; Yang, X.; et al. Effects of Four Highland Barley Proteins on the Pasting Properties and Short-Term Retrogradation of Highland Barley Starch. Molecules 2024, 29, 1211. https://doi.org/10.3390/molecules29061211
Lin R, Nie M, Li J, Wang A, Gong X, Wang F, Wang L, Liu L, Dang B, Yang X, et al. Effects of Four Highland Barley Proteins on the Pasting Properties and Short-Term Retrogradation of Highland Barley Starch. Molecules. 2024; 29(6):1211. https://doi.org/10.3390/molecules29061211
Chicago/Turabian StyleLin, Ran, Mengzi Nie, Jiaxin Li, Aixia Wang, Xue Gong, Fengzhong Wang, Lili Wang, Liya Liu, Bin Dang, Xijuan Yang, and et al. 2024. "Effects of Four Highland Barley Proteins on the Pasting Properties and Short-Term Retrogradation of Highland Barley Starch" Molecules 29, no. 6: 1211. https://doi.org/10.3390/molecules29061211
APA StyleLin, R., Nie, M., Li, J., Wang, A., Gong, X., Wang, F., Wang, L., Liu, L., Dang, B., Yang, X., Lian, X., & Tong, L. -T. (2024). Effects of Four Highland Barley Proteins on the Pasting Properties and Short-Term Retrogradation of Highland Barley Starch. Molecules, 29(6), 1211. https://doi.org/10.3390/molecules29061211