Purification and Biochemical Characterization of Polyphenol Oxidase Extracted from Wheat Bran (Wan grano)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Purification and Molecular Weight of Wheat PPO
2.2. Substrate Specificity and Enzyme Kinetics
2.3. Effect of pH on Wheat PPO Activity and Stability
2.4. Effect of Temperature on Wheat PPO Activity and Stability
2.5. Effect of Metal Ions on Wheat PPO Activity
2.6. Effect of Inhibitors on Wheat PPO Activity
3. Materials and Methods
3.1. Materials and Chemical Reagents
3.2. Extraction and Purification of Wheat PPO
3.3. Wheat PPO Assays and Protein Concentration
3.4. Estimation of Molecular Weight
3.5. Substrate Specificity and Kinetic Parameters Km and Vmax
3.6. pH Optimum and Stability
3.7. Thermal Activity and Stability
3.8. Effect of Inhibitors and Metal Ions on Wheat PPO Activity
3.9. Molecular Docking
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baik, B.K.; Czuchajowska, Z.; Pomeranz, Y. Comparison of polyphenol oxidase in wheats and flours from Australian and U.S. cultivars. J. Cereal Sci. 1994, 19, 291–296. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Z.H.; Zhou, H.M.; Zhu, K.X.; Guo, X.N.; Peng, W. Polyphenol oxidase browning in the formation of dark spots on fresh wet noodle sheets: How dark spots formed. Food Chem. 2020, 329, 126800. [Google Scholar] [CrossRef] [PubMed]
- Andersona, J.V.; Fuerstb, E.P.; Hurkman, W.J.; Vensel, W.H.; Morris, C.F. Toward an understanding of mechanisms involved in non-polyphenol oxidase (Non-PPO) darkening in yellow alkaline noodles (Yan). J. Agric. Food Chem. 2014, 62, 4725–4730. [Google Scholar] [CrossRef]
- Bertrand, G.; Muttermilch, W. I’esistence d’une tyrosinase dans le son de fromet. C. R. Hebd. Seances Acad. Sci. 1907, 144, 1285. [Google Scholar]
- Andersona, J.V.; Fuerstb, E.P.; Hurkman, W.J.; Vensel, W.H.; Morris, C.F. Biochemical and genetic characterization of wheat (Triticum spp.) kernel polyphenol oxidases. J. Cereal Sci. 2006, 44, 353–367. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Li, D.J.; Liu, C.Q.; Cheng, A.W.; Wang, W.L. Partial purification and characterization of polyphenol oxidase and peroxidase from chestnut kernel. LWT Food Sci. Technol. 2015, 60, 1095–1099. [Google Scholar] [CrossRef]
- Gao, Z.J.; Han, X.H.; Xiao, X.G. Purification and characterisation of polyphenol oxidase from red Swiss chard (Beta vulgaris subspecies cicla) leaves. Food Chem. 2009, 117, 342–348. [Google Scholar] [CrossRef]
- Torres, A.; Aguilar-Osorio, G.; Camacho, M.; Basurto, F.; Navarro-Ocana, A. Characterization of polyphenol oxidase from purple sweet potato (Ipomoea batatas L. Lam) and its affinity towards acylated anthocyanins and caffeoylquinic acid derivatives. Food Chem. 2021, 356, 129709. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, Y.Y.; Liu, P.; Meng, A.L.; Deng, L.; Xue, W.; Chen, F.; Che, Z.M. Comparative study of the biochemical properties of membrane-bound and soluble polyphenol oxidase from Prunus mume. LWT Food Sci. Technol. 2022, 171, 114156. [Google Scholar] [CrossRef]
- Guo, L.; Ma, Y.; Shi, J.; Xue, S. The purification and characterisation of polyphenol oxidase from green bean (Phaseolus vulgaris L.). Food Chem. 2009, 117, 143–151. [Google Scholar] [CrossRef]
- Karakus, Y.Y.; Yildirim, B.; Acemi, A. Characterization of polyphenol oxidase from fennel (Foeniculum vulgare Mill.) seeds as a promising source. Int. J. Biol. Macromol. 2021, 170, 261–271. [Google Scholar] [CrossRef]
- Palma-Orozco, G.; Ortiz-Moreno, A.; Dorantes-Álvarez, L.; Sampedro, J.G.; Nájera, H. Purification and partial biochemical characterization of polyphenol oxidase from mamey (Pouteria sapota). Phytochemistry 2011, 72, 82–88. [Google Scholar] [CrossRef]
- Benaceur, F.; Chaibi, R.; Berrabah, F.; Neifar, A.; Leboukh, M.; Benaceur, K.; Nouioua, W.; Rezzoug, A.; Bouazzara, H.; Gouzi, H.; et al. Purification and characterization of latent polyphenol oxidase from truffles (Terfezia arenaria). Int. J. Biol. Macromol. 2020, 145, 885–893. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Xiao, Y.J.; Meng, X.H.; Liu, B.J. Full inhibition of Whangkeumbae pear polyphenol oxidase enzymatic browning reaction by L-cysteine. Food Chem. 2018, 266, 1–8. [Google Scholar] [CrossRef]
- Lu, S.M.; Tong, G.P.; Long, Y.; Feng, H. Partial purification and characterization of polyphenol oxidase from fresh-cut Chinese water chestnut. J. Food Biochem. 2006, 30, 123–137. [Google Scholar] [CrossRef]
- Adeseko, C.J.; Sanni, D.M.; Salawu, S.O.; Kade, I.J.; Bamidele, S.O.; Lawal, O.T. Purification and biochemical characterization of polyphenol oxidase of African bush mango (Irvingia gabonensis) fruit peel. Biocatal. Agric. Biotechnol. 2021, 36, 102119. [Google Scholar] [CrossRef]
- Ioniţă, E.; Gurgu, L.; Aprodu, I.; Stănciuc, N.; Dalmadi, I.; Bahrim, G.; Râpeanu, G. Râpeanu Characterization, purification, and temperature/pressure stability of polyphenol oxidase extracted from plums (Prunus domestica). Process Biochem. 2017, 56, 177–185. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhou, L.; Liao, T.; Liu, J.P.; Yu, K.; Zou, L.Q.; Zhou, W.; Liu, W. Comparing the effect of benzoic acid and cinnamic acid hydroxyl derivatives on polyphenol oxidase: Activity, action mechanism, and molecular docking. J. Sci. Food Agric. 2022, 102, 3771–3780. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Rao, L.; Zhao, L.; Wang, Y.T.; Liao, X.J. Multispectroscopic and computational simulation insights into the inhibition mechanism of epigallocatechin-3-gallate on polyphenol oxidase. Food Chem. 2022, 393, 133415. [Google Scholar] [CrossRef] [PubMed]
- Sae-Leaw, T.; Benjakul, S.; Simpson, B.K. Effect of catechin and its derivatives on inhibition of polyphenol oxidase and melanosis of Pacific white shrimp. J. Food Sci. Technol. 2017, 54, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Dong, L.; Li, J.Y.; Zhang, S.Q.; Lei, Y.; Deng, M.S.; Li, J.Y. Optimization of enzymatic synthesis of theaflavins from potato polyphenol oxidase. Bioprocess Biosyst. Eng. 2022, 45, 1047–1055. [Google Scholar] [CrossRef]
- Yabuki, C.; Yagi, K.; Nanjo, F. Highly efficient synthesis of theaflavins by tyrosinase from mushroom and its application to theaflavin related compounds. Process Biochem. 2017, 55, 61–69. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, W.; Wang, B.; Liu, S.; Gong, Z.; Luo, Y. Partial properties of polyphenol oxidase in mango (Mangifera indica L. cv. “tainong”) pulp. J. Food Biochem. 2007, 31, 45–55. [Google Scholar] [CrossRef]
- Altunkaya, A.; Gökmen, V. Partial purification and characterization of polyphenol oxidase from durum wheat (Triticum durum L.). J. Cereal Sci. 2012, 55, 300–304. [Google Scholar] [CrossRef]
- Siddiq, M.; Dolan, K.D. Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chem. 2017, 218, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Alici, E.H.; Arabaci, G. Purification of polyphenol oxidase from borage (Trachystemon orientalis L.) by using three-phase partitioning and investigation of kinetic properties. Int. J. Biol. Macromol. 2016, 93, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Erat, M.; Şahin, Y.N.; Aksoy, G.; Demirkol, A. Partial characterization of polyphenoloxidase from a hybridized wheat (Triticum aestivum L.). Eur. Food. Res. Technol. 2010, 231, 889–905. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N. Partial purification of polyphenol oxidase from Chinese cabbage Brassica rapa L. J. Agric. Food Chem. 2001, 49, 3922–3926. [Google Scholar] [CrossRef] [PubMed]
- Çınar, F.; Aksay, S. Purification and characterization of polyphenol oxidase from myrtle berries (Myrtus communis L.). Food Meas. 2022, 16, 2282–2291. [Google Scholar] [CrossRef]
- Singh, A.; Wadhwa, N. Biochemical characterization and thermal inactivation of polyphenol oxidase from elephant foot yam (Amorphophallus paeoniifolius). J. Food Sci. Technol. 2017, 54, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
Purification Step | Total Protein Content (mg) | Total Activity (U) | Specific Activity (U/mg) | Purification Fold | Yield (%) |
---|---|---|---|---|---|
Crude extract | 207.03 ± 2.91 | 25,600 ± 1705.87 | 123.59 ± 6.48 | 1 | 100.00 |
(NH4)2SO4 precipitation (80%) | 90.60 ± 0.58 | 19,500 ± 793.73 | 215.06 ± 7.92 | 1.74 | 76.17 |
DEAE Sepharose Fast Flow | 4.13 ± 0.04 | 3870 ± 108.17 | 936.18 ± 16.69 | 7.57 | 15.12 |
Superdex G-75 | 1.59 ± 0.05 | 2165 ± 22.91 | 1365.12 ± 28.80 | 11.05 | 8.46 |
Substrate (Concentration = 10 mM) | Relative Activity (%) | Km (mM) | Vmax (U·mL−1·min−1) | Vmax/Km (U·mL−1·min−1·mM−1) |
---|---|---|---|---|
phenol | 0 a | - | - | - |
catechol | 100.00 ± 0.80 g | 6.36 ± 0.71 | 517.55 ± 15.20 | 81.29 |
ferulic acid | 0 a | - | - | - |
vanillic acid | 0 a | - | - | - |
caffeic acid | 29.08 ± 0.68 c | - | - | - |
protocatechuic acid | 14.73 ± 3.58 b | - | - | - |
gallic acid | 89.20 ± 0.68 f | 7.05 ± 0.47 | 447.96 ± 11.41 | 63.54 |
pyrogallic acid | 86.64 ± 2.13 f | 7.37 ± 0.71 | 500.84 ± 25.08 | 67.96 |
epicatechin | 68.96 ± 2.92 e | 8.01 ± 0.46 | 417.15 ± 17.39 | 52.08 |
epicatechin gallate | 51.87 ± 3.51 d | 7.90 ± 0.64 | 400.43 ± 17.39 | 50.69 |
epigallocatechin | 67.19 ± 0.97 e | 9.05 ± 0.18 | 319.44 ± 16.03 | 35.30 |
epigallocatechin gallate | 83.69 ± 2.41 f | 7.70 ± 0.14 | 455.17 ± 20.71 | 59.11 |
Metal Ions | Relative Activity (%) | |
---|---|---|
1 mM | 10 mM | |
blank | 100 | 100 |
Na+ | 84.09 ± 1.98 b | 82.88 ± 1.46 b |
K+ | 86.06 ± 3.03 b | 81.66 ± 2.77 b |
Mg2+ | 80.91 ± 3.18 b | 100.45 ± 2.00 c |
Ca2+ | 74.55 ± 4.39 a | 54.24 ± 1.60 a |
Cu2+ | 103.79 ± 1.14 c | 148.79 ± 2.05 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K.; He, W.; Ma, X.; Zhang, Q.; Chen, C.; Li, P.; Wu, D. Purification and Biochemical Characterization of Polyphenol Oxidase Extracted from Wheat Bran (Wan grano). Molecules 2024, 29, 1334. https://doi.org/10.3390/molecules29061334
Yu K, He W, Ma X, Zhang Q, Chen C, Li P, Wu D. Purification and Biochemical Characterization of Polyphenol Oxidase Extracted from Wheat Bran (Wan grano). Molecules. 2024; 29(6):1334. https://doi.org/10.3390/molecules29061334
Chicago/Turabian StyleYu, Kun, Wei He, Xiaoli Ma, Qi Zhang, Chunxu Chen, Peiyan Li, and Di Wu. 2024. "Purification and Biochemical Characterization of Polyphenol Oxidase Extracted from Wheat Bran (Wan grano)" Molecules 29, no. 6: 1334. https://doi.org/10.3390/molecules29061334
APA StyleYu, K., He, W., Ma, X., Zhang, Q., Chen, C., Li, P., & Wu, D. (2024). Purification and Biochemical Characterization of Polyphenol Oxidase Extracted from Wheat Bran (Wan grano). Molecules, 29(6), 1334. https://doi.org/10.3390/molecules29061334